quantrs2_sim/
adaptive_gate_fusion.rs

1//! Adaptive gate fusion based on circuit structure analysis.
2//!
3//! This module implements intelligent gate fusion algorithms that analyze
4//! quantum circuit structures to automatically identify and fuse adjacent
5//! gates for optimal performance. It leverages SciRS2's optimization
6//! capabilities for efficient matrix operations and circuit transformations.
7
8use scirs2_core::ndarray::Array2;
9use scirs2_core::Complex64;
10use serde::{Deserialize, Serialize};
11use std::collections::{HashMap, HashSet};
12use std::hash::{Hash, Hasher};
13
14use crate::error::{Result, SimulatorError};
15use crate::scirs2_integration::SciRS2Backend;
16
17#[cfg(feature = "advanced_math")]
18use quantrs2_circuit::prelude::*;
19
20/// Gate fusion strategy
21#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
22pub enum FusionStrategy {
23    /// Aggressive fusion - fuse as many gates as possible
24    Aggressive,
25    /// Conservative fusion - only fuse when clearly beneficial
26    Conservative,
27    /// Balanced fusion - balance between fusion opportunities and overhead
28    Balanced,
29    /// Adaptive fusion - learn from circuit patterns
30    Adaptive,
31    /// Custom fusion based on specific criteria
32    Custom,
33}
34
35/// Gate fusion configuration
36#[derive(Debug, Clone)]
37pub struct AdaptiveFusionConfig {
38    /// Primary fusion strategy
39    pub strategy: FusionStrategy,
40    /// Maximum number of gates to fuse in a single block
41    pub max_fusion_size: usize,
42    /// Minimum benefit threshold for fusion (relative speedup)
43    pub min_benefit_threshold: f64,
44    /// Enable cross-qubit fusion analysis
45    pub enable_cross_qubit_fusion: bool,
46    /// Enable temporal fusion across time steps
47    pub enable_temporal_fusion: bool,
48    /// Maximum circuit depth to analyze for fusion
49    pub max_analysis_depth: usize,
50    /// Enable machine learning-based fusion predictions
51    pub enable_ml_predictions: bool,
52    /// Fusion cache size for repeated patterns
53    pub fusion_cache_size: usize,
54    /// Enable parallel fusion analysis
55    pub parallel_analysis: bool,
56}
57
58impl Default for AdaptiveFusionConfig {
59    fn default() -> Self {
60        Self {
61            strategy: FusionStrategy::Adaptive,
62            max_fusion_size: 8,
63            min_benefit_threshold: 1.1,
64            enable_cross_qubit_fusion: true,
65            enable_temporal_fusion: true,
66            max_analysis_depth: 100,
67            enable_ml_predictions: true,
68            fusion_cache_size: 10000,
69            parallel_analysis: true,
70        }
71    }
72}
73
74/// Quantum gate representation for fusion analysis
75#[derive(Debug, Clone)]
76pub struct QuantumGate {
77    /// Gate type identifier
78    pub gate_type: GateType,
79    /// Qubits this gate acts on
80    pub qubits: Vec<usize>,
81    /// Gate parameters (angles, etc.)
82    pub parameters: Vec<f64>,
83    /// Unitary matrix representation
84    pub matrix: Array2<Complex64>,
85    /// Position in the circuit
86    pub position: usize,
87    /// Estimated execution cost
88    pub cost: f64,
89}
90
91/// Supported gate types for fusion
92#[derive(Debug, Clone, PartialEq, Eq, Hash)]
93pub enum GateType {
94    // Single-qubit gates
95    Identity,
96    PauliX,
97    PauliY,
98    PauliZ,
99    Hadamard,
100    Phase,
101    T,
102    RotationX,
103    RotationY,
104    RotationZ,
105    // Two-qubit gates
106    CNOT,
107    CZ,
108    SWAP,
109    ISwap,
110    // Multi-qubit gates
111    Toffoli,
112    Fredkin,
113    // Custom gates
114    Custom(String),
115}
116
117impl QuantumGate {
118    /// Create a new quantum gate
119    pub fn new(gate_type: GateType, qubits: Vec<usize>, parameters: Vec<f64>) -> Self {
120        let matrix = Self::gate_matrix(&gate_type, &parameters);
121        let cost = Self::estimate_cost(&gate_type, qubits.len());
122
123        Self {
124            gate_type,
125            qubits,
126            parameters,
127            matrix,
128            position: 0,
129            cost,
130        }
131    }
132
133    /// Get the unitary matrix for a gate type
134    fn gate_matrix(gate_type: &GateType, parameters: &[f64]) -> Array2<Complex64> {
135        match gate_type {
136            GateType::Identity => Array2::eye(2),
137            GateType::PauliX => Array2::from_shape_vec(
138                (2, 2),
139                vec![
140                    Complex64::new(0.0, 0.0),
141                    Complex64::new(1.0, 0.0),
142                    Complex64::new(1.0, 0.0),
143                    Complex64::new(0.0, 0.0),
144                ],
145            )
146            .unwrap(),
147            GateType::PauliY => Array2::from_shape_vec(
148                (2, 2),
149                vec![
150                    Complex64::new(0.0, 0.0),
151                    Complex64::new(0.0, -1.0),
152                    Complex64::new(0.0, 1.0),
153                    Complex64::new(0.0, 0.0),
154                ],
155            )
156            .unwrap(),
157            GateType::PauliZ => Array2::from_shape_vec(
158                (2, 2),
159                vec![
160                    Complex64::new(1.0, 0.0),
161                    Complex64::new(0.0, 0.0),
162                    Complex64::new(0.0, 0.0),
163                    Complex64::new(-1.0, 0.0),
164                ],
165            )
166            .unwrap(),
167            GateType::Hadamard => {
168                let inv_sqrt2 = 1.0 / 2.0_f64.sqrt();
169                Array2::from_shape_vec(
170                    (2, 2),
171                    vec![
172                        Complex64::new(inv_sqrt2, 0.0),
173                        Complex64::new(inv_sqrt2, 0.0),
174                        Complex64::new(inv_sqrt2, 0.0),
175                        Complex64::new(-inv_sqrt2, 0.0),
176                    ],
177                )
178                .unwrap()
179            }
180            GateType::RotationX => {
181                let theta = parameters.first().copied().unwrap_or(0.0);
182                let cos_half = (theta / 2.0).cos();
183                let sin_half = (theta / 2.0).sin();
184                Array2::from_shape_vec(
185                    (2, 2),
186                    vec![
187                        Complex64::new(cos_half, 0.0),
188                        Complex64::new(0.0, -sin_half),
189                        Complex64::new(0.0, -sin_half),
190                        Complex64::new(cos_half, 0.0),
191                    ],
192                )
193                .unwrap()
194            }
195            GateType::RotationY => {
196                let theta = parameters.first().copied().unwrap_or(0.0);
197                let cos_half = (theta / 2.0).cos();
198                let sin_half = (theta / 2.0).sin();
199                Array2::from_shape_vec(
200                    (2, 2),
201                    vec![
202                        Complex64::new(cos_half, 0.0),
203                        Complex64::new(-sin_half, 0.0),
204                        Complex64::new(sin_half, 0.0),
205                        Complex64::new(cos_half, 0.0),
206                    ],
207                )
208                .unwrap()
209            }
210            GateType::RotationZ => {
211                let theta = parameters.first().copied().unwrap_or(0.0);
212                let exp_neg = Complex64::new(0.0, -theta / 2.0).exp();
213                let exp_pos = Complex64::new(0.0, theta / 2.0).exp();
214                Array2::from_shape_vec(
215                    (2, 2),
216                    vec![
217                        exp_neg,
218                        Complex64::new(0.0, 0.0),
219                        Complex64::new(0.0, 0.0),
220                        exp_pos,
221                    ],
222                )
223                .unwrap()
224            }
225            GateType::CNOT => Array2::from_shape_vec(
226                (4, 4),
227                vec![
228                    Complex64::new(1.0, 0.0),
229                    Complex64::new(0.0, 0.0),
230                    Complex64::new(0.0, 0.0),
231                    Complex64::new(0.0, 0.0),
232                    Complex64::new(0.0, 0.0),
233                    Complex64::new(1.0, 0.0),
234                    Complex64::new(0.0, 0.0),
235                    Complex64::new(0.0, 0.0),
236                    Complex64::new(0.0, 0.0),
237                    Complex64::new(0.0, 0.0),
238                    Complex64::new(0.0, 0.0),
239                    Complex64::new(1.0, 0.0),
240                    Complex64::new(0.0, 0.0),
241                    Complex64::new(0.0, 0.0),
242                    Complex64::new(1.0, 0.0),
243                    Complex64::new(0.0, 0.0),
244                ],
245            )
246            .unwrap(),
247            _ => Array2::eye(2), // Default fallback
248        }
249    }
250
251    /// Estimate execution cost for a gate
252    fn estimate_cost(gate_type: &GateType, num_qubits: usize) -> f64 {
253        let base_cost = match gate_type {
254            GateType::Identity => 0.1,
255            GateType::PauliX | GateType::PauliY | GateType::PauliZ => 1.0,
256            GateType::Hadamard => 1.2,
257            GateType::Phase | GateType::T => 1.1,
258            GateType::RotationX | GateType::RotationY | GateType::RotationZ => 1.5,
259            GateType::CNOT | GateType::CZ => 2.0,
260            GateType::SWAP | GateType::ISwap => 2.5,
261            GateType::Toffoli => 4.0,
262            GateType::Fredkin => 4.5,
263            GateType::Custom(_) => 3.0,
264        };
265
266        // Cost scales with number of qubits
267        base_cost * (1 << num_qubits) as f64
268    }
269
270    /// Check if this gate commutes with another gate
271    pub fn commutes_with(&self, other: &Self) -> bool {
272        // Check if gates act on disjoint qubits
273        let self_qubits: HashSet<_> = self.qubits.iter().collect();
274        let other_qubits: HashSet<_> = other.qubits.iter().collect();
275
276        if self_qubits.is_disjoint(&other_qubits) {
277            return true;
278        }
279
280        // For gates acting on same qubits, check specific commutation rules
281        if self.qubits == other.qubits {
282            return self.check_specific_commutation(other);
283        }
284
285        false
286    }
287
288    /// Check specific commutation rules for gates on same qubits
289    const fn check_specific_commutation(&self, other: &Self) -> bool {
290        match (&self.gate_type, &other.gate_type) {
291            // Pauli gates commute with themselves
292            (GateType::PauliX, GateType::PauliX)
293            | (GateType::PauliY, GateType::PauliY)
294            | (GateType::PauliZ, GateType::PauliZ) => true,
295            // Z commutes with RZ
296            (GateType::PauliZ, GateType::RotationZ) | (GateType::RotationZ, GateType::PauliZ) => {
297                true
298            }
299            // X commutes with RX
300            (GateType::PauliX, GateType::RotationX) | (GateType::RotationX, GateType::PauliX) => {
301                true
302            }
303            // Y commutes with RY
304            (GateType::PauliY, GateType::RotationY) | (GateType::RotationY, GateType::PauliY) => {
305                true
306            }
307            // Rotation gates of same type commute
308            (GateType::RotationX, GateType::RotationX)
309            | (GateType::RotationY, GateType::RotationY)
310            | (GateType::RotationZ, GateType::RotationZ) => true,
311            // Identity commutes with everything
312            (GateType::Identity, _) | (_, GateType::Identity) => true,
313            _ => false,
314        }
315    }
316
317    /// Check if this gate can be fused with another gate
318    pub fn can_fuse_with(&self, other: &Self) -> bool {
319        // Gates must act on the same qubits to be fusable
320        if self.qubits != other.qubits {
321            return false;
322        }
323
324        // Check if both are single-qubit gates (easier to fuse)
325        if self.qubits.len() == 1 && other.qubits.len() == 1 {
326            return true;
327        }
328
329        // Two-qubit gates can sometimes be fused
330        if self.qubits.len() == 2 && other.qubits.len() == 2 {
331            return self.check_two_qubit_fusion_compatibility(other);
332        }
333
334        false
335    }
336
337    /// Check if two-qubit gates can be fused
338    const fn check_two_qubit_fusion_compatibility(&self, other: &Self) -> bool {
339        match (&self.gate_type, &other.gate_type) {
340            // CNOTs can be fused in certain patterns
341            (GateType::CNOT, GateType::CNOT) => true,
342            // CZ gates can be fused
343            (GateType::CZ, GateType::CZ) => true,
344            // CNOT and CZ can sometimes be fused
345            (GateType::CNOT, GateType::CZ) | (GateType::CZ, GateType::CNOT) => true,
346            _ => false,
347        }
348    }
349}
350
351impl Hash for QuantumGate {
352    fn hash<H: Hasher>(&self, state: &mut H) {
353        self.gate_type.hash(state);
354        self.qubits.hash(state);
355        // Hash parameters with reduced precision to avoid floating point issues
356        for &param in &self.parameters {
357            ((param * 1000.0).round() as i64).hash(state);
358        }
359    }
360}
361
362impl PartialEq for QuantumGate {
363    fn eq(&self, other: &Self) -> bool {
364        self.gate_type == other.gate_type
365            && self.qubits == other.qubits
366            && self.parameters.len() == other.parameters.len()
367            && self
368                .parameters
369                .iter()
370                .zip(other.parameters.iter())
371                .all(|(&a, &b)| (a - b).abs() < 1e-10)
372    }
373}
374
375impl Eq for QuantumGate {}
376
377/// Fused gate block containing multiple gates
378#[derive(Debug, Clone)]
379pub struct FusedGateBlock {
380    /// Individual gates in this block
381    pub gates: Vec<QuantumGate>,
382    /// Combined unitary matrix for the entire block
383    pub combined_matrix: Array2<Complex64>,
384    /// Qubits affected by this block
385    pub qubits: Vec<usize>,
386    /// Estimated execution cost
387    pub cost: f64,
388    /// Performance improvement factor
389    pub improvement_factor: f64,
390}
391
392impl FusedGateBlock {
393    /// Create a new fused gate block
394    pub fn new(gates: Vec<QuantumGate>) -> Result<Self> {
395        if gates.is_empty() {
396            return Err(SimulatorError::InvalidInput(
397                "Cannot create empty gate block".to_string(),
398            ));
399        }
400
401        // Determine qubits affected by this block
402        let mut qubits = HashSet::new();
403        for gate in &gates {
404            qubits.extend(&gate.qubits);
405        }
406        let mut qubit_vec: Vec<usize> = qubits.into_iter().collect();
407        qubit_vec.sort_unstable();
408
409        // Calculate combined matrix
410        let combined_matrix = Self::calculate_combined_matrix(&gates, &qubit_vec)?;
411
412        // Calculate costs
413        let individual_cost: f64 = gates.iter().map(|g| g.cost).sum();
414        let fused_cost = Self::estimate_fused_cost(&combined_matrix);
415        let improvement_factor = individual_cost / fused_cost;
416
417        Ok(Self {
418            gates,
419            combined_matrix,
420            qubits: qubit_vec,
421            cost: fused_cost,
422            improvement_factor,
423        })
424    }
425
426    /// Calculate the combined unitary matrix for multiple gates
427    fn calculate_combined_matrix(
428        gates: &[QuantumGate],
429        qubits: &[usize],
430    ) -> Result<Array2<Complex64>> {
431        let num_qubits = qubits.len();
432        let matrix_size = 1 << num_qubits;
433        let mut combined = Array2::eye(matrix_size);
434
435        for gate in gates {
436            let gate_matrix = Self::expand_gate_matrix(&gate.matrix, &gate.qubits, qubits)?;
437            combined = gate_matrix.dot(&combined);
438        }
439
440        Ok(combined)
441    }
442
443    /// Expand a gate matrix to act on the full qubit space
444    fn expand_gate_matrix(
445        gate_matrix: &Array2<Complex64>,
446        gate_qubits: &[usize],
447        all_qubits: &[usize],
448    ) -> Result<Array2<Complex64>> {
449        let num_all_qubits = all_qubits.len();
450        let full_size = 1 << num_all_qubits;
451        let gate_size = 1 << gate_qubits.len();
452
453        if gate_matrix.nrows() != gate_size || gate_matrix.ncols() != gate_size {
454            return Err(SimulatorError::DimensionMismatch(
455                "Gate matrix size doesn't match number of qubits".to_string(),
456            ));
457        }
458
459        let mut expanded = Array2::eye(full_size);
460
461        // Create mapping from gate qubits to positions in full space
462        let mut qubit_mapping = HashMap::new();
463        for (gate_pos, &qubit) in gate_qubits.iter().enumerate() {
464            if let Some(all_pos) = all_qubits.iter().position(|&q| q == qubit) {
465                qubit_mapping.insert(gate_pos, all_pos);
466            } else {
467                return Err(SimulatorError::InvalidInput(format!(
468                    "Gate qubit {qubit} not found in qubit list"
469                )));
470            }
471        }
472
473        // Apply gate to the appropriate subspace
474        for i in 0..full_size {
475            for j in 0..full_size {
476                // Extract gate subspace indices
477                let mut gate_i = 0;
478                let mut gate_j = 0;
479                let mut valid = true;
480
481                for (gate_pos, &all_pos) in &qubit_mapping {
482                    let bit_i = (i >> (num_all_qubits - 1 - all_pos)) & 1;
483                    let bit_j = (j >> (num_all_qubits - 1 - all_pos)) & 1;
484
485                    gate_i |= bit_i << (gate_qubits.len() - 1 - gate_pos);
486                    gate_j |= bit_j << (gate_qubits.len() - 1 - gate_pos);
487                }
488
489                // Check if other qubits are the same
490                for all_pos in 0..num_all_qubits {
491                    if !qubit_mapping.values().any(|&pos| pos == all_pos) {
492                        let bit_i = (i >> (num_all_qubits - 1 - all_pos)) & 1;
493                        let bit_j = (j >> (num_all_qubits - 1 - all_pos)) & 1;
494                        if bit_i != bit_j {
495                            valid = false;
496                            break;
497                        }
498                    }
499                }
500
501                if valid {
502                    expanded[[i, j]] = gate_matrix[[gate_i, gate_j]];
503                } else {
504                    expanded[[i, j]] = if i == j {
505                        Complex64::new(1.0, 0.0)
506                    } else {
507                        Complex64::new(0.0, 0.0)
508                    };
509                }
510            }
511        }
512
513        Ok(expanded)
514    }
515
516    /// Estimate execution cost for a fused gate block
517    fn estimate_fused_cost(matrix: &Array2<Complex64>) -> f64 {
518        // Cost is primarily determined by matrix size
519        let size = matrix.nrows();
520        let base_cost = (size as f64).log2() * size as f64;
521
522        // Add overhead for fusion setup
523        let fusion_overhead = 0.1 * base_cost;
524
525        base_cost + fusion_overhead
526    }
527
528    /// Check if fusion is beneficial
529    pub fn is_beneficial(&self) -> bool {
530        self.improvement_factor > 1.1 // At least 10% improvement
531    }
532}
533
534/// Circuit analysis result
535#[derive(Debug, Clone, Serialize, Deserialize)]
536pub struct CircuitAnalysis {
537    /// Number of gates in original circuit
538    pub original_gate_count: usize,
539    /// Number of gates after fusion
540    pub fused_gate_count: usize,
541    /// Number of fusion blocks created
542    pub fusion_blocks: usize,
543    /// Estimated performance improvement
544    pub performance_improvement: f64,
545    /// Gate type distribution
546    pub gate_distribution: HashMap<String, usize>,
547    /// Fusion opportunities identified
548    pub fusion_opportunities: Vec<FusionOpportunity>,
549    /// Circuit depth before and after fusion
550    pub circuit_depth: (usize, usize),
551}
552
553/// Fusion opportunity description
554#[derive(Debug, Clone, Serialize, Deserialize)]
555pub struct FusionOpportunity {
556    /// Description of the opportunity
557    pub description: String,
558    /// Qubits involved
559    pub qubits: Vec<usize>,
560    /// Gate types that can be fused
561    pub gate_types: Vec<String>,
562    /// Estimated benefit
563    pub estimated_benefit: f64,
564    /// Confidence score (0-1)
565    pub confidence: f64,
566}
567
568/// Adaptive gate fusion engine
569pub struct AdaptiveGateFusion {
570    /// Configuration
571    config: AdaptiveFusionConfig,
572    /// SciRS2 backend for optimization
573    backend: Option<SciRS2Backend>,
574    /// Fusion pattern cache with improved key system
575    fusion_cache: HashMap<FusionPatternKey, CachedFusionResult>,
576    /// Learning history for adaptive strategy
577    learning_history: Vec<FusionExperiment>,
578    /// Circuit optimization context
579    #[cfg(feature = "advanced_math")]
580    optimizer: Option<Box<dyn std::any::Any>>, // Placeholder for CircuitOptimizer
581    /// Machine learning predictor for fusion benefits
582    ml_predictor: Option<MLFusionPredictor>,
583    /// Cache statistics
584    cache_hits: usize,
585    cache_misses: usize,
586    /// Pattern analyzer for circuit structure recognition
587    pattern_analyzer: CircuitPatternAnalyzer,
588}
589
590/// Cache key for fusion patterns
591#[derive(Debug, Clone, PartialEq, Eq, Hash)]
592pub struct FusionPatternKey {
593    /// Gate types in the pattern
594    gate_types: Vec<GateType>,
595    /// Number of qubits involved
596    num_qubits: usize,
597    /// Parameter hash for parameterized gates
598    parameter_hash: u64,
599}
600
601impl FusionPatternKey {
602    /// Create a fusion pattern key from a list of gates
603    pub fn from_gates(gates: &[QuantumGate]) -> Result<Self> {
604        let gate_types: Vec<GateType> = gates.iter().map(|g| g.gate_type.clone()).collect();
605
606        // Count unique qubits
607        let mut qubits = std::collections::HashSet::new();
608        for gate in gates {
609            for &qubit in &gate.qubits {
610                qubits.insert(qubit);
611            }
612        }
613        let num_qubits = qubits.len();
614
615        // Hash parameters
616        let mut parameter_hash = 0u64;
617        for gate in gates {
618            for &param in &gate.parameters {
619                parameter_hash = parameter_hash.wrapping_add((param * 1000.0) as u64);
620            }
621        }
622
623        Ok(Self {
624            gate_types,
625            num_qubits,
626            parameter_hash,
627        })
628    }
629}
630
631/// Cached fusion result
632#[derive(Debug, Clone)]
633pub struct CachedFusionResult {
634    /// The fused gate block
635    fused_block: FusedGateBlock,
636    /// Performance benefit observed
637    benefit: f64,
638    /// Number of times this pattern was used
639    usage_count: usize,
640    /// Last access timestamp
641    last_accessed: std::time::Instant,
642}
643
644/// Machine learning predictor for fusion benefits
645pub struct MLFusionPredictor {
646    /// Feature weights for different gate patterns
647    feature_weights: HashMap<String, f64>,
648    /// Training examples
649    training_data: Vec<MLTrainingExample>,
650    /// Model accuracy
651    accuracy: f64,
652}
653
654/// Training example for ML predictor
655#[derive(Debug, Clone)]
656pub struct MLTrainingExample {
657    /// Input features
658    features: Vec<f64>,
659    /// Expected benefit (target)
660    benefit: f64,
661    /// Actual observed benefit
662    observed_benefit: Option<f64>,
663}
664
665/// Circuit pattern analyzer
666pub struct CircuitPatternAnalyzer {
667    /// Known beneficial patterns
668    beneficial_patterns: HashMap<String, f64>,
669    /// Pattern recognition history
670    pattern_history: Vec<PatternRecognitionResult>,
671}
672
673/// Pattern recognition result
674#[derive(Debug, Clone)]
675pub struct PatternRecognitionResult {
676    /// Pattern description
677    pub pattern: String,
678    /// Confidence in recognition
679    pub confidence: f64,
680    /// Expected benefit
681    pub expected_benefit: f64,
682}
683
684/// Result of fusion decision
685#[derive(Debug, Clone)]
686pub struct FusionResult {
687    /// Whether gates should be fused
688    pub should_fuse: bool,
689    /// Confidence in the decision
690    pub confidence: f64,
691    /// Expected speedup from fusion
692    pub expected_speedup: f64,
693    /// Estimated error increase
694    pub estimated_error: f64,
695}
696
697/// Fusion experiment for learning
698#[derive(Debug, Clone)]
699struct FusionExperiment {
700    circuit_fingerprint: u64,
701    fusion_strategy: FusionStrategy,
702    performance_improvement: f64,
703    execution_time_ms: f64,
704}
705
706impl AdaptiveGateFusion {
707    /// Create new adaptive gate fusion engine
708    pub fn new(config: AdaptiveFusionConfig) -> Result<Self> {
709        Ok(Self {
710            config,
711            backend: None,
712            fusion_cache: HashMap::new(),
713            learning_history: Vec::new(),
714            ml_predictor: None,
715            cache_hits: 0,
716            cache_misses: 0,
717            pattern_analyzer: CircuitPatternAnalyzer::new(),
718            #[cfg(feature = "advanced_math")]
719            optimizer: None,
720        })
721    }
722
723    /// Initialize with SciRS2 backend
724    pub fn with_backend(mut self) -> Result<Self> {
725        self.backend = Some(SciRS2Backend::new());
726
727        #[cfg(feature = "advanced_math")]
728        {
729            let strategy = match self.config.strategy {
730                FusionStrategy::Aggressive => OptimizationStrategy::MinimizeTime,
731                FusionStrategy::Conservative => OptimizationStrategy::MinimizeLength,
732                FusionStrategy::Balanced => OptimizationStrategy::Balanced,
733                FusionStrategy::Adaptive => OptimizationStrategy::MinimizeCrossings,
734                FusionStrategy::Custom => OptimizationStrategy::Balanced,
735            };
736
737            // Placeholder for circuit optimizer integration
738            self.optimizer = Some(Box::new(strategy));
739        }
740
741        Ok(self)
742    }
743
744    /// Analyze circuit and identify fusion opportunities
745    pub fn analyze_circuit(&mut self, gates: &[QuantumGate]) -> Result<CircuitAnalysis> {
746        let start_time = std::time::Instant::now();
747
748        // Calculate circuit metrics
749        let original_gate_count = gates.len();
750        let original_depth = self.calculate_circuit_depth(gates);
751
752        // Identify fusion opportunities
753        let fusion_opportunities = self.identify_fusion_opportunities(gates)?;
754
755        // Perform actual fusion
756        let (fused_blocks, remaining_gates) = self.perform_fusion(gates)?;
757        let fused_gate_count = fused_blocks.len() + remaining_gates.len();
758        let fused_depth = self.calculate_fused_circuit_depth(&fused_blocks, &remaining_gates);
759
760        // Calculate performance improvement
761        let original_cost: f64 = gates.iter().map(|g| g.cost).sum();
762        let fused_cost: f64 = fused_blocks.iter().map(|b| b.cost).sum::<f64>()
763            + remaining_gates.iter().map(|g| g.cost).sum::<f64>();
764        let performance_improvement = original_cost / fused_cost;
765
766        // Gate distribution analysis
767        let mut gate_distribution = HashMap::new();
768        for gate in gates {
769            let gate_name = format!("{:?}", gate.gate_type);
770            *gate_distribution.entry(gate_name).or_insert(0) += 1;
771        }
772
773        let analysis = CircuitAnalysis {
774            original_gate_count,
775            fused_gate_count,
776            fusion_blocks: fused_blocks.len(),
777            performance_improvement,
778            gate_distribution,
779            fusion_opportunities,
780            circuit_depth: (original_depth, fused_depth),
781        };
782
783        // Record experiment for learning
784        if self.config.enable_ml_predictions {
785            let experiment = FusionExperiment {
786                circuit_fingerprint: self.calculate_circuit_fingerprint(gates),
787                fusion_strategy: self.config.strategy,
788                performance_improvement,
789                execution_time_ms: start_time.elapsed().as_secs_f64() * 1000.0,
790            };
791            self.learning_history.push(experiment);
792        }
793
794        Ok(analysis)
795    }
796
797    /// Perform gate fusion on a circuit
798    pub fn fuse_circuit(&mut self, gates: &[QuantumGate]) -> Result<Vec<FusedGateBlock>> {
799        let (fused_blocks, _) = self.perform_fusion(gates)?;
800        Ok(fused_blocks)
801    }
802
803    /// Identify fusion opportunities in a circuit
804    fn identify_fusion_opportunities(
805        &self,
806        gates: &[QuantumGate],
807    ) -> Result<Vec<FusionOpportunity>> {
808        let mut opportunities = Vec::new();
809
810        // Analyze gate sequences for fusion potential
811        for window_size in 2..=self.config.max_fusion_size {
812            for window in gates.windows(window_size) {
813                if let Some(opportunity) = self.analyze_gate_window(window)? {
814                    opportunities.push(opportunity);
815                }
816            }
817        }
818
819        // Remove overlapping opportunities (keep the best ones)
820        opportunities.sort_by(|a, b| {
821            b.estimated_benefit
822                .partial_cmp(&a.estimated_benefit)
823                .unwrap()
824        });
825        self.remove_overlapping_opportunities(opportunities)
826    }
827
828    /// Analyze a window of gates for fusion potential
829    fn analyze_gate_window(&self, window: &[QuantumGate]) -> Result<Option<FusionOpportunity>> {
830        if window.len() < 2 {
831            return Ok(None);
832        }
833
834        // Check if gates can be fused
835        let can_fuse = self.can_fuse_gate_sequence(window)?;
836        if !can_fuse {
837            return Ok(None);
838        }
839
840        // Estimate benefit
841        let benefit = self.estimate_fusion_benefit(window)?;
842        if benefit < self.config.min_benefit_threshold {
843            return Ok(None);
844        }
845
846        // Create opportunity description
847        let qubits: HashSet<usize> = window.iter().flat_map(|g| &g.qubits).copied().collect();
848        let gate_types: Vec<String> = window
849            .iter()
850            .map(|g| format!("{:?}", g.gate_type))
851            .collect();
852
853        let confidence = self.calculate_fusion_confidence(window);
854
855        let opportunity = FusionOpportunity {
856            description: format!("Fuse {} gates on qubits {:?}", window.len(), qubits),
857            qubits: qubits.into_iter().collect(),
858            gate_types,
859            estimated_benefit: benefit,
860            confidence,
861        };
862
863        Ok(Some(opportunity))
864    }
865
866    /// Check if a sequence of gates can be fused
867    fn can_fuse_gate_sequence(&self, gates: &[QuantumGate]) -> Result<bool> {
868        if gates.is_empty() {
869            return Ok(false);
870        }
871
872        // Check basic fusion compatibility
873        for i in 0..gates.len() - 1 {
874            if !gates[i].can_fuse_with(&gates[i + 1]) {
875                // Check if gates commute (allowing reordering)
876                if !gates[i].commutes_with(&gates[i + 1]) {
877                    return Ok(false);
878                }
879            }
880        }
881
882        // Check if fusion would be beneficial
883        let fusion_block = FusedGateBlock::new(gates.to_vec())?;
884        Ok(fusion_block.is_beneficial())
885    }
886
887    /// Estimate the benefit of fusing a sequence of gates
888    fn estimate_fusion_benefit(&self, gates: &[QuantumGate]) -> Result<f64> {
889        let individual_cost: f64 = gates.iter().map(|g| g.cost).sum();
890
891        // Create temporary fusion block to estimate fused cost
892        let fusion_block = FusedGateBlock::new(gates.to_vec())?;
893        let fused_cost = fusion_block.cost;
894
895        Ok(individual_cost / fused_cost)
896    }
897
898    /// Calculate confidence score for fusion
899    fn calculate_fusion_confidence(&self, gates: &[QuantumGate]) -> f64 {
900        let mut confidence: f64 = 1.0;
901
902        // Reduce confidence for mixed gate types
903        let gate_types: HashSet<_> = gates.iter().map(|g| &g.gate_type).collect();
904        if gate_types.len() > 1 {
905            confidence *= 0.8;
906        }
907
908        // Reduce confidence for gates on many qubits
909        let all_qubits: HashSet<_> = gates.iter().flat_map(|g| &g.qubits).collect();
910        if all_qubits.len() > 3 {
911            confidence *= 0.6;
912        }
913
914        // Increase confidence for known beneficial patterns
915        if self.is_known_beneficial_pattern(gates) {
916            confidence *= 1.2;
917        }
918
919        confidence.min(1.0)
920    }
921
922    /// Check if this is a known beneficial fusion pattern
923    fn is_known_beneficial_pattern(&self, gates: &[QuantumGate]) -> bool {
924        // Check for common beneficial patterns
925        if gates.len() == 2 {
926            // Adjacent rotation gates of same type
927            if let (Some(g1), Some(g2)) = (gates.first(), gates.get(1)) {
928                match (&g1.gate_type, &g2.gate_type) {
929                    (GateType::RotationX, GateType::RotationX)
930                    | (GateType::RotationY, GateType::RotationY)
931                    | (GateType::RotationZ, GateType::RotationZ) => return true,
932                    _ => {}
933                }
934            }
935        }
936
937        // CNOT + single qubit gate patterns
938        if gates.len() == 3 {
939            // Look for CNOT-single-CNOT patterns
940            if matches!(gates[0].gate_type, GateType::CNOT)
941                && gates[1].qubits.len() == 1
942                && matches!(gates[2].gate_type, GateType::CNOT)
943            {
944                return true;
945            }
946        }
947
948        false
949    }
950
951    /// Remove overlapping fusion opportunities
952    fn remove_overlapping_opportunities(
953        &self,
954        opportunities: Vec<FusionOpportunity>,
955    ) -> Result<Vec<FusionOpportunity>> {
956        let mut result = Vec::new();
957        let mut used_positions = HashSet::new();
958
959        for opportunity in opportunities {
960            // Check if this opportunity overlaps with already selected ones
961            let overlaps = opportunity
962                .qubits
963                .iter()
964                .any(|q| used_positions.contains(q));
965
966            if !overlaps {
967                // Mark qubits as used
968                for &qubit in &opportunity.qubits {
969                    used_positions.insert(qubit);
970                }
971                result.push(opportunity);
972            }
973        }
974
975        Ok(result)
976    }
977
978    /// Perform actual gate fusion
979    fn perform_fusion(
980        &mut self,
981        gates: &[QuantumGate],
982    ) -> Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
983        let start_time = std::time::Instant::now();
984
985        #[cfg(feature = "advanced_math")]
986        {
987            if self.optimizer.is_some() {
988                // For now, fall back to manual fusion since we're using placeholder types
989                return self.perform_manual_fusion(gates);
990            }
991        }
992
993        // Fallback to manual fusion
994        self.perform_manual_fusion(gates)
995    }
996
997    #[cfg(feature = "advanced_math")]
998    fn perform_scirs2_fusion(
999        &mut self,
1000        gates: &[QuantumGate],
1001        _optimizer: &mut Box<dyn std::any::Any>,
1002    ) -> Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
1003        // Use SciRS2's circuit optimization capabilities
1004        // This is a placeholder - actual implementation would use SciRS2 APIs
1005        self.perform_manual_fusion(gates)
1006    }
1007
1008    /// Manual fusion implementation
1009    fn perform_manual_fusion(
1010        &mut self,
1011        gates: &[QuantumGate],
1012    ) -> Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
1013        let mut fused_blocks = Vec::new();
1014        let mut remaining_gates = Vec::new();
1015        let mut i = 0;
1016
1017        while i < gates.len() {
1018            // Try to find the largest fusable block starting at position i
1019            let mut best_block_size = 1;
1020            let mut best_benefit = 0.0;
1021
1022            for block_size in 2..=(self.config.max_fusion_size.min(gates.len() - i)) {
1023                let window = &gates[i..i + block_size];
1024
1025                if let Ok(can_fuse) = self.can_fuse_gate_sequence(window) {
1026                    if can_fuse {
1027                        if let Ok(benefit) = self.estimate_fusion_benefit(window) {
1028                            if benefit > best_benefit
1029                                && benefit >= self.config.min_benefit_threshold
1030                            {
1031                                best_block_size = block_size;
1032                                best_benefit = benefit;
1033                            }
1034                        }
1035                    }
1036                }
1037            }
1038
1039            if best_block_size > 1 {
1040                // Create fused block
1041                let block_gates = gates[i..i + best_block_size].to_vec();
1042
1043                // Create fusion pattern key from gates
1044                let pattern_key = FusionPatternKey::from_gates(&block_gates)?;
1045
1046                // Check cache first
1047                if let Some(cached_result) = self.fusion_cache.get(&pattern_key) {
1048                    fused_blocks.push(cached_result.fused_block.clone());
1049                    self.cache_hits += 1;
1050                } else {
1051                    let fused_block = FusedGateBlock::new(block_gates.clone())?;
1052
1053                    // Create cached result
1054                    let cached_result = CachedFusionResult {
1055                        fused_block: fused_block.clone(),
1056                        benefit: 1.0, // Default benefit
1057                        usage_count: 1,
1058                        last_accessed: std::time::Instant::now(),
1059                    };
1060
1061                    // Cache the result
1062                    if self.fusion_cache.len() < self.config.fusion_cache_size {
1063                        self.fusion_cache.insert(pattern_key, cached_result);
1064                    }
1065
1066                    self.cache_misses += 1;
1067                    fused_blocks.push(fused_block);
1068                }
1069
1070                i += best_block_size;
1071            } else {
1072                // Single gate cannot be fused
1073                remaining_gates.push(gates[i].clone());
1074                i += 1;
1075            }
1076        }
1077
1078        Ok((fused_blocks, remaining_gates))
1079    }
1080
1081    /// Calculate circuit depth
1082    fn calculate_circuit_depth(&self, gates: &[QuantumGate]) -> usize {
1083        if gates.is_empty() {
1084            return 0;
1085        }
1086
1087        // Build dependency graph
1088        let mut qubit_last_gate = HashMap::new();
1089        let mut gate_depths = vec![0; gates.len()];
1090
1091        for (i, gate) in gates.iter().enumerate() {
1092            let mut max_dependency_depth = 0;
1093
1094            for &qubit in &gate.qubits {
1095                if let Some(&last_gate_idx) = qubit_last_gate.get(&qubit) {
1096                    max_dependency_depth = max_dependency_depth.max(gate_depths[last_gate_idx]);
1097                }
1098                qubit_last_gate.insert(qubit, i);
1099            }
1100
1101            gate_depths[i] = max_dependency_depth + 1;
1102        }
1103
1104        gate_depths.into_iter().max().unwrap_or(0)
1105    }
1106
1107    /// Calculate circuit depth after fusion
1108    const fn calculate_fused_circuit_depth(
1109        &self,
1110        blocks: &[FusedGateBlock],
1111        gates: &[QuantumGate],
1112    ) -> usize {
1113        // Simplified depth calculation - in practice would need more sophisticated analysis
1114        blocks.len() + gates.len()
1115    }
1116
1117    /// Calculate circuit fingerprint for learning
1118    fn calculate_circuit_fingerprint(&self, gates: &[QuantumGate]) -> u64 {
1119        use std::collections::hash_map::DefaultHasher;
1120
1121        let mut hasher = DefaultHasher::new();
1122        gates.hash(&mut hasher);
1123        hasher.finish()
1124    }
1125
1126    /// Get fusion statistics
1127    pub fn get_fusion_stats(&self) -> FusionStats {
1128        FusionStats {
1129            cache_size: self.fusion_cache.len(),
1130            cache_hit_rate: self.calculate_cache_hit_rate(),
1131            learning_experiments: self.learning_history.len(),
1132            average_improvement: self.calculate_average_improvement(),
1133        }
1134    }
1135
1136    const fn calculate_cache_hit_rate(&self) -> f64 {
1137        // This would be tracked during actual execution
1138        0.0 // Placeholder
1139    }
1140
1141    fn calculate_average_improvement(&self) -> f64 {
1142        if self.learning_history.is_empty() {
1143            return 0.0;
1144        }
1145
1146        let total: f64 = self
1147            .learning_history
1148            .iter()
1149            .map(|e| e.performance_improvement)
1150            .sum();
1151        total / self.learning_history.len() as f64
1152    }
1153
1154    /// Fuse a sequence of gates using adaptive fusion
1155    pub fn fuse_gates(
1156        &mut self,
1157        gates: &[QuantumGate],
1158    ) -> crate::error::Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
1159        let mut fused_blocks = Vec::new();
1160
1161        if gates.is_empty() {
1162            return Ok((fused_blocks, Vec::new()));
1163        }
1164
1165        let mut i = 0;
1166        while i < gates.len() {
1167            if i + 1 < gates.len() {
1168                // Try to fuse adjacent gates
1169                let should_fuse = self.should_fuse_basic(&gates[i], &gates[i + 1]);
1170
1171                if should_fuse {
1172                    // Create a fused gate block from the two gates
1173                    let mut qubits = gates[i].qubits.clone();
1174                    qubits.extend_from_slice(&gates[i + 1].qubits);
1175                    qubits.sort_unstable();
1176                    qubits.dedup();
1177
1178                    let fused_block = FusedGateBlock {
1179                        gates: vec![gates[i].clone(), gates[i + 1].clone()],
1180                        combined_matrix: self
1181                            .calculate_combined_matrix(&gates[i], &gates[i + 1])?,
1182                        qubits,
1183                        cost: 0.5, // Assume fusion reduces cost
1184                        improvement_factor: 1.5,
1185                    };
1186
1187                    fused_blocks.push(fused_block);
1188                    i += 2; // Skip both gates
1189                } else {
1190                    // Create a single-gate block
1191                    let fused_block = FusedGateBlock {
1192                        gates: vec![gates[i].clone()],
1193                        combined_matrix: gates[i].matrix.clone(),
1194                        qubits: gates[i].qubits.clone(),
1195                        cost: 1.0,
1196                        improvement_factor: 1.0,
1197                    };
1198
1199                    fused_blocks.push(fused_block);
1200                    i += 1;
1201                }
1202            } else {
1203                // Last gate, add it as-is
1204                let fused_block = FusedGateBlock {
1205                    gates: vec![gates[i].clone()],
1206                    combined_matrix: gates[i].matrix.clone(),
1207                    qubits: gates[i].qubits.clone(),
1208                    cost: 1.0,
1209                    improvement_factor: 1.0,
1210                };
1211
1212                fused_blocks.push(fused_block);
1213                i += 1;
1214            }
1215        }
1216
1217        Ok((fused_blocks, Vec::new()))
1218    }
1219
1220    /// Basic heuristic for gate fusion
1221    fn should_fuse_basic(&self, gate1: &QuantumGate, gate2: &QuantumGate) -> bool {
1222        let overlapping_qubits = gate1.qubits.iter().any(|&q| gate2.qubits.contains(&q));
1223        overlapping_qubits && gate1.qubits.len() <= 2 && gate2.qubits.len() <= 2
1224    }
1225
1226    /// Calculate combined matrix for two gates
1227    fn calculate_combined_matrix(
1228        &self,
1229        gate1: &QuantumGate,
1230        gate2: &QuantumGate,
1231    ) -> crate::error::Result<Array2<Complex64>> {
1232        // For simplicity, just return gate1's matrix
1233        // In a real implementation, this would compute the matrix product
1234        Ok(gate1.matrix.clone())
1235    }
1236}
1237
1238/// Fusion statistics
1239#[derive(Debug, Clone, Serialize, Deserialize)]
1240pub struct FusionStats {
1241    /// Number of entries in fusion cache
1242    pub cache_size: usize,
1243    /// Cache hit rate (0-1)
1244    pub cache_hit_rate: f64,
1245    /// Number of learning experiments recorded
1246    pub learning_experiments: usize,
1247    /// Average performance improvement
1248    pub average_improvement: f64,
1249}
1250
1251impl Default for MLFusionPredictor {
1252    fn default() -> Self {
1253        Self::new()
1254    }
1255}
1256
1257impl MLFusionPredictor {
1258    /// Create a new ML predictor
1259    pub fn new() -> Self {
1260        let mut feature_weights = HashMap::new();
1261
1262        // Initialize with some reasonable default weights
1263        feature_weights.insert("rotation_similarity".to_string(), 0.8);
1264        feature_weights.insert("gate_locality".to_string(), 0.7);
1265        feature_weights.insert("commutation_potential".to_string(), 0.6);
1266        feature_weights.insert("matrix_sparsity".to_string(), 0.5);
1267
1268        Self {
1269            feature_weights,
1270            training_data: Vec::new(),
1271            accuracy: 0.5, // Start with neutral accuracy
1272        }
1273    }
1274
1275    /// Predict fusion benefit for a gate sequence
1276    pub fn predict_benefit(&self, gates: &[QuantumGate]) -> f64 {
1277        let features = self.extract_features(gates);
1278
1279        let mut prediction = 0.0;
1280        for (i, &feature_value) in features.iter().enumerate() {
1281            let weight_key = match i {
1282                0 => "rotation_similarity",
1283                1 => "gate_locality",
1284                2 => "commutation_potential",
1285                3 => "matrix_sparsity",
1286                _ => "default",
1287            };
1288
1289            if let Some(&weight) = self.feature_weights.get(weight_key) {
1290                prediction += feature_value * weight;
1291            }
1292        }
1293
1294        // Sigmoid activation to bound between 0 and 1
1295        1.0 / (1.0 + (-prediction).exp())
1296    }
1297
1298    /// Extract features from gate sequence
1299    fn extract_features(&self, gates: &[QuantumGate]) -> Vec<f64> {
1300        let mut features = [0.0; 4];
1301
1302        if gates.len() < 2 {
1303            return features.to_vec();
1304        }
1305
1306        // Feature 0: Rotation similarity
1307        features[0] = self.calculate_rotation_similarity(gates);
1308
1309        // Feature 1: Gate locality
1310        features[1] = self.calculate_gate_locality(gates);
1311
1312        // Feature 2: Commutation potential
1313        features[2] = self.calculate_commutation_potential(gates);
1314
1315        // Feature 3: Matrix sparsity
1316        features[3] = self.calculate_matrix_sparsity(gates);
1317
1318        features.to_vec()
1319    }
1320
1321    fn calculate_rotation_similarity(&self, gates: &[QuantumGate]) -> f64 {
1322        let rotation_gates: Vec<_> = gates
1323            .iter()
1324            .filter(|g| {
1325                matches!(
1326                    g.gate_type,
1327                    GateType::RotationX | GateType::RotationY | GateType::RotationZ
1328                )
1329            })
1330            .collect();
1331
1332        if rotation_gates.len() < 2 {
1333            return 0.0;
1334        }
1335
1336        // Count same-type rotations on same qubits
1337        let mut similarity_score = 0.0;
1338        for i in 0..rotation_gates.len() - 1 {
1339            for j in i + 1..rotation_gates.len() {
1340                if rotation_gates[i].gate_type == rotation_gates[j].gate_type
1341                    && rotation_gates[i].qubits == rotation_gates[j].qubits
1342                {
1343                    similarity_score += 1.0;
1344                }
1345            }
1346        }
1347
1348        similarity_score / (rotation_gates.len() as f64)
1349    }
1350
1351    fn calculate_gate_locality(&self, gates: &[QuantumGate]) -> f64 {
1352        let mut locality_score = 0.0;
1353        let mut adjacent_count = 0;
1354
1355        for i in 0..gates.len() - 1 {
1356            let current_qubits: HashSet<_> = gates[i].qubits.iter().copied().collect();
1357            let next_qubits: HashSet<_> = gates[i + 1].qubits.iter().copied().collect();
1358
1359            if current_qubits.intersection(&next_qubits).count() > 0 {
1360                locality_score += 1.0;
1361            }
1362            adjacent_count += 1;
1363        }
1364
1365        if adjacent_count > 0 {
1366            locality_score / adjacent_count as f64
1367        } else {
1368            0.0
1369        }
1370    }
1371
1372    fn calculate_commutation_potential(&self, gates: &[QuantumGate]) -> f64 {
1373        let mut commutation_score = 0.0;
1374        let mut pair_count = 0;
1375
1376        for i in 0..gates.len() - 1 {
1377            for j in i + 1..gates.len() {
1378                let qubits_i: HashSet<_> = gates[i].qubits.iter().copied().collect();
1379                let qubits_j: HashSet<_> = gates[j].qubits.iter().copied().collect();
1380
1381                // Non-overlapping gates likely commute
1382                if qubits_i.intersection(&qubits_j).count() == 0 {
1383                    commutation_score += 1.0;
1384                }
1385                pair_count += 1;
1386            }
1387        }
1388
1389        if pair_count > 0 {
1390            commutation_score / pair_count as f64
1391        } else {
1392            0.0
1393        }
1394    }
1395
1396    fn calculate_matrix_sparsity(&self, gates: &[QuantumGate]) -> f64 {
1397        let mut total_sparsity = 0.0;
1398
1399        for gate in gates {
1400            let matrix = &gate.matrix;
1401            let zero_count = matrix.iter().filter(|&&x| x.norm() < 1e-10).count();
1402            let sparsity = zero_count as f64 / (matrix.len() as f64);
1403            total_sparsity += sparsity;
1404        }
1405
1406        total_sparsity / gates.len() as f64
1407    }
1408
1409    /// Add training example and update model
1410    pub fn add_training_example(&mut self, example: MLTrainingExample) {
1411        self.training_data.push(example);
1412
1413        // Simple online learning update
1414        if self.training_data.len() % 10 == 0 {
1415            self.update_weights();
1416        }
1417    }
1418
1419    fn update_weights(&mut self) {
1420        // Simplified gradient descent update
1421        let learning_rate = 0.01;
1422
1423        for example in &self.training_data {
1424            if let Some(observed) = example.observed_benefit {
1425                let predicted = self.predict_benefit_from_features(&example.features);
1426                let error = observed - predicted;
1427
1428                // Update weights based on error
1429                for (i, &feature_value) in example.features.iter().enumerate() {
1430                    let weight_key = match i {
1431                        0 => "rotation_similarity",
1432                        1 => "gate_locality",
1433                        2 => "commutation_potential",
1434                        3 => "matrix_sparsity",
1435                        _ => continue,
1436                    };
1437
1438                    if let Some(weight) = self.feature_weights.get_mut(weight_key) {
1439                        *weight += learning_rate * error * feature_value;
1440                    }
1441                }
1442            }
1443        }
1444    }
1445
1446    fn predict_benefit_from_features(&self, features: &[f64]) -> f64 {
1447        let mut prediction = 0.0;
1448        for (i, &feature_value) in features.iter().enumerate() {
1449            let weight_key = match i {
1450                0 => "rotation_similarity",
1451                1 => "gate_locality",
1452                2 => "commutation_potential",
1453                3 => "matrix_sparsity",
1454                _ => "default",
1455            };
1456
1457            if let Some(&weight) = self.feature_weights.get(weight_key) {
1458                prediction += feature_value * weight;
1459            }
1460        }
1461
1462        1.0 / (1.0 + (-prediction).exp())
1463    }
1464
1465    /// Check if two gates should be fused
1466    fn should_fuse_gates(&self, gate1: &QuantumGate, gate2: &QuantumGate) -> FusionResult {
1467        // For simplicity, use a basic heuristic
1468        let overlapping_qubits = gate1.qubits.iter().any(|&q| gate2.qubits.contains(&q));
1469        let should_fuse = overlapping_qubits && gate1.qubits.len() <= 2 && gate2.qubits.len() <= 2;
1470
1471        FusionResult {
1472            should_fuse,
1473            confidence: if should_fuse { 0.8 } else { 0.2 },
1474            expected_speedup: if should_fuse { 1.5 } else { 1.0 },
1475            estimated_error: 0.01,
1476        }
1477    }
1478}
1479
1480impl Default for CircuitPatternAnalyzer {
1481    fn default() -> Self {
1482        Self::new()
1483    }
1484}
1485
1486impl CircuitPatternAnalyzer {
1487    /// Create a new pattern analyzer
1488    pub fn new() -> Self {
1489        let mut beneficial_patterns = HashMap::new();
1490
1491        // Initialize with known beneficial patterns
1492        beneficial_patterns.insert("RX-RX".to_string(), 0.9);
1493        beneficial_patterns.insert("RY-RY".to_string(), 0.9);
1494        beneficial_patterns.insert("RZ-RZ".to_string(), 0.9);
1495        beneficial_patterns.insert("H-CNOT-H".to_string(), 0.8);
1496        beneficial_patterns.insert("CNOT-RZ-CNOT".to_string(), 0.7);
1497
1498        Self {
1499            beneficial_patterns,
1500            pattern_history: Vec::new(),
1501        }
1502    }
1503
1504    /// Analyze circuit pattern and return recognition result
1505    pub fn analyze_pattern(&mut self, gates: &[QuantumGate]) -> PatternRecognitionResult {
1506        let pattern_string = self.create_pattern_string(gates);
1507
1508        let (confidence, expected_benefit) = if let Some(&benefit) =
1509            self.beneficial_patterns.get(&pattern_string)
1510        {
1511            (0.9, benefit)
1512        } else {
1513            // Try partial matches
1514            let (partial_confidence, partial_benefit) = self.find_partial_matches(&pattern_string);
1515            (partial_confidence, partial_benefit)
1516        };
1517
1518        let result = PatternRecognitionResult {
1519            pattern: pattern_string,
1520            confidence,
1521            expected_benefit,
1522        };
1523
1524        self.pattern_history.push(result.clone());
1525        result
1526    }
1527
1528    fn create_pattern_string(&self, gates: &[QuantumGate]) -> String {
1529        gates
1530            .iter()
1531            .map(|g| format!("{:?}", g.gate_type))
1532            .collect::<Vec<_>>()
1533            .join("-")
1534    }
1535
1536    fn find_partial_matches(&self, pattern: &str) -> (f64, f64) {
1537        let mut best_confidence = 0.0;
1538        let mut best_benefit = 0.0;
1539
1540        for (known_pattern, &benefit) in &self.beneficial_patterns {
1541            let similarity = self.calculate_pattern_similarity(pattern, known_pattern);
1542            if similarity > best_confidence {
1543                best_confidence = similarity;
1544                best_benefit = benefit * similarity; // Scale benefit by similarity
1545            }
1546        }
1547
1548        (best_confidence, best_benefit)
1549    }
1550
1551    fn calculate_pattern_similarity(&self, pattern1: &str, pattern2: &str) -> f64 {
1552        let gates1: Vec<&str> = pattern1.split('-').collect();
1553        let gates2: Vec<&str> = pattern2.split('-').collect();
1554
1555        let max_len = gates1.len().max(gates2.len()) as f64;
1556        if max_len == 0.0 {
1557            return 0.0;
1558        }
1559
1560        let common_count = gates1.iter().filter(|&g| gates2.contains(g)).count() as f64;
1561
1562        common_count / max_len
1563    }
1564
1565    /// Learn from successful fusion
1566    pub fn learn_pattern(&mut self, pattern: String, observed_benefit: f64) {
1567        // Update or add pattern with exponential moving average
1568        let alpha: f64 = 0.1; // Learning rate
1569
1570        if let Some(current_benefit) = self.beneficial_patterns.get_mut(&pattern) {
1571            *current_benefit = (1.0 - alpha).mul_add(*current_benefit, alpha * observed_benefit);
1572        } else {
1573            self.beneficial_patterns.insert(pattern, observed_benefit);
1574        }
1575    }
1576}
1577
1578/// Utilities for gate fusion
1579pub struct FusionUtils;
1580
1581impl FusionUtils {
1582    /// Create common gate sequences for testing
1583    pub fn create_test_sequence(sequence_type: &str, num_qubits: usize) -> Vec<QuantumGate> {
1584        match sequence_type {
1585            "rotation_chain" => (0..num_qubits)
1586                .flat_map(|q| {
1587                    vec![
1588                        QuantumGate::new(
1589                            GateType::RotationX,
1590                            vec![q],
1591                            vec![std::f64::consts::PI / 4.0],
1592                        ),
1593                        QuantumGate::new(
1594                            GateType::RotationY,
1595                            vec![q],
1596                            vec![std::f64::consts::PI / 3.0],
1597                        ),
1598                        QuantumGate::new(
1599                            GateType::RotationZ,
1600                            vec![q],
1601                            vec![std::f64::consts::PI / 6.0],
1602                        ),
1603                    ]
1604                })
1605                .collect(),
1606            "cnot_ladder" => (0..num_qubits - 1)
1607                .map(|q| QuantumGate::new(GateType::CNOT, vec![q, q + 1], vec![]))
1608                .collect(),
1609            "mixed_gates" => {
1610                let mut gates = Vec::new();
1611                for q in 0..num_qubits {
1612                    gates.push(QuantumGate::new(GateType::Hadamard, vec![q], vec![]));
1613                    if q > 0 {
1614                        gates.push(QuantumGate::new(GateType::CNOT, vec![q - 1, q], vec![]));
1615                    }
1616                    gates.push(QuantumGate::new(
1617                        GateType::RotationZ,
1618                        vec![q],
1619                        vec![std::f64::consts::PI / 8.0],
1620                    ));
1621                }
1622                gates
1623            }
1624            _ => vec![QuantumGate::new(GateType::Identity, vec![0], vec![])],
1625        }
1626    }
1627
1628    /// Benchmark different fusion strategies
1629    pub fn benchmark_fusion_strategies(
1630        gates: &[QuantumGate],
1631        strategies: &[FusionStrategy],
1632    ) -> Result<HashMap<String, CircuitAnalysis>> {
1633        let mut results = HashMap::new();
1634
1635        for &strategy in strategies {
1636            let config = AdaptiveFusionConfig {
1637                strategy,
1638                ..Default::default()
1639            };
1640
1641            let mut fusion_engine = AdaptiveGateFusion::new(config)?;
1642            let analysis = fusion_engine.analyze_circuit(gates)?;
1643
1644            results.insert(format!("{strategy:?}"), analysis);
1645        }
1646
1647        Ok(results)
1648    }
1649
1650    /// Estimate fusion potential for a circuit
1651    pub fn estimate_fusion_potential(gates: &[QuantumGate]) -> f64 {
1652        if gates.len() < 2 {
1653            return 0.0;
1654        }
1655
1656        let mut potential_fusions = 0;
1657        let mut total_gates = gates.len();
1658
1659        // Count adjacent gates that could potentially be fused
1660        for window in gates.windows(2) {
1661            if window[0].can_fuse_with(&window[1]) {
1662                potential_fusions += 1;
1663            }
1664        }
1665
1666        potential_fusions as f64 / total_gates as f64
1667    }
1668}
1669
1670#[cfg(test)]
1671mod tests {
1672    use super::*;
1673    use approx::assert_abs_diff_eq;
1674
1675    #[test]
1676    fn test_quantum_gate_creation() {
1677        let gate = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1678        assert_eq!(gate.gate_type, GateType::PauliX);
1679        assert_eq!(gate.qubits, vec![0]);
1680        assert!(gate.cost > 0.0);
1681    }
1682
1683    #[test]
1684    fn test_gate_commutation() {
1685        let gate1 = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1686        let gate2 = QuantumGate::new(GateType::PauliY, vec![1], vec![]);
1687        let gate3 = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1688
1689        assert!(gate1.commutes_with(&gate2)); // Different qubits
1690        assert!(gate1.commutes_with(&gate3)); // Same Pauli on same qubit
1691    }
1692
1693    #[test]
1694    fn test_gate_fusion_compatibility() {
1695        let gate1 = QuantumGate::new(GateType::RotationX, vec![0], vec![0.5]);
1696        let gate2 = QuantumGate::new(GateType::RotationX, vec![0], vec![0.3]);
1697        let gate3 = QuantumGate::new(GateType::RotationY, vec![1], vec![0.2]);
1698
1699        assert!(gate1.can_fuse_with(&gate2)); // Same type, same qubit
1700        assert!(!gate1.can_fuse_with(&gate3)); // Different qubit
1701    }
1702
1703    #[test]
1704    fn test_fused_gate_block() {
1705        let gates = vec![
1706            QuantumGate::new(GateType::RotationX, vec![0], vec![0.5]),
1707            QuantumGate::new(GateType::RotationX, vec![0], vec![0.3]),
1708        ];
1709
1710        let block = FusedGateBlock::new(gates).unwrap();
1711        assert_eq!(block.qubits, vec![0]);
1712        assert!(block.improvement_factor > 0.0);
1713    }
1714
1715    #[test]
1716    fn test_adaptive_fusion_config() {
1717        let config = AdaptiveFusionConfig::default();
1718        assert_eq!(config.strategy, FusionStrategy::Adaptive);
1719        assert_eq!(config.max_fusion_size, 8);
1720        assert!(config.enable_cross_qubit_fusion);
1721    }
1722
1723    #[test]
1724    fn test_circuit_analysis() {
1725        let gates = FusionUtils::create_test_sequence("rotation_chain", 2);
1726
1727        let config = AdaptiveFusionConfig::default();
1728        let mut fusion_engine = AdaptiveGateFusion::new(config).unwrap();
1729
1730        let analysis = fusion_engine.analyze_circuit(&gates).unwrap();
1731        assert_eq!(analysis.original_gate_count, gates.len());
1732        assert!(!analysis.fusion_opportunities.is_empty());
1733    }
1734
1735    #[test]
1736    fn test_fusion_utils_test_sequences() {
1737        let rotation_chain = FusionUtils::create_test_sequence("rotation_chain", 2);
1738        assert_eq!(rotation_chain.len(), 6); // 3 rotations per qubit * 2 qubits
1739
1740        let cnot_ladder = FusionUtils::create_test_sequence("cnot_ladder", 3);
1741        assert_eq!(cnot_ladder.len(), 2); // 2 CNOTs for 3 qubits
1742
1743        let mixed_gates = FusionUtils::create_test_sequence("mixed_gates", 2);
1744        assert!(!mixed_gates.is_empty());
1745    }
1746
1747    #[test]
1748    fn test_fusion_potential_estimation() {
1749        let gates = vec![
1750            QuantumGate::new(GateType::RotationX, vec![0], vec![0.1]),
1751            QuantumGate::new(GateType::RotationX, vec![0], vec![0.2]),
1752            QuantumGate::new(GateType::RotationY, vec![1], vec![0.3]),
1753        ];
1754
1755        let potential = FusionUtils::estimate_fusion_potential(&gates);
1756        assert!(potential > 0.0);
1757        assert!(potential <= 1.0);
1758    }
1759
1760    #[test]
1761    fn test_gate_matrix_generation() {
1762        let pauli_x = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1763        assert_eq!(pauli_x.matrix.shape(), &[2, 2]);
1764
1765        // Check Pauli-X matrix elements
1766        assert_abs_diff_eq!(pauli_x.matrix[[0, 1]].re, 1.0, epsilon = 1e-10);
1767        assert_abs_diff_eq!(pauli_x.matrix[[1, 0]].re, 1.0, epsilon = 1e-10);
1768    }
1769
1770    #[test]
1771    fn test_circuit_depth_calculation() {
1772        let gates = vec![
1773            QuantumGate::new(GateType::Hadamard, vec![0], vec![]),
1774            QuantumGate::new(GateType::CNOT, vec![0, 1], vec![]),
1775            QuantumGate::new(GateType::RotationZ, vec![1], vec![0.5]),
1776        ];
1777
1778        let config = AdaptiveFusionConfig::default();
1779        let fusion_engine = AdaptiveGateFusion::new(config).unwrap();
1780
1781        let depth = fusion_engine.calculate_circuit_depth(&gates);
1782        assert!(depth > 0);
1783    }
1784}