quantrs2_sim/
parallel_tensor_optimization.rs

1//! Parallel Tensor Network Optimization
2//!
3//! This module provides advanced parallel processing strategies for tensor network
4//! contractions, optimizing for modern multi-core and distributed architectures.
5
6use crate::prelude::SimulatorError;
7use scirs2_core::ndarray::{ArrayD, Dimension, IxDyn};
8use scirs2_core::Complex64;
9use scirs2_core::parallel_ops::*;
10use std::collections::{HashMap, HashSet, VecDeque};
11use std::sync::{Arc, Mutex, RwLock};
12use std::thread;
13use std::time::{Duration, Instant};
14
15use crate::error::Result;
16
17/// Parallel processing configuration for tensor networks
18#[derive(Debug, Clone)]
19pub struct ParallelTensorConfig {
20    /// Number of worker threads
21    pub num_threads: usize,
22    /// Chunk size for parallel operations
23    pub chunk_size: usize,
24    /// Enable work-stealing between threads
25    pub enable_work_stealing: bool,
26    /// Memory threshold for switching to parallel mode
27    pub parallel_threshold_bytes: usize,
28    /// Load balancing strategy
29    pub load_balancing: LoadBalancingStrategy,
30    /// Enable NUMA-aware scheduling
31    pub numa_aware: bool,
32    /// Thread affinity settings
33    pub thread_affinity: ThreadAffinityConfig,
34}
35
36impl Default for ParallelTensorConfig {
37    fn default() -> Self {
38        Self {
39            num_threads: rayon::current_num_threads(),
40            chunk_size: 1024,
41            enable_work_stealing: true,
42            parallel_threshold_bytes: 1024 * 1024, // 1MB
43            load_balancing: LoadBalancingStrategy::DynamicWorkStealing,
44            numa_aware: true,
45            thread_affinity: ThreadAffinityConfig::default(),
46        }
47    }
48}
49
50/// Load balancing strategies for parallel tensor operations
51#[derive(Debug, Clone, Copy, PartialEq, Eq)]
52pub enum LoadBalancingStrategy {
53    /// Static round-robin distribution
54    RoundRobin,
55    /// Dynamic work-stealing
56    DynamicWorkStealing,
57    /// NUMA-aware distribution
58    NumaAware,
59    /// Cost-based distribution
60    CostBased,
61    /// Adaptive strategy selection
62    Adaptive,
63}
64
65/// Thread affinity configuration
66#[derive(Debug, Clone)]
67pub struct ThreadAffinityConfig {
68    /// Enable CPU affinity
69    pub enable_affinity: bool,
70    /// CPU core mapping
71    pub core_mapping: Vec<usize>,
72    /// NUMA node preferences
73    pub numa_preferences: HashMap<usize, usize>,
74}
75
76impl Default for ThreadAffinityConfig {
77    fn default() -> Self {
78        Self {
79            enable_affinity: false,
80            core_mapping: Vec::new(),
81            numa_preferences: HashMap::new(),
82        }
83    }
84}
85
86/// Work unit for parallel tensor contraction
87#[derive(Debug, Clone)]
88pub struct TensorWorkUnit {
89    /// Unique identifier for the work unit
90    pub id: usize,
91    /// Input tensor indices
92    pub input_tensors: Vec<usize>,
93    /// Output tensor index
94    pub output_tensor: usize,
95    /// Contraction indices
96    pub contraction_indices: Vec<Vec<usize>>,
97    /// Estimated computational cost
98    pub estimated_cost: f64,
99    /// Memory requirement
100    pub memory_requirement: usize,
101    /// Dependencies (must complete before this unit)
102    pub dependencies: HashSet<usize>,
103    /// Priority level
104    pub priority: i32,
105}
106
107/// Work queue for managing parallel tensor operations
108#[derive(Debug)]
109pub struct TensorWorkQueue {
110    /// Pending work units
111    pending: Mutex<VecDeque<TensorWorkUnit>>,
112    /// Completed work units
113    completed: RwLock<HashSet<usize>>,
114    /// Work units in progress
115    in_progress: RwLock<HashMap<usize, Instant>>,
116    /// Total work units
117    total_units: usize,
118    /// Configuration
119    config: ParallelTensorConfig,
120}
121
122impl TensorWorkQueue {
123    /// Create new work queue
124    pub fn new(work_units: Vec<TensorWorkUnit>, config: ParallelTensorConfig) -> Self {
125        let total_units = work_units.len();
126        let mut pending = VecDeque::from(work_units);
127
128        // Sort by priority and dependencies
129        pending.make_contiguous().sort_by(|a, b| {
130            b.priority
131                .cmp(&a.priority)
132                .then_with(|| a.dependencies.len().cmp(&b.dependencies.len()))
133        });
134
135        Self {
136            pending: Mutex::new(pending),
137            completed: RwLock::new(HashSet::new()),
138            in_progress: RwLock::new(HashMap::new()),
139            total_units,
140            config,
141        }
142    }
143
144    /// Get next available work unit
145    pub fn get_work(&self) -> Option<TensorWorkUnit> {
146        let mut pending = self.pending.lock().unwrap();
147        let completed = self.completed.read().unwrap();
148
149        // Find a work unit whose dependencies are satisfied
150        for i in 0..pending.len() {
151            let work_unit = &pending[i];
152            let dependencies_satisfied = work_unit
153                .dependencies
154                .iter()
155                .all(|dep| completed.contains(dep));
156
157            if dependencies_satisfied {
158                let work_unit = pending.remove(i).unwrap();
159
160                // Mark as in progress
161                drop(completed);
162                let mut in_progress = self.in_progress.write().unwrap();
163                in_progress.insert(work_unit.id, Instant::now());
164
165                return Some(work_unit);
166            }
167        }
168
169        None
170    }
171
172    /// Mark work unit as completed
173    pub fn complete_work(&self, work_id: usize) {
174        let mut completed = self.completed.write().unwrap();
175        completed.insert(work_id);
176
177        let mut in_progress = self.in_progress.write().unwrap();
178        in_progress.remove(&work_id);
179    }
180
181    /// Check if all work is completed
182    pub fn is_complete(&self) -> bool {
183        let completed = self.completed.read().unwrap();
184        completed.len() == self.total_units
185    }
186
187    /// Get progress statistics
188    pub fn get_progress(&self) -> (usize, usize, usize) {
189        let completed = self.completed.read().unwrap().len();
190        let in_progress = self.in_progress.read().unwrap().len();
191        let pending = self.pending.lock().unwrap().len();
192        (completed, in_progress, pending)
193    }
194}
195
196/// Parallel tensor contraction engine
197pub struct ParallelTensorEngine {
198    /// Configuration
199    config: ParallelTensorConfig,
200    /// Worker thread pool
201    thread_pool: rayon::ThreadPool,
202    /// Performance statistics
203    stats: Arc<Mutex<ParallelTensorStats>>,
204}
205
206/// Performance statistics for parallel tensor operations
207#[derive(Debug, Clone, Default)]
208pub struct ParallelTensorStats {
209    /// Total contractions performed
210    pub total_contractions: u64,
211    /// Total computation time
212    pub total_computation_time: Duration,
213    /// Total parallel efficiency (0.0 to 1.0)
214    pub parallel_efficiency: f64,
215    /// Memory usage statistics
216    pub peak_memory_usage: usize,
217    /// Thread utilization statistics
218    pub thread_utilization: Vec<f64>,
219    /// Load balancing effectiveness
220    pub load_balance_factor: f64,
221    /// Cache hit rate for intermediate results
222    pub cache_hit_rate: f64,
223}
224
225impl ParallelTensorEngine {
226    /// Create new parallel tensor engine
227    pub fn new(config: ParallelTensorConfig) -> Result<Self> {
228        let thread_pool = rayon::ThreadPoolBuilder::new()
229            .num_threads(config.num_threads)
230            .build()
231            .map_err(|e| {
232                SimulatorError::InitializationFailed(format!("Thread pool creation failed: {}", e))
233            })?;
234
235        Ok(Self {
236            config,
237            thread_pool,
238            stats: Arc::new(Mutex::new(ParallelTensorStats::default())),
239        })
240    }
241
242    /// Perform parallel tensor network contraction
243    pub fn contract_network(
244        &self,
245        tensors: &[ArrayD<Complex64>],
246        contraction_sequence: &[ContractionPair],
247    ) -> Result<ArrayD<Complex64>> {
248        let start_time = Instant::now();
249
250        // Create work units from contraction sequence
251        let work_units = self.create_work_units(tensors, contraction_sequence)?;
252
253        // Create work queue
254        let work_queue = Arc::new(TensorWorkQueue::new(work_units, self.config.clone()));
255
256        // Storage for intermediate results
257        let intermediate_results =
258            Arc::new(RwLock::new(HashMap::<usize, ArrayD<Complex64>>::new()));
259
260        // Initialize with input tensors
261        {
262            let mut results = intermediate_results.write().unwrap();
263            for (i, tensor) in tensors.iter().enumerate() {
264                results.insert(i, tensor.clone());
265            }
266        }
267
268        // Execute contractions in parallel
269        let final_result =
270            self.execute_parallel_contractions(work_queue.clone(), intermediate_results.clone())?;
271
272        // Update statistics
273        let elapsed = start_time.elapsed();
274        let mut stats = self.stats.lock().unwrap();
275        stats.total_contractions += contraction_sequence.len() as u64;
276        stats.total_computation_time += elapsed;
277
278        // Calculate parallel efficiency (simplified)
279        let sequential_estimate = self.estimate_sequential_time(contraction_sequence);
280        stats.parallel_efficiency = sequential_estimate.as_secs_f64() / elapsed.as_secs_f64();
281
282        Ok(final_result)
283    }
284
285    /// Create work units from contraction sequence
286    fn create_work_units(
287        &self,
288        tensors: &[ArrayD<Complex64>],
289        contraction_sequence: &[ContractionPair],
290    ) -> Result<Vec<TensorWorkUnit>> {
291        let mut work_units: Vec<TensorWorkUnit> = Vec::new();
292        let mut next_tensor_id = tensors.len();
293
294        for (i, contraction) in contraction_sequence.iter().enumerate() {
295            let estimated_cost = self.estimate_contraction_cost(contraction, tensors)?;
296            let memory_requirement = self.estimate_memory_requirement(contraction, tensors)?;
297
298            // Determine dependencies
299            let mut dependencies = HashSet::new();
300            for &input_id in &[contraction.tensor1_id, contraction.tensor2_id] {
301                if input_id >= tensors.len() {
302                    // This is an intermediate result, find which work unit produces it
303                    for prev_unit in &work_units {
304                        if prev_unit.output_tensor == input_id {
305                            dependencies.insert(prev_unit.id);
306                            break;
307                        }
308                    }
309                }
310            }
311
312            let work_unit = TensorWorkUnit {
313                id: i,
314                input_tensors: vec![contraction.tensor1_id, contraction.tensor2_id],
315                output_tensor: next_tensor_id,
316                contraction_indices: vec![
317                    contraction.tensor1_indices.clone(),
318                    contraction.tensor2_indices.clone(),
319                ],
320                estimated_cost,
321                memory_requirement,
322                dependencies,
323                priority: self.calculate_priority(estimated_cost, memory_requirement),
324            };
325
326            work_units.push(work_unit);
327            next_tensor_id += 1;
328        }
329
330        Ok(work_units)
331    }
332
333    /// Execute parallel contractions using work queue
334    fn execute_parallel_contractions(
335        &self,
336        work_queue: Arc<TensorWorkQueue>,
337        intermediate_results: Arc<RwLock<HashMap<usize, ArrayD<Complex64>>>>,
338    ) -> Result<ArrayD<Complex64>> {
339        let num_threads = self.config.num_threads;
340        let mut handles = Vec::new();
341
342        // Spawn worker threads
343        for thread_id in 0..num_threads {
344            let work_queue = work_queue.clone();
345            let intermediate_results = intermediate_results.clone();
346            let config = self.config.clone();
347
348            let handle = thread::spawn(move || {
349                Self::worker_thread(thread_id, work_queue, intermediate_results, config)
350            });
351            handles.push(handle);
352        }
353
354        // Wait for all threads to complete
355        for handle in handles {
356            handle.join().map_err(|e| {
357                SimulatorError::ComputationError(format!("Thread join failed: {:?}", e))
358            })??;
359        }
360
361        // Find the final result (tensor with highest ID)
362        let results = intermediate_results.read().unwrap();
363        let max_id = results.keys().max().copied().unwrap_or(0);
364        Ok(results[&max_id].clone())
365    }
366
367    /// Worker thread function
368    fn worker_thread(
369        _thread_id: usize,
370        work_queue: Arc<TensorWorkQueue>,
371        intermediate_results: Arc<RwLock<HashMap<usize, ArrayD<Complex64>>>>,
372        _config: ParallelTensorConfig,
373    ) -> Result<()> {
374        while !work_queue.is_complete() {
375            if let Some(work_unit) = work_queue.get_work() {
376                // Get input tensors
377                let tensor1 = {
378                    let results = intermediate_results.read().unwrap();
379                    results[&work_unit.input_tensors[0]].clone()
380                };
381
382                let tensor2 = {
383                    let results = intermediate_results.read().unwrap();
384                    results[&work_unit.input_tensors[1]].clone()
385                };
386
387                // Perform contraction
388                let result = Self::perform_tensor_contraction(
389                    &tensor1,
390                    &tensor2,
391                    &work_unit.contraction_indices[0],
392                    &work_unit.contraction_indices[1],
393                )?;
394
395                // Store result
396                {
397                    let mut results = intermediate_results.write().unwrap();
398                    results.insert(work_unit.output_tensor, result);
399                }
400
401                // Mark work as completed
402                work_queue.complete_work(work_unit.id);
403            } else {
404                // No work available, wait briefly
405                thread::sleep(Duration::from_millis(1));
406            }
407        }
408
409        Ok(())
410    }
411
412    /// Perform actual tensor contraction
413    fn perform_tensor_contraction(
414        tensor1: &ArrayD<Complex64>,
415        tensor2: &ArrayD<Complex64>,
416        indices1: &[usize],
417        indices2: &[usize],
418    ) -> Result<ArrayD<Complex64>> {
419        // This is a simplified tensor contraction implementation
420        // In practice, this would use optimized BLAS operations
421
422        let shape1 = tensor1.shape();
423        let shape2 = tensor2.shape();
424
425        // Calculate output shape
426        let mut output_shape = Vec::new();
427        for (i, &size) in shape1.iter().enumerate() {
428            if !indices1.contains(&i) {
429                output_shape.push(size);
430            }
431        }
432        for (i, &size) in shape2.iter().enumerate() {
433            if !indices2.contains(&i) {
434                output_shape.push(size);
435            }
436        }
437
438        // Create output tensor
439        let output_dim = IxDyn(&output_shape);
440        let mut output = ArrayD::zeros(output_dim);
441
442        // Simplified contraction (this would be optimized in practice)
443        // For now, just return a placeholder
444        Ok(output)
445    }
446
447    /// Estimate computational cost of a contraction
448    fn estimate_contraction_cost(
449        &self,
450        contraction: &ContractionPair,
451        _tensors: &[ArrayD<Complex64>],
452    ) -> Result<f64> {
453        // Simplified cost estimation based on dimension products
454        let cost = contraction.tensor1_indices.len() as f64
455            * contraction.tensor2_indices.len() as f64
456            * 1000.0; // Base cost factor
457        Ok(cost)
458    }
459
460    /// Estimate memory requirement for a contraction
461    fn estimate_memory_requirement(
462        &self,
463        _contraction: &ContractionPair,
464        _tensors: &[ArrayD<Complex64>],
465    ) -> Result<usize> {
466        // Simplified memory estimation
467        Ok(1024 * 1024) // 1MB placeholder
468    }
469
470    /// Calculate priority for work unit
471    fn calculate_priority(&self, cost: f64, memory: usize) -> i32 {
472        // Higher cost and lower memory = higher priority
473        let cost_factor = (cost / 1000.0) as i32;
474        let memory_factor = (1_000_000 / (memory + 1)) as i32;
475        cost_factor + memory_factor
476    }
477
478    /// Estimate sequential execution time
479    fn estimate_sequential_time(&self, contraction_sequence: &[ContractionPair]) -> Duration {
480        let estimated_ops = contraction_sequence.len() as u64 * 1000; // Simplified
481        Duration::from_millis(estimated_ops)
482    }
483
484    /// Get performance statistics
485    pub fn get_stats(&self) -> ParallelTensorStats {
486        self.stats.lock().unwrap().clone()
487    }
488}
489
490/// Contraction pair specification
491#[derive(Debug, Clone)]
492pub struct ContractionPair {
493    /// First tensor ID
494    pub tensor1_id: usize,
495    /// Second tensor ID
496    pub tensor2_id: usize,
497    /// Indices to contract on first tensor
498    pub tensor1_indices: Vec<usize>,
499    /// Indices to contract on second tensor
500    pub tensor2_indices: Vec<usize>,
501}
502
503/// Advanced parallel tensor contraction strategies
504pub mod strategies {
505    use super::*;
506
507    /// Work-stealing parallel contraction
508    pub fn work_stealing_contraction(
509        tensors: &[ArrayD<Complex64>],
510        contraction_sequence: &[ContractionPair],
511        num_threads: usize,
512    ) -> Result<ArrayD<Complex64>> {
513        let config = ParallelTensorConfig {
514            num_threads,
515            load_balancing: LoadBalancingStrategy::DynamicWorkStealing,
516            ..Default::default()
517        };
518
519        let engine = ParallelTensorEngine::new(config)?;
520        engine.contract_network(tensors, contraction_sequence)
521    }
522
523    /// NUMA-aware parallel contraction
524    pub fn numa_aware_contraction(
525        tensors: &[ArrayD<Complex64>],
526        contraction_sequence: &[ContractionPair],
527        numa_topology: &NumaTopology,
528    ) -> Result<ArrayD<Complex64>> {
529        let config = ParallelTensorConfig {
530            load_balancing: LoadBalancingStrategy::NumaAware,
531            numa_aware: true,
532            ..Default::default()
533        };
534
535        let engine = ParallelTensorEngine::new(config)?;
536        engine.contract_network(tensors, contraction_sequence)
537    }
538
539    /// Adaptive parallel contraction with dynamic load balancing
540    pub fn adaptive_contraction(
541        tensors: &[ArrayD<Complex64>],
542        contraction_sequence: &[ContractionPair],
543    ) -> Result<ArrayD<Complex64>> {
544        let config = ParallelTensorConfig {
545            load_balancing: LoadBalancingStrategy::Adaptive,
546            enable_work_stealing: true,
547            ..Default::default()
548        };
549
550        let engine = ParallelTensorEngine::new(config)?;
551        engine.contract_network(tensors, contraction_sequence)
552    }
553}
554
555/// NUMA topology information
556#[derive(Debug, Clone)]
557pub struct NumaTopology {
558    /// Number of NUMA nodes
559    pub num_nodes: usize,
560    /// CPU cores per node
561    pub cores_per_node: Vec<usize>,
562    /// Memory per node (bytes)
563    pub memory_per_node: Vec<usize>,
564}
565
566impl Default for NumaTopology {
567    fn default() -> Self {
568        let num_cores = rayon::current_num_threads();
569        Self {
570            num_nodes: 1,
571            cores_per_node: vec![num_cores],
572            memory_per_node: vec![8 * 1024 * 1024 * 1024], // 8GB default
573        }
574    }
575}
576
577#[cfg(test)]
578mod tests {
579    use super::*;
580    use scirs2_core::ndarray::Array;
581
582    #[test]
583    fn test_parallel_tensor_engine() {
584        let config = ParallelTensorConfig::default();
585        let engine = ParallelTensorEngine::new(config).unwrap();
586
587        // Create simple test tensors
588        let tensor1 = Array::zeros(IxDyn(&[2, 2]));
589        let tensor2 = Array::zeros(IxDyn(&[2, 2]));
590        let tensors = vec![tensor1, tensor2];
591
592        // Simple contraction sequence
593        let contraction = ContractionPair {
594            tensor1_id: 0,
595            tensor2_id: 1,
596            tensor1_indices: vec![1],
597            tensor2_indices: vec![0],
598        };
599
600        let result = engine.contract_network(&tensors, &[contraction]);
601        assert!(result.is_ok());
602    }
603
604    #[test]
605    fn test_work_queue() {
606        let work_unit = TensorWorkUnit {
607            id: 0,
608            input_tensors: vec![0, 1],
609            output_tensor: 2,
610            contraction_indices: vec![vec![0], vec![1]],
611            estimated_cost: 100.0,
612            memory_requirement: 1024,
613            dependencies: HashSet::new(),
614            priority: 1,
615        };
616
617        let config = ParallelTensorConfig::default();
618        let queue = TensorWorkQueue::new(vec![work_unit], config);
619
620        let work = queue.get_work();
621        assert!(work.is_some());
622
623        queue.complete_work(0);
624        assert!(queue.is_complete());
625    }
626
627    #[test]
628    fn test_parallel_strategies() {
629        let tensor1 = Array::ones(IxDyn(&[2, 2]));
630        let tensor2 = Array::ones(IxDyn(&[2, 2]));
631        let tensors = vec![tensor1, tensor2];
632
633        let contraction = ContractionPair {
634            tensor1_id: 0,
635            tensor2_id: 1,
636            tensor1_indices: vec![1],
637            tensor2_indices: vec![0],
638        };
639
640        let result = strategies::work_stealing_contraction(&tensors, &[contraction], 2);
641        assert!(result.is_ok());
642    }
643}