quantrs2_sim/
memory_prefetching_optimization.rs

1//! Memory prefetching and data locality optimizations for quantum simulations.
2//!
3//! This module implements advanced memory prefetching strategies, data locality
4//! optimizations, and NUMA-aware memory management for high-performance quantum
5//! circuit simulation with large state vectors.
6
7use scirs2_core::parallel_ops::*;
8use std::collections::{BTreeMap, HashMap, VecDeque};
9use std::sync::{Arc, Mutex, RwLock};
10use std::thread;
11use std::time::{Duration, Instant};
12
13use crate::error::Result;
14use crate::memory_bandwidth_optimization::OptimizedStateVector;
15
16/// Prefetching strategies for memory access optimization
17#[derive(Debug, Clone, Copy, PartialEq, Eq)]
18pub enum PrefetchStrategy {
19    /// No prefetching
20    None,
21    /// Simple sequential prefetching
22    Sequential,
23    /// Stride-based prefetching
24    Stride,
25    /// Pattern-based prefetching
26    Pattern,
27    /// Machine learning guided prefetching
28    MLGuided,
29    /// Adaptive prefetching based on access patterns
30    Adaptive,
31    /// NUMA-aware prefetching
32    NUMAAware,
33}
34
35/// Data locality optimization strategies
36#[derive(Debug, Clone, Copy, PartialEq, Eq)]
37pub enum LocalityStrategy {
38    /// Temporal locality optimization
39    Temporal,
40    /// Spatial locality optimization
41    Spatial,
42    /// Loop-based locality optimization
43    Loop,
44    /// Cache-conscious data placement
45    CacheConscious,
46    /// NUMA topology aware placement
47    NUMATopology,
48    /// Hybrid temporal-spatial optimization
49    Hybrid,
50}
51
52/// NUMA topology information
53#[derive(Debug, Clone)]
54pub struct NUMATopology {
55    /// Number of NUMA nodes
56    pub num_nodes: usize,
57    /// Memory size per node in bytes
58    pub memory_per_node: Vec<usize>,
59    /// CPU cores per node
60    pub cores_per_node: Vec<usize>,
61    /// Inter-node latency matrix (cycles)
62    pub latency_matrix: Vec<Vec<usize>>,
63    /// Memory bandwidth per node (bytes/sec)
64    pub bandwidth_per_node: Vec<f64>,
65    /// Current thread to node mapping
66    pub thread_node_mapping: HashMap<usize, usize>,
67}
68
69impl Default for NUMATopology {
70    fn default() -> Self {
71        // Default to single-node system
72        Self {
73            num_nodes: 1,
74            memory_per_node: vec![64 * 1024 * 1024 * 1024], // 64GB
75            cores_per_node: vec![8],
76            latency_matrix: vec![vec![0]],
77            bandwidth_per_node: vec![100.0 * 1024.0 * 1024.0 * 1024.0], // 100 GB/s
78            thread_node_mapping: HashMap::new(),
79        }
80    }
81}
82
83/// Prefetching configuration
84#[derive(Debug, Clone)]
85pub struct PrefetchConfig {
86    /// Primary prefetching strategy
87    pub strategy: PrefetchStrategy,
88    /// Prefetch distance (cache lines ahead)
89    pub distance: usize,
90    /// Prefetch degree (number of streams)
91    pub degree: usize,
92    /// Enable hardware prefetcher hints
93    pub hardware_hints: bool,
94    /// Prefetch threshold (minimum confidence)
95    pub threshold: f64,
96    /// Maximum prefetch queue size
97    pub max_queue_size: usize,
98    /// Enable cross-page prefetching
99    pub cross_page_prefetch: bool,
100    /// Adaptive prefetch adjustment
101    pub adaptive_adjustment: bool,
102}
103
104impl Default for PrefetchConfig {
105    fn default() -> Self {
106        Self {
107            strategy: PrefetchStrategy::Adaptive,
108            distance: 8,
109            degree: 4,
110            hardware_hints: true,
111            threshold: 0.7,
112            max_queue_size: 64,
113            cross_page_prefetch: true,
114            adaptive_adjustment: true,
115        }
116    }
117}
118
119/// Memory access pattern predictor
120#[derive(Debug)]
121pub struct AccessPatternPredictor {
122    /// Recent access history
123    access_history: VecDeque<usize>,
124    /// Detected stride patterns
125    stride_patterns: HashMap<isize, u64>,
126    /// Pattern confidence scores
127    pattern_confidence: HashMap<String, f64>,
128    /// Machine learning model weights (simplified)
129    ml_weights: Vec<f64>,
130    /// Prediction cache
131    prediction_cache: HashMap<usize, Vec<usize>>,
132    /// Statistics
133    correct_predictions: u64,
134    total_predictions: u64,
135}
136
137impl Default for AccessPatternPredictor {
138    fn default() -> Self {
139        Self {
140            access_history: VecDeque::with_capacity(1000),
141            stride_patterns: HashMap::new(),
142            pattern_confidence: HashMap::new(),
143            ml_weights: vec![0.5; 16], // Simple linear model
144            prediction_cache: HashMap::new(),
145            correct_predictions: 0,
146            total_predictions: 0,
147        }
148    }
149}
150
151impl AccessPatternPredictor {
152    /// Record a memory access
153    pub fn record_access(&mut self, address: usize) {
154        self.access_history.push_back(address);
155
156        // Maintain history size
157        if self.access_history.len() > 1000 {
158            self.access_history.pop_front();
159        }
160
161        // Update stride patterns
162        if self.access_history.len() >= 2 {
163            let prev_addr = self.access_history[self.access_history.len() - 2];
164            let stride = address as isize - prev_addr as isize;
165            *self.stride_patterns.entry(stride).or_insert(0) += 1;
166        }
167
168        // Update pattern confidence
169        self.update_pattern_confidence();
170    }
171
172    /// Predict next memory accesses
173    pub fn predict_next_accesses(&mut self, count: usize) -> Vec<usize> {
174        if self.access_history.is_empty() {
175            return Vec::new();
176        }
177
178        let current_addr = *self.access_history.back().unwrap();
179
180        // Check prediction cache
181        if let Some(cached) = self.prediction_cache.get(&current_addr) {
182            return cached.clone();
183        }
184
185        let predictions = match self.get_dominant_pattern() {
186            PredictedPattern::Stride(stride) => {
187                self.predict_stride_pattern(current_addr, stride, count)
188            }
189            PredictedPattern::Sequential => self.predict_sequential_pattern(current_addr, count),
190            PredictedPattern::Random => self.predict_random_pattern(current_addr, count),
191            PredictedPattern::MLGuided => self.predict_ml_pattern(current_addr, count),
192        };
193
194        // Cache prediction
195        self.prediction_cache
196            .insert(current_addr, predictions.clone());
197
198        // Maintain cache size
199        if self.prediction_cache.len() > 1000 {
200            self.prediction_cache.clear();
201        }
202
203        self.total_predictions += 1;
204        predictions
205    }
206
207    /// Update pattern confidence based on recent accuracy
208    fn update_pattern_confidence(&mut self) {
209        // Simplified confidence update
210        if self.total_predictions > 0 {
211            let accuracy = self.correct_predictions as f64 / self.total_predictions as f64;
212
213            self.pattern_confidence
214                .insert("stride".to_string(), accuracy);
215            self.pattern_confidence
216                .insert("sequential".to_string(), accuracy * 0.9);
217            self.pattern_confidence
218                .insert("ml".to_string(), accuracy * 1.1);
219        }
220    }
221
222    /// Get the dominant access pattern
223    fn get_dominant_pattern(&self) -> PredictedPattern {
224        // Find most frequent stride
225        let dominant_stride = self
226            .stride_patterns
227            .iter()
228            .max_by_key(|(_, &count)| count)
229            .map(|(&stride, _)| stride);
230
231        match dominant_stride {
232            Some(stride) if stride == 1 => PredictedPattern::Sequential,
233            Some(stride) if stride != 0 => PredictedPattern::Stride(stride),
234            _ => {
235                // Use ML guidance if available
236                let ml_confidence = self.pattern_confidence.get("ml").unwrap_or(&0.0);
237                if *ml_confidence > 0.8 {
238                    PredictedPattern::MLGuided
239                } else {
240                    PredictedPattern::Random
241                }
242            }
243        }
244    }
245
246    /// Predict stride-based pattern
247    fn predict_stride_pattern(
248        &self,
249        current_addr: usize,
250        stride: isize,
251        count: usize,
252    ) -> Vec<usize> {
253        let mut predictions = Vec::with_capacity(count);
254        let mut addr = current_addr;
255
256        for _ in 0..count {
257            addr = (addr as isize + stride) as usize;
258            predictions.push(addr);
259        }
260
261        predictions
262    }
263
264    /// Predict sequential pattern
265    fn predict_sequential_pattern(&self, current_addr: usize, count: usize) -> Vec<usize> {
266        (1..=count).map(|i| current_addr + i).collect()
267    }
268
269    /// Predict random pattern (simplified)
270    fn predict_random_pattern(&self, current_addr: usize, count: usize) -> Vec<usize> {
271        // For random patterns, prefetch nearby addresses
272        (1..=count).map(|i| current_addr + i * 64).collect() // 64-byte cache lines
273    }
274
275    /// Predict using machine learning model
276    fn predict_ml_pattern(&self, current_addr: usize, count: usize) -> Vec<usize> {
277        let mut predictions = Vec::with_capacity(count);
278
279        // Extract features from recent access history
280        let features = self.extract_features();
281
282        // Simple linear prediction (in practice, this would be a neural network)
283        for i in 0..count {
284            let prediction = self.ml_predict(&features, i);
285            predictions.push((current_addr as f64 + prediction) as usize);
286        }
287
288        predictions
289    }
290
291    /// Extract features for ML prediction
292    fn extract_features(&self) -> Vec<f64> {
293        let mut features = [0.0; 16];
294
295        if self.access_history.len() >= 4 {
296            let recent: Vec<_> = self.access_history.iter().rev().take(4).collect();
297
298            // Stride features
299            for i in 0..3 {
300                if i + 1 < recent.len() {
301                    let stride = *recent[i] as f64 - *recent[i + 1] as f64;
302                    features[i] = stride / 1000.0; // Normalize
303                }
304            }
305
306            // Address features
307            features[3] = (*recent[0] % 1024) as f64 / 1024.0; // Page offset
308            features[4] = (*recent[0] / 1024) as f64; // Page number (simplified)
309
310            // Pattern features
311            let dominant_stride = self
312                .stride_patterns
313                .iter()
314                .max_by_key(|(_, &count)| count)
315                .map(|(&stride, _)| stride)
316                .unwrap_or(0);
317            features[5] = dominant_stride as f64 / 1000.0;
318        }
319
320        features.to_vec()
321    }
322
323    /// Simple ML prediction
324    fn ml_predict(&self, features: &[f64], step: usize) -> f64 {
325        let mut prediction = 0.0;
326
327        for (i, &feature) in features.iter().enumerate() {
328            if i < self.ml_weights.len() {
329                prediction += feature * self.ml_weights[i];
330            }
331        }
332
333        prediction * (step + 1) as f64
334    }
335
336    /// Update ML weights based on prediction accuracy
337    pub fn update_ml_weights(&mut self, predictions: &[usize], actual: &[usize]) {
338        if predictions.len() != actual.len() || predictions.is_empty() {
339            return;
340        }
341
342        // Simple gradient descent update
343        let learning_rate = 0.01;
344
345        for (pred, &act) in predictions.iter().zip(actual.iter()) {
346            let error = act as f64 - *pred as f64;
347
348            // Update weights (simplified)
349            for weight in &mut self.ml_weights {
350                *weight += learning_rate * error * 0.1; // Simplified gradient
351            }
352        }
353    }
354
355    /// Get prediction accuracy
356    pub fn get_accuracy(&self) -> f64 {
357        if self.total_predictions > 0 {
358            self.correct_predictions as f64 / self.total_predictions as f64
359        } else {
360            0.0
361        }
362    }
363}
364
365/// Predicted access pattern types
366#[derive(Debug, Clone)]
367enum PredictedPattern {
368    Stride(isize),
369    Sequential,
370    Random,
371    MLGuided,
372}
373
374/// Memory prefetching engine
375#[derive(Debug)]
376pub struct MemoryPrefetcher {
377    /// Prefetch configuration
378    config: PrefetchConfig,
379    /// Access pattern predictor
380    predictor: Arc<Mutex<AccessPatternPredictor>>,
381    /// Prefetch queue
382    prefetch_queue: Arc<Mutex<VecDeque<PrefetchRequest>>>,
383    /// NUMA topology information
384    numa_topology: NUMATopology,
385    /// Prefetch statistics
386    stats: Arc<RwLock<PrefetchStats>>,
387    /// Active prefetch threads
388    prefetch_threads: Vec<thread::JoinHandle<()>>,
389}
390
391/// Prefetch request
392#[derive(Debug, Clone)]
393pub struct PrefetchRequest {
394    /// Memory address to prefetch
395    pub address: usize,
396    /// Prefetch priority (0.0 to 1.0)
397    pub priority: f64,
398    /// Prefetch hint type
399    pub hint_type: PrefetchHint,
400    /// Request timestamp
401    pub timestamp: Instant,
402}
403
404/// Prefetch hint types
405#[derive(Debug, Clone, Copy, PartialEq, Eq)]
406pub enum PrefetchHint {
407    /// Temporal hint - data will be reused soon
408    Temporal,
409    /// Non-temporal hint - data will not be reused
410    NonTemporal,
411    /// L1 cache hint
412    L1,
413    /// L2 cache hint
414    L2,
415    /// L3 cache hint
416    L3,
417    /// Write hint - data will be written
418    Write,
419}
420
421/// Prefetch statistics
422#[derive(Debug, Clone, Default)]
423pub struct PrefetchStats {
424    /// Total prefetch requests issued
425    pub total_requests: u64,
426    /// Successful prefetches (data was actually used)
427    pub successful_prefetches: u64,
428    /// Failed prefetches (data was not used)
429    pub failed_prefetches: u64,
430    /// Average prefetch latency
431    pub average_latency: Duration,
432    /// Memory bandwidth utilization
433    pub bandwidth_utilization: f64,
434    /// Cache hit rate improvement
435    pub cache_hit_improvement: f64,
436}
437
438impl MemoryPrefetcher {
439    /// Create a new memory prefetcher
440    pub fn new(config: PrefetchConfig, numa_topology: NUMATopology) -> Result<Self> {
441        let prefetcher = Self {
442            config,
443            predictor: Arc::new(Mutex::new(AccessPatternPredictor::default())),
444            prefetch_queue: Arc::new(Mutex::new(VecDeque::new())),
445            numa_topology,
446            stats: Arc::new(RwLock::new(PrefetchStats::default())),
447            prefetch_threads: Vec::new(),
448        };
449
450        Ok(prefetcher)
451    }
452
453    /// Start prefetching background threads
454    pub fn start_prefetch_threads(&mut self) -> Result<()> {
455        let num_threads = self.config.degree.min(4); // Limit to 4 threads
456
457        for thread_id in 0..num_threads {
458            let queue = Arc::clone(&self.prefetch_queue);
459            let stats = Arc::clone(&self.stats);
460            let config = self.config.clone();
461
462            let handle = thread::spawn(move || {
463                Self::prefetch_worker_thread(thread_id, queue, stats, config);
464            });
465
466            self.prefetch_threads.push(handle);
467        }
468
469        Ok(())
470    }
471
472    /// Worker thread for prefetching
473    fn prefetch_worker_thread(
474        _thread_id: usize,
475        queue: Arc<Mutex<VecDeque<PrefetchRequest>>>,
476        stats: Arc<RwLock<PrefetchStats>>,
477        _config: PrefetchConfig,
478    ) {
479        loop {
480            let request = {
481                let mut q = queue.lock().unwrap();
482                q.pop_front()
483            };
484
485            if let Some(req) = request {
486                let start_time = Instant::now();
487
488                // Perform actual prefetch
489                Self::execute_prefetch(&req);
490
491                // Update statistics
492                let latency = start_time.elapsed();
493                if let Ok(mut s) = stats.write() {
494                    s.total_requests += 1;
495                    s.average_latency = if s.total_requests == 1 {
496                        latency
497                    } else {
498                        Duration::from_nanos(
499                            ((s.average_latency.as_nanos() + latency.as_nanos()) / 2) as u64,
500                        )
501                    };
502                }
503            } else {
504                // No work available, sleep briefly
505                thread::sleep(Duration::from_micros(100));
506            }
507        }
508    }
509
510    /// Execute a prefetch request
511    fn execute_prefetch(request: &PrefetchRequest) {
512        // TODO: Use scirs2_core's platform-agnostic prefetch operations when API is stabilized
513        // For now, use a volatile read as a simple prefetch hint
514        unsafe {
515            match request.hint_type {
516                PrefetchHint::Temporal
517                | PrefetchHint::L1
518                | PrefetchHint::L2
519                | PrefetchHint::L3
520                | PrefetchHint::NonTemporal
521                | PrefetchHint::Write => {
522                    // Simple prefetch using volatile read
523                    let _ = std::ptr::read_volatile(request.address as *const u8);
524                }
525            }
526        }
527    }
528
529    /// Record a memory access and potentially trigger prefetching
530    pub fn record_access(&self, address: usize) -> Result<()> {
531        // Update access pattern predictor
532        if let Ok(mut predictor) = self.predictor.lock() {
533            predictor.record_access(address);
534
535            // Generate prefetch predictions
536            let predictions = predictor.predict_next_accesses(self.config.distance);
537
538            // Queue prefetch requests
539            if let Ok(mut queue) = self.prefetch_queue.lock() {
540                for (i, &pred_addr) in predictions.iter().enumerate() {
541                    if queue.len() < self.config.max_queue_size {
542                        let priority = 1.0 - (i as f64 / predictions.len() as f64);
543                        let hint_type = self.determine_prefetch_hint(pred_addr, i);
544
545                        queue.push_back(PrefetchRequest {
546                            address: pred_addr,
547                            priority,
548                            hint_type,
549                            timestamp: Instant::now(),
550                        });
551                    }
552                }
553            }
554        }
555
556        Ok(())
557    }
558
559    /// Determine appropriate prefetch hint based on address and distance
560    fn determine_prefetch_hint(&self, _address: usize, distance: usize) -> PrefetchHint {
561        match distance {
562            0..=2 => PrefetchHint::L1,
563            3..=6 => PrefetchHint::L2,
564            7..=12 => PrefetchHint::L3,
565            _ => PrefetchHint::NonTemporal,
566        }
567    }
568
569    /// Get prefetch statistics
570    pub fn get_stats(&self) -> PrefetchStats {
571        self.stats.read().unwrap().clone()
572    }
573
574    /// Optimize prefetch strategy based on performance feedback
575    pub fn optimize_strategy(&mut self, performance_feedback: &PerformanceFeedback) -> Result<()> {
576        if !self.config.adaptive_adjustment {
577            return Ok(());
578        }
579
580        // Adjust prefetch distance based on cache hit rate
581        if performance_feedback.cache_hit_rate < 0.8 {
582            self.config.distance = (self.config.distance + 2).min(16);
583        } else if performance_feedback.cache_hit_rate > 0.95 {
584            self.config.distance = (self.config.distance.saturating_sub(1)).max(2);
585        }
586
587        // Adjust prefetch degree based on bandwidth utilization
588        if performance_feedback.bandwidth_utilization < 0.6 {
589            self.config.degree = (self.config.degree + 1).min(8);
590        } else if performance_feedback.bandwidth_utilization > 0.9 {
591            self.config.degree = (self.config.degree.saturating_sub(1)).max(1);
592        }
593
594        // Update ML weights if using ML-guided prefetching
595        if self.config.strategy == PrefetchStrategy::MLGuided {
596            if let Ok(mut predictor) = self.predictor.lock() {
597                // Simplified weight update based on performance
598                let accuracy_improvement = performance_feedback.cache_hit_rate - 0.8;
599                predictor
600                    .ml_weights
601                    .iter_mut()
602                    .for_each(|w| *w += accuracy_improvement * 0.01);
603            }
604        }
605
606        Ok(())
607    }
608}
609
610/// Performance feedback for prefetch optimization
611#[derive(Debug, Clone)]
612pub struct PerformanceFeedback {
613    /// Current cache hit rate (0.0 to 1.0)
614    pub cache_hit_rate: f64,
615    /// Memory bandwidth utilization (0.0 to 1.0)
616    pub bandwidth_utilization: f64,
617    /// Average memory access latency
618    pub memory_latency: Duration,
619    /// CPU utilization (0.0 to 1.0)
620    pub cpu_utilization: f64,
621}
622
623/// Data locality optimizer
624#[derive(Debug)]
625pub struct DataLocalityOptimizer {
626    /// Optimization strategy
627    strategy: LocalityStrategy,
628    /// NUMA topology
629    numa_topology: NUMATopology,
630    /// Memory region tracking
631    memory_regions: HashMap<usize, MemoryRegionInfo>,
632    /// Access pattern analyzer
633    access_analyzer: AccessPatternAnalyzer,
634}
635
636/// Memory region information
637#[derive(Debug, Clone)]
638pub struct MemoryRegionInfo {
639    /// Start address of the region
640    pub start_address: usize,
641    /// Size of the region in bytes
642    pub size: usize,
643    /// NUMA node where data is located
644    pub numa_node: usize,
645    /// Access frequency
646    pub access_frequency: u64,
647    /// Last access time
648    pub last_access: Instant,
649    /// Access pattern type
650    pub access_pattern: AccessPatternType,
651}
652
653/// Access pattern analyzer
654#[derive(Debug)]
655pub struct AccessPatternAnalyzer {
656    /// Temporal access patterns
657    temporal_patterns: BTreeMap<Instant, Vec<usize>>,
658    /// Spatial access patterns
659    spatial_patterns: HashMap<usize, Vec<usize>>, // Page -> addresses
660    /// Loop detection state
661    loop_detection: LoopDetectionState,
662}
663
664/// Loop detection state
665#[derive(Debug)]
666pub struct LoopDetectionState {
667    /// Loop start candidates
668    loop_starts: HashMap<usize, usize>, // Address -> count
669    /// Current loop iteration
670    current_iteration: Vec<usize>,
671    /// Detected loops
672    detected_loops: Vec<LoopPattern>,
673}
674
675/// Detected loop pattern
676#[derive(Debug, Clone)]
677pub struct LoopPattern {
678    /// Loop start address
679    pub start_address: usize,
680    /// Loop stride
681    pub stride: isize,
682    /// Loop iterations
683    pub iterations: usize,
684    /// Loop confidence
685    pub confidence: f64,
686}
687
688/// Access pattern types
689#[derive(Debug, Clone, Copy, PartialEq, Eq)]
690pub enum AccessPatternType {
691    Sequential,
692    Random,
693    Strided,
694    Loop,
695    Temporal,
696    Hybrid,
697}
698
699impl DataLocalityOptimizer {
700    /// Create a new data locality optimizer
701    pub fn new(strategy: LocalityStrategy, numa_topology: NUMATopology) -> Self {
702        Self {
703            strategy,
704            numa_topology,
705            memory_regions: HashMap::new(),
706            access_analyzer: AccessPatternAnalyzer {
707                temporal_patterns: BTreeMap::new(),
708                spatial_patterns: HashMap::new(),
709                loop_detection: LoopDetectionState {
710                    loop_starts: HashMap::new(),
711                    current_iteration: Vec::new(),
712                    detected_loops: Vec::new(),
713                },
714            },
715        }
716    }
717
718    /// Optimize data placement for better locality
719    pub fn optimize_data_placement(
720        &mut self,
721        state_vector: &mut OptimizedStateVector,
722        access_pattern: &[usize],
723    ) -> Result<LocalityOptimizationResult> {
724        let start_time = Instant::now();
725
726        // Analyze access patterns
727        self.analyze_access_patterns(access_pattern)?;
728
729        // Apply optimization strategy
730        let optimization_result = match self.strategy {
731            LocalityStrategy::Temporal => {
732                self.optimize_temporal_locality(state_vector, access_pattern)?
733            }
734            LocalityStrategy::Spatial => {
735                self.optimize_spatial_locality(state_vector, access_pattern)?
736            }
737            LocalityStrategy::Loop => self.optimize_loop_locality(state_vector, access_pattern)?,
738            LocalityStrategy::CacheConscious => {
739                self.optimize_cache_conscious(state_vector, access_pattern)?
740            }
741            LocalityStrategy::NUMATopology => {
742                self.optimize_numa_topology(state_vector, access_pattern)?
743            }
744            LocalityStrategy::Hybrid => {
745                self.optimize_hybrid_locality(state_vector, access_pattern)?
746            }
747        };
748
749        let optimization_time = start_time.elapsed();
750
751        Ok(LocalityOptimizationResult {
752            optimization_time,
753            locality_improvement: optimization_result.locality_improvement,
754            memory_movements: optimization_result.memory_movements,
755            numa_migrations: optimization_result.numa_migrations,
756            cache_efficiency_gain: optimization_result.cache_efficiency_gain,
757            strategy_used: self.strategy,
758        })
759    }
760
761    /// Analyze access patterns to understand locality characteristics
762    fn analyze_access_patterns(&mut self, access_pattern: &[usize]) -> Result<()> {
763        let now = Instant::now();
764
765        // Record temporal patterns
766        self.access_analyzer
767            .temporal_patterns
768            .insert(now, access_pattern.to_vec());
769
770        // Analyze spatial patterns (group by page)
771        for &address in access_pattern {
772            let page = address / 4096; // 4KB pages
773            self.access_analyzer
774                .spatial_patterns
775                .entry(page)
776                .or_insert_with(Vec::new)
777                .push(address);
778        }
779
780        // Detect loop patterns
781        self.detect_loop_patterns(access_pattern)?;
782
783        // Clean up old patterns (keep last 1000 entries)
784        while self.access_analyzer.temporal_patterns.len() > 1000 {
785            self.access_analyzer.temporal_patterns.pop_first();
786        }
787
788        Ok(())
789    }
790
791    /// Detect loop patterns in access sequence
792    fn detect_loop_patterns(&mut self, access_pattern: &[usize]) -> Result<()> {
793        if access_pattern.len() < 3 {
794            return Ok(());
795        }
796
797        // Simple loop detection algorithm
798        for window in access_pattern.windows(3) {
799            if let [start, middle, end] = window {
800                let stride1 = *middle as isize - *start as isize;
801                let stride2 = *end as isize - *middle as isize;
802
803                if stride1 == stride2 && stride1 != 0 {
804                    // Potential loop pattern
805                    *self
806                        .access_analyzer
807                        .loop_detection
808                        .loop_starts
809                        .entry(*start)
810                        .or_insert(0) += 1;
811
812                    // Check if we have enough evidence for a loop
813                    if self.access_analyzer.loop_detection.loop_starts[start] >= 3 {
814                        let confidence =
815                            self.access_analyzer.loop_detection.loop_starts[start] as f64 / 10.0;
816                        let confidence = confidence.min(1.0);
817
818                        self.access_analyzer
819                            .loop_detection
820                            .detected_loops
821                            .push(LoopPattern {
822                                start_address: *start,
823                                stride: stride1,
824                                iterations: self.access_analyzer.loop_detection.loop_starts[start],
825                                confidence,
826                            });
827                    }
828                }
829            }
830        }
831
832        Ok(())
833    }
834
835    /// Optimize temporal locality
836    fn optimize_temporal_locality(
837        &self,
838        _state_vector: &mut OptimizedStateVector,
839        access_pattern: &[usize],
840    ) -> Result<OptimizationResult> {
841        // Analyze temporal reuse distance
842        let mut reuse_distances = HashMap::new();
843        let mut last_access = HashMap::new();
844
845        for (i, &address) in access_pattern.iter().enumerate() {
846            if let Some(&last_pos) = last_access.get(&address) {
847                let reuse_distance = i - last_pos;
848                reuse_distances.insert(address, reuse_distance);
849            }
850            last_access.insert(address, i);
851        }
852
853        // Calculate locality improvement (simplified)
854        let avg_reuse_distance: f64 = reuse_distances.values().map(|&d| d as f64).sum::<f64>()
855            / reuse_distances.len().max(1) as f64;
856
857        let locality_improvement = (100.0 / (avg_reuse_distance + 1.0)).min(1.0);
858
859        Ok(OptimizationResult {
860            locality_improvement,
861            memory_movements: 0,
862            numa_migrations: 0,
863            cache_efficiency_gain: locality_improvement * 0.5,
864        })
865    }
866
867    /// Optimize spatial locality
868    fn optimize_spatial_locality(
869        &self,
870        _state_vector: &mut OptimizedStateVector,
871        access_pattern: &[usize],
872    ) -> Result<OptimizationResult> {
873        // Analyze spatial clustering
874        let mut spatial_clusters = HashMap::new();
875
876        for &address in access_pattern {
877            let cache_line = address / 64; // 64-byte cache lines
878            *spatial_clusters.entry(cache_line).or_insert(0) += 1;
879        }
880
881        // Calculate spatial locality score
882        let total_accesses = access_pattern.len();
883        let unique_cache_lines = spatial_clusters.len();
884
885        let spatial_efficiency = if unique_cache_lines > 0 {
886            total_accesses as f64 / unique_cache_lines as f64
887        } else {
888            1.0
889        };
890
891        let locality_improvement = (spatial_efficiency / 10.0).min(1.0);
892
893        Ok(OptimizationResult {
894            locality_improvement,
895            memory_movements: spatial_clusters.len(),
896            numa_migrations: 0,
897            cache_efficiency_gain: locality_improvement * 0.7,
898        })
899    }
900
901    /// Optimize loop locality
902    fn optimize_loop_locality(
903        &self,
904        _state_vector: &mut OptimizedStateVector,
905        _access_pattern: &[usize],
906    ) -> Result<OptimizationResult> {
907        // Analyze detected loops
908        let total_loops = self.access_analyzer.loop_detection.detected_loops.len();
909        let high_confidence_loops = self
910            .access_analyzer
911            .loop_detection
912            .detected_loops
913            .iter()
914            .filter(|loop_pattern| loop_pattern.confidence > 0.8)
915            .count();
916
917        let loop_efficiency = if total_loops > 0 {
918            high_confidence_loops as f64 / total_loops as f64
919        } else {
920            0.5
921        };
922
923        Ok(OptimizationResult {
924            locality_improvement: loop_efficiency,
925            memory_movements: total_loops,
926            numa_migrations: 0,
927            cache_efficiency_gain: loop_efficiency * 0.8,
928        })
929    }
930
931    /// Optimize cache-conscious placement
932    fn optimize_cache_conscious(
933        &self,
934        _state_vector: &mut OptimizedStateVector,
935        access_pattern: &[usize],
936    ) -> Result<OptimizationResult> {
937        // Simulate cache behavior
938        let cache_size = 256 * 1024; // 256KB L2 cache
939        let cache_line_size = 64;
940        let cache_lines = cache_size / cache_line_size;
941
942        let mut cache_hits = 0;
943        let mut cache_misses = 0;
944        let mut cache_state = HashMap::new();
945
946        for &address in access_pattern {
947            let cache_line = address / cache_line_size;
948            let cache_set = cache_line % cache_lines;
949
950            if cache_state.contains_key(&cache_set) {
951                cache_hits += 1;
952            } else {
953                cache_misses += 1;
954                cache_state.insert(cache_set, cache_line);
955            }
956        }
957
958        let cache_hit_rate = if cache_hits + cache_misses > 0 {
959            cache_hits as f64 / (cache_hits + cache_misses) as f64
960        } else {
961            0.0
962        };
963
964        Ok(OptimizationResult {
965            locality_improvement: cache_hit_rate,
966            memory_movements: cache_misses,
967            numa_migrations: 0,
968            cache_efficiency_gain: cache_hit_rate,
969        })
970    }
971
972    /// Optimize NUMA topology awareness
973    fn optimize_numa_topology(
974        &self,
975        _state_vector: &mut OptimizedStateVector,
976        access_pattern: &[usize],
977    ) -> Result<OptimizationResult> {
978        // Analyze cross-NUMA accesses
979        let mut numa_accesses = HashMap::new();
980
981        for &address in access_pattern {
982            // Simulate NUMA node assignment (simplified)
983            let numa_node = (address / (1024 * 1024 * 1024)) % self.numa_topology.num_nodes; // 1GB per node
984            *numa_accesses.entry(numa_node).or_insert(0) += 1;
985        }
986
987        // Calculate NUMA efficiency
988        let dominant_node = numa_accesses.iter().max_by_key(|(_, &count)| count);
989        let numa_efficiency = if let Some((_, &dominant_count)) = dominant_node {
990            dominant_count as f64 / access_pattern.len() as f64
991        } else {
992            0.0
993        };
994
995        let numa_migrations = numa_accesses.len().saturating_sub(1);
996
997        Ok(OptimizationResult {
998            locality_improvement: numa_efficiency,
999            memory_movements: 0,
1000            numa_migrations,
1001            cache_efficiency_gain: numa_efficiency * 0.6,
1002        })
1003    }
1004
1005    /// Optimize with hybrid strategy
1006    fn optimize_hybrid_locality(
1007        &self,
1008        state_vector: &mut OptimizedStateVector,
1009        access_pattern: &[usize],
1010    ) -> Result<OptimizationResult> {
1011        // Combine multiple optimization strategies
1012        let temporal = self.optimize_temporal_locality(state_vector, access_pattern)?;
1013        let spatial = self.optimize_spatial_locality(state_vector, access_pattern)?;
1014        let numa = self.optimize_numa_topology(state_vector, access_pattern)?;
1015
1016        // Weighted combination
1017        let locality_improvement = temporal.locality_improvement * 0.4
1018            + spatial.locality_improvement * 0.4
1019            + numa.locality_improvement * 0.2;
1020
1021        Ok(OptimizationResult {
1022            locality_improvement,
1023            memory_movements: temporal.memory_movements + spatial.memory_movements,
1024            numa_migrations: numa.numa_migrations,
1025            cache_efficiency_gain: temporal
1026                .cache_efficiency_gain
1027                .max(spatial.cache_efficiency_gain),
1028        })
1029    }
1030
1031    /// Get detected loop patterns
1032    pub fn get_detected_loops(&self) -> &[LoopPattern] {
1033        &self.access_analyzer.loop_detection.detected_loops
1034    }
1035}
1036
1037/// Optimization result
1038#[derive(Debug, Clone)]
1039pub struct OptimizationResult {
1040    /// Locality improvement score (0.0 to 1.0)
1041    pub locality_improvement: f64,
1042    /// Number of memory block movements
1043    pub memory_movements: usize,
1044    /// Number of NUMA migrations
1045    pub numa_migrations: usize,
1046    /// Cache efficiency gain (0.0 to 1.0)
1047    pub cache_efficiency_gain: f64,
1048}
1049
1050/// Locality optimization result
1051#[derive(Debug, Clone)]
1052pub struct LocalityOptimizationResult {
1053    /// Time spent on optimization
1054    pub optimization_time: Duration,
1055    /// Locality improvement achieved
1056    pub locality_improvement: f64,
1057    /// Number of memory movements performed
1058    pub memory_movements: usize,
1059    /// Number of NUMA migrations
1060    pub numa_migrations: usize,
1061    /// Cache efficiency gain
1062    pub cache_efficiency_gain: f64,
1063    /// Strategy used for optimization
1064    pub strategy_used: LocalityStrategy,
1065}
1066
1067#[cfg(test)]
1068mod tests {
1069    use super::*;
1070    use crate::memory_bandwidth_optimization::{MemoryOptimizationConfig, OptimizedStateVector};
1071
1072    #[test]
1073    fn test_access_pattern_predictor() {
1074        let mut predictor = AccessPatternPredictor::default();
1075
1076        // Record some sequential accesses
1077        for i in 0..10 {
1078            predictor.record_access(i * 64);
1079        }
1080
1081        let predictions = predictor.predict_next_accesses(5);
1082        assert_eq!(predictions.len(), 5);
1083
1084        // Should predict sequential pattern
1085        for (i, &pred) in predictions.iter().enumerate() {
1086            assert_eq!(pred, (10 + i) * 64);
1087        }
1088    }
1089
1090    #[test]
1091    fn test_memory_prefetcher_creation() {
1092        let config = PrefetchConfig::default();
1093        let numa = NUMATopology::default();
1094
1095        let prefetcher = MemoryPrefetcher::new(config, numa).unwrap();
1096        assert_eq!(prefetcher.config.strategy, PrefetchStrategy::Adaptive);
1097    }
1098
1099    #[test]
1100    fn test_prefetch_request() {
1101        let request = PrefetchRequest {
1102            address: 0x1000,
1103            priority: 0.8,
1104            hint_type: PrefetchHint::L1,
1105            timestamp: Instant::now(),
1106        };
1107
1108        assert_eq!(request.address, 0x1000);
1109        assert_eq!(request.priority, 0.8);
1110        assert_eq!(request.hint_type, PrefetchHint::L1);
1111    }
1112
1113    #[test]
1114    fn test_data_locality_optimizer() {
1115        let numa = NUMATopology::default();
1116        let optimizer = DataLocalityOptimizer::new(LocalityStrategy::Spatial, numa);
1117
1118        assert!(matches!(optimizer.strategy, LocalityStrategy::Spatial));
1119    }
1120
1121    #[test]
1122    fn test_loop_pattern_detection() {
1123        let mut optimizer =
1124            DataLocalityOptimizer::new(LocalityStrategy::Loop, NUMATopology::default());
1125
1126        // Create a simple loop pattern
1127        let access_pattern = vec![100, 200, 300, 400, 500, 600]; // Stride of 100
1128
1129        optimizer.detect_loop_patterns(&access_pattern).unwrap();
1130
1131        // Should detect potential patterns
1132        assert!(!optimizer
1133            .access_analyzer
1134            .loop_detection
1135            .loop_starts
1136            .is_empty());
1137    }
1138
1139    #[test]
1140    fn test_spatial_locality_optimization() {
1141        let numa = NUMATopology::default();
1142        let optimizer = DataLocalityOptimizer::new(LocalityStrategy::Spatial, numa);
1143
1144        // Create spatial access pattern (same cache lines)
1145        let access_pattern = vec![0, 8, 16, 24, 32, 40]; // Same cache line
1146
1147        let config = MemoryOptimizationConfig::default();
1148        let mut state_vector = OptimizedStateVector::new(3, config).unwrap();
1149
1150        let result = optimizer
1151            .optimize_spatial_locality(&mut state_vector, &access_pattern)
1152            .unwrap();
1153
1154        assert!(result.locality_improvement > 0.0);
1155        assert!(result.cache_efficiency_gain >= 0.0);
1156    }
1157
1158    #[test]
1159    fn test_numa_topology_default() {
1160        let numa = NUMATopology::default();
1161
1162        assert_eq!(numa.num_nodes, 1);
1163        assert_eq!(numa.cores_per_node.len(), 1);
1164        assert_eq!(numa.memory_per_node.len(), 1);
1165    }
1166
1167    #[test]
1168    fn test_prefetch_hint_determination() {
1169        let config = PrefetchConfig::default();
1170        let numa = NUMATopology::default();
1171        let prefetcher = MemoryPrefetcher::new(config, numa).unwrap();
1172
1173        assert_eq!(
1174            prefetcher.determine_prefetch_hint(0x1000, 0),
1175            PrefetchHint::L1
1176        );
1177        assert_eq!(
1178            prefetcher.determine_prefetch_hint(0x1000, 5),
1179            PrefetchHint::L2
1180        );
1181        assert_eq!(
1182            prefetcher.determine_prefetch_hint(0x1000, 10),
1183            PrefetchHint::L3
1184        );
1185        assert_eq!(
1186            prefetcher.determine_prefetch_hint(0x1000, 15),
1187            PrefetchHint::NonTemporal
1188        );
1189    }
1190
1191    #[test]
1192    fn test_ml_prediction() {
1193        let mut predictor = AccessPatternPredictor::default();
1194
1195        // Add some training data
1196        for i in 0..20 {
1197            predictor.record_access(i * 8);
1198        }
1199
1200        let features = predictor.extract_features();
1201        assert_eq!(features.len(), 16);
1202
1203        let prediction = predictor.ml_predict(&features, 0);
1204        assert!(prediction.is_finite());
1205    }
1206
1207    #[test]
1208    fn test_performance_feedback() {
1209        let feedback = PerformanceFeedback {
1210            cache_hit_rate: 0.85,
1211            bandwidth_utilization: 0.7,
1212            memory_latency: Duration::from_nanos(100),
1213            cpu_utilization: 0.6,
1214        };
1215
1216        assert_eq!(feedback.cache_hit_rate, 0.85);
1217        assert_eq!(feedback.bandwidth_utilization, 0.7);
1218    }
1219}