Module advanced_variational_algorithms

Module advanced_variational_algorithms 

Source
Expand description

Advanced Variational Quantum Algorithms (VQA) Framework

This module provides a comprehensive implementation of state-of-the-art variational quantum algorithms including VQE, QAOA, VQA with advanced optimizers, and novel variational approaches for quantum machine learning and optimization.

Structs§

AdvancedVQATrainer
Advanced Variational Quantum Algorithm trainer
BayesianModel
Bayesian optimization model
FiniteDifferenceGradient
Example gradient calculators Finite difference gradient calculator
HamiltonianTerm
Hamiltonian terms
IsingCostFunction
Example implementations of cost functions Ising model cost function for QAOA
MixerHamiltonian
Mixer Hamiltonian for QAOA
OptimizerState
Optimizer internal state
ParameterShiftGradient
Parameter shift rule gradient calculator
ProblemHamiltonian
Problem Hamiltonian for optimization problems
VQAConfig
VQA configuration
VQAResult
VQA optimization result
VQATrainerState
VQA trainer state
VQATrainingStats
VQA training statistics
WarmRestartConfig
Warm restart configuration

Enums§

AcquisitionFunction
Acquisition functions for Bayesian optimization
AdvancedOptimizerType
Advanced VQA optimizer types
CompressionMethod
Compression methods for tensor networks
GrowthCriterion
Growth criteria for adaptive ansatz
MixerType
Mixer types for QAOA
NetworkConnectivity
Network connectivity patterns
OptimizationProblemType
Optimization problem types
QuantumActivation
Quantum activation functions
TensorTopology
Tensor network topologies
VariationalAnsatz
Variational ansatz types

Traits§

CostFunction
Cost function trait
GradientCalculator
Gradient calculation methods

Functions§

benchmark_advanced_vqa
Benchmark function for VQA performance