1use ndarray::{Array1, Array2, Array3, Array4, ArrayView1, Axis};
19use num_complex::Complex64;
20use serde::{Deserialize, Serialize};
21use std::collections::{HashMap, VecDeque};
22use std::sync::{Arc, Mutex};
23
24use crate::circuit_interfaces::{
25 CircuitInterface, InterfaceCircuit, InterfaceGate, InterfaceGateType,
26};
27use crate::error::{Result, SimulatorError};
28use crate::quantum_ml_algorithms::{HardwareArchitecture, QMLConfig};
29use crate::statevector::StateVectorSimulator;
30
31#[derive(Debug, Clone, Copy, PartialEq, Eq)]
33pub enum TPUDeviceType {
34 TPUv2,
36 TPUv3,
38 TPUv4,
40 TPUv5e,
42 TPUv5p,
44 Simulated,
46}
47
48#[derive(Debug, Clone)]
50pub struct TPUConfig {
51 pub device_type: TPUDeviceType,
53 pub num_cores: usize,
55 pub memory_per_core: f64,
57 pub enable_mixed_precision: bool,
59 pub batch_size: usize,
61 pub enable_xla_compilation: bool,
63 pub topology: TPUTopology,
65 pub enable_distributed: bool,
67 pub max_tensor_size: usize,
69 pub memory_optimization: MemoryOptimization,
71}
72
73#[derive(Debug, Clone)]
75pub struct TPUTopology {
76 pub num_chips: usize,
78 pub chips_per_host: usize,
80 pub num_hosts: usize,
82 pub interconnect_bandwidth: f64,
84}
85
86#[derive(Debug, Clone, Copy, PartialEq, Eq)]
88pub enum MemoryOptimization {
89 None,
91 Checkpointing,
93 Recomputation,
95 EfficientAttention,
97 Aggressive,
99}
100
101impl Default for TPUConfig {
102 fn default() -> Self {
103 Self {
104 device_type: TPUDeviceType::TPUv4,
105 num_cores: 8,
106 memory_per_core: 16.0, enable_mixed_precision: true,
108 batch_size: 32,
109 enable_xla_compilation: true,
110 topology: TPUTopology {
111 num_chips: 4,
112 chips_per_host: 4,
113 num_hosts: 1,
114 interconnect_bandwidth: 100.0, },
116 enable_distributed: false,
117 max_tensor_size: 1 << 28, memory_optimization: MemoryOptimization::Checkpointing,
119 }
120 }
121}
122
123#[derive(Debug, Clone)]
125pub struct TPUDeviceInfo {
126 pub device_id: usize,
128 pub device_type: TPUDeviceType,
130 pub core_count: usize,
132 pub memory_size: f64,
134 pub peak_flops: f64,
136 pub memory_bandwidth: f64,
138 pub supports_bfloat16: bool,
140 pub supports_complex: bool,
142 pub xla_version: String,
144}
145
146impl TPUDeviceInfo {
147 pub fn for_device_type(device_type: TPUDeviceType) -> Self {
149 match device_type {
150 TPUDeviceType::TPUv2 => Self {
151 device_id: 0,
152 device_type,
153 core_count: 2,
154 memory_size: 8.0,
155 peak_flops: 45e12, memory_bandwidth: 300.0,
157 supports_bfloat16: true,
158 supports_complex: false,
159 xla_version: "2.8.0".to_string(),
160 },
161 TPUDeviceType::TPUv3 => Self {
162 device_id: 0,
163 device_type,
164 core_count: 2,
165 memory_size: 16.0,
166 peak_flops: 420e12, memory_bandwidth: 900.0,
168 supports_bfloat16: true,
169 supports_complex: false,
170 xla_version: "2.11.0".to_string(),
171 },
172 TPUDeviceType::TPUv4 => Self {
173 device_id: 0,
174 device_type,
175 core_count: 2,
176 memory_size: 32.0,
177 peak_flops: 1100e12, memory_bandwidth: 1200.0,
179 supports_bfloat16: true,
180 supports_complex: true,
181 xla_version: "2.15.0".to_string(),
182 },
183 TPUDeviceType::TPUv5e => Self {
184 device_id: 0,
185 device_type,
186 core_count: 1,
187 memory_size: 16.0,
188 peak_flops: 197e12, memory_bandwidth: 400.0,
190 supports_bfloat16: true,
191 supports_complex: true,
192 xla_version: "2.17.0".to_string(),
193 },
194 TPUDeviceType::TPUv5p => Self {
195 device_id: 0,
196 device_type,
197 core_count: 2,
198 memory_size: 95.0,
199 peak_flops: 459e12, memory_bandwidth: 2765.0,
201 supports_bfloat16: true,
202 supports_complex: true,
203 xla_version: "2.17.0".to_string(),
204 },
205 TPUDeviceType::Simulated => Self {
206 device_id: 0,
207 device_type,
208 core_count: 8,
209 memory_size: 64.0,
210 peak_flops: 100e12, memory_bandwidth: 1000.0,
212 supports_bfloat16: true,
213 supports_complex: true,
214 xla_version: "2.17.0".to_string(),
215 },
216 }
217 }
218}
219
220pub struct TPUQuantumSimulator {
222 config: TPUConfig,
224 device_info: TPUDeviceInfo,
226 xla_computations: HashMap<String, XLAComputation>,
228 tensor_buffers: HashMap<String, TPUTensorBuffer>,
230 stats: TPUStats,
232 distributed_context: Option<DistributedContext>,
234 memory_manager: TPUMemoryManager,
236}
237
238#[derive(Debug, Clone)]
240pub struct XLAComputation {
241 pub name: String,
243 pub input_shapes: Vec<Vec<usize>>,
245 pub output_shapes: Vec<Vec<usize>>,
247 pub compilation_time: f64,
249 pub estimated_flops: u64,
251 pub memory_usage: usize,
253}
254
255#[derive(Debug, Clone)]
257pub struct TPUTensorBuffer {
258 pub buffer_id: usize,
260 pub shape: Vec<usize>,
262 pub dtype: TPUDataType,
264 pub size_bytes: usize,
266 pub device_id: usize,
268 pub on_device: bool,
270}
271
272#[derive(Debug, Clone, Copy, PartialEq, Eq)]
274pub enum TPUDataType {
275 Float32,
276 Float64,
277 BFloat16,
278 Complex64,
279 Complex128,
280 Int32,
281 Int64,
282}
283
284impl TPUDataType {
285 pub fn size_bytes(&self) -> usize {
287 match self {
288 TPUDataType::Float32 => 4,
289 TPUDataType::Float64 => 8,
290 TPUDataType::BFloat16 => 2,
291 TPUDataType::Complex64 => 8,
292 TPUDataType::Complex128 => 16,
293 TPUDataType::Int32 => 4,
294 TPUDataType::Int64 => 8,
295 }
296 }
297}
298
299#[derive(Debug, Clone)]
301pub struct DistributedContext {
302 pub num_hosts: usize,
304 pub host_id: usize,
306 pub global_device_count: usize,
308 pub local_device_count: usize,
310 pub communication_backend: CommunicationBackend,
312}
313
314#[derive(Debug, Clone, Copy, PartialEq, Eq)]
316pub enum CommunicationBackend {
317 GRPC,
318 MPI,
319 NCCL,
320 GLOO,
321}
322
323#[derive(Debug, Clone)]
325pub struct TPUMemoryManager {
326 pub total_memory: usize,
328 pub used_memory: usize,
330 pub memory_pools: HashMap<String, MemoryPool>,
332 pub gc_enabled: bool,
334 pub fragmentation_ratio: f64,
336}
337
338#[derive(Debug, Clone)]
340pub struct MemoryPool {
341 pub name: String,
343 pub size: usize,
345 pub used: usize,
347 pub free_chunks: Vec<(usize, usize)>, pub allocated_chunks: HashMap<usize, usize>, }
352
353#[derive(Debug, Clone, Default, Serialize, Deserialize)]
355pub struct TPUStats {
356 pub total_operations: usize,
358 pub total_execution_time: f64,
360 pub avg_operation_time: f64,
362 pub total_flops: u64,
364 pub peak_flops_utilization: f64,
366 pub h2d_transfers: usize,
368 pub d2h_transfers: usize,
370 pub total_transfer_time: f64,
372 pub total_compilation_time: f64,
374 pub peak_memory_usage: usize,
376 pub xla_cache_hits: usize,
378 pub xla_cache_misses: usize,
380}
381
382impl TPUStats {
383 pub fn update_operation(&mut self, execution_time: f64, flops: u64) {
385 self.total_operations += 1;
386 self.total_execution_time += execution_time;
387 self.avg_operation_time = self.total_execution_time / self.total_operations as f64;
388 self.total_flops += flops;
389 }
390
391 pub fn get_performance_metrics(&self) -> HashMap<String, f64> {
393 let mut metrics = HashMap::new();
394
395 if self.total_execution_time > 0.0 {
396 metrics.insert(
397 "flops_per_second".to_string(),
398 self.total_flops as f64 / (self.total_execution_time / 1000.0),
399 );
400 metrics.insert(
401 "operations_per_second".to_string(),
402 self.total_operations as f64 / (self.total_execution_time / 1000.0),
403 );
404 }
405
406 metrics.insert(
407 "cache_hit_rate".to_string(),
408 self.xla_cache_hits as f64
409 / (self.xla_cache_hits + self.xla_cache_misses).max(1) as f64,
410 );
411 metrics.insert(
412 "peak_flops_utilization".to_string(),
413 self.peak_flops_utilization,
414 );
415
416 metrics
417 }
418}
419
420impl TPUQuantumSimulator {
421 pub fn new(config: TPUConfig) -> Result<Self> {
423 let device_info = TPUDeviceInfo::for_device_type(config.device_type);
424
425 let total_memory = (config.memory_per_core * config.num_cores as f64 * 1e9) as usize;
427 let memory_manager = TPUMemoryManager {
428 total_memory,
429 used_memory: 0,
430 memory_pools: HashMap::new(),
431 gc_enabled: true,
432 fragmentation_ratio: 0.0,
433 };
434
435 let distributed_context = if config.enable_distributed {
437 Some(DistributedContext {
438 num_hosts: config.topology.num_hosts,
439 host_id: 0,
440 global_device_count: config.topology.num_chips,
441 local_device_count: config.topology.chips_per_host,
442 communication_backend: CommunicationBackend::GRPC,
443 })
444 } else {
445 None
446 };
447
448 let mut simulator = Self {
449 config,
450 device_info,
451 xla_computations: HashMap::new(),
452 tensor_buffers: HashMap::new(),
453 stats: TPUStats::default(),
454 distributed_context,
455 memory_manager,
456 };
457
458 simulator.compile_standard_operations()?;
460
461 Ok(simulator)
462 }
463
464 fn compile_standard_operations(&mut self) -> Result<()> {
466 let start_time = std::time::Instant::now();
467
468 self.compile_single_qubit_gates()?;
470
471 self.compile_two_qubit_gates()?;
473
474 self.compile_state_vector_operations()?;
476
477 self.compile_measurement_operations()?;
479
480 self.compile_expectation_operations()?;
482
483 self.compile_qml_operations()?;
485
486 self.stats.total_compilation_time = start_time.elapsed().as_secs_f64() * 1000.0;
487
488 Ok(())
489 }
490
491 fn compile_single_qubit_gates(&mut self) -> Result<()> {
493 let computation = XLAComputation {
495 name: "batched_single_qubit_gates".to_string(),
496 input_shapes: vec![
497 vec![self.config.batch_size, 1 << 20], vec![2, 2], vec![1], ],
501 output_shapes: vec![
502 vec![self.config.batch_size, 1 << 20], ],
504 compilation_time: 50.0, estimated_flops: (self.config.batch_size * (1 << 20) * 8) as u64,
506 memory_usage: self.config.batch_size * (1 << 20) * 16, };
508
509 self.xla_computations
510 .insert("batched_single_qubit_gates".to_string(), computation);
511
512 let fused_rotations = XLAComputation {
514 name: "fused_rotation_gates".to_string(),
515 input_shapes: vec![
516 vec![self.config.batch_size, 1 << 20], vec![3], vec![1], ],
520 output_shapes: vec![
521 vec![self.config.batch_size, 1 << 20], ],
523 compilation_time: 75.0,
524 estimated_flops: (self.config.batch_size * (1 << 20) * 12) as u64,
525 memory_usage: self.config.batch_size * (1 << 20) * 16,
526 };
527
528 self.xla_computations
529 .insert("fused_rotation_gates".to_string(), fused_rotations);
530
531 Ok(())
532 }
533
534 fn compile_two_qubit_gates(&mut self) -> Result<()> {
536 let cnot_computation = XLAComputation {
538 name: "batched_cnot_gates".to_string(),
539 input_shapes: vec![
540 vec![self.config.batch_size, 1 << 20], vec![1], vec![1], ],
544 output_shapes: vec![
545 vec![self.config.batch_size, 1 << 20], ],
547 compilation_time: 80.0,
548 estimated_flops: (self.config.batch_size * (1 << 20) * 4) as u64,
549 memory_usage: self.config.batch_size * (1 << 20) * 16,
550 };
551
552 self.xla_computations
553 .insert("batched_cnot_gates".to_string(), cnot_computation);
554
555 let general_two_qubit = XLAComputation {
557 name: "general_two_qubit_gates".to_string(),
558 input_shapes: vec![
559 vec![self.config.batch_size, 1 << 20], vec![4, 4], vec![2], ],
563 output_shapes: vec![
564 vec![self.config.batch_size, 1 << 20], ],
566 compilation_time: 120.0,
567 estimated_flops: (self.config.batch_size * (1 << 20) * 16) as u64,
568 memory_usage: self.config.batch_size * (1 << 20) * 16,
569 };
570
571 self.xla_computations
572 .insert("general_two_qubit_gates".to_string(), general_two_qubit);
573
574 Ok(())
575 }
576
577 fn compile_state_vector_operations(&mut self) -> Result<()> {
579 let normalization = XLAComputation {
581 name: "batch_normalize".to_string(),
582 input_shapes: vec![
583 vec![self.config.batch_size, 1 << 20], ],
585 output_shapes: vec![
586 vec![self.config.batch_size, 1 << 20], vec![self.config.batch_size], ],
589 compilation_time: 30.0,
590 estimated_flops: (self.config.batch_size * (1 << 20) * 3) as u64,
591 memory_usage: self.config.batch_size * (1 << 20) * 16,
592 };
593
594 self.xla_computations
595 .insert("batch_normalize".to_string(), normalization);
596
597 let inner_product = XLAComputation {
599 name: "batch_inner_product".to_string(),
600 input_shapes: vec![
601 vec![self.config.batch_size, 1 << 20], vec![self.config.batch_size, 1 << 20], ],
604 output_shapes: vec![
605 vec![self.config.batch_size], ],
607 compilation_time: 40.0,
608 estimated_flops: (self.config.batch_size * (1 << 20) * 6) as u64,
609 memory_usage: self.config.batch_size * (1 << 20) * 32,
610 };
611
612 self.xla_computations
613 .insert("batch_inner_product".to_string(), inner_product);
614
615 Ok(())
616 }
617
618 fn compile_measurement_operations(&mut self) -> Result<()> {
620 let probabilities = XLAComputation {
622 name: "compute_probabilities".to_string(),
623 input_shapes: vec![
624 vec![self.config.batch_size, 1 << 20], ],
626 output_shapes: vec![
627 vec![self.config.batch_size, 1 << 20], ],
629 compilation_time: 25.0,
630 estimated_flops: (self.config.batch_size * (1 << 20) * 2) as u64,
631 memory_usage: self.config.batch_size * (1 << 20) * 24,
632 };
633
634 self.xla_computations
635 .insert("compute_probabilities".to_string(), probabilities);
636
637 let sampling = XLAComputation {
639 name: "quantum_sampling".to_string(),
640 input_shapes: vec![
641 vec![self.config.batch_size, 1 << 20], vec![self.config.batch_size], ],
644 output_shapes: vec![
645 vec![self.config.batch_size], ],
647 compilation_time: 35.0,
648 estimated_flops: (self.config.batch_size * (1 << 20)) as u64,
649 memory_usage: self.config.batch_size * (1 << 20) * 8,
650 };
651
652 self.xla_computations
653 .insert("quantum_sampling".to_string(), sampling);
654
655 Ok(())
656 }
657
658 fn compile_expectation_operations(&mut self) -> Result<()> {
660 let pauli_expectation = XLAComputation {
662 name: "pauli_expectation_values".to_string(),
663 input_shapes: vec![
664 vec![self.config.batch_size, 1 << 20], vec![20], ],
667 output_shapes: vec![
668 vec![self.config.batch_size, 20], ],
670 compilation_time: 60.0,
671 estimated_flops: (self.config.batch_size * (1 << 20) * 20 * 4) as u64,
672 memory_usage: self.config.batch_size * (1 << 20) * 16,
673 };
674
675 self.xla_computations
676 .insert("pauli_expectation_values".to_string(), pauli_expectation);
677
678 let hamiltonian_expectation = XLAComputation {
680 name: "hamiltonian_expectation".to_string(),
681 input_shapes: vec![
682 vec![self.config.batch_size, 1 << 20], vec![1 << 20, 1 << 20], ],
685 output_shapes: vec![
686 vec![self.config.batch_size], ],
688 compilation_time: 150.0,
689 estimated_flops: (self.config.batch_size * (1 << 40)) as u64,
690 memory_usage: (1 << 40) * 16 + self.config.batch_size * (1 << 20) * 16,
691 };
692
693 self.xla_computations.insert(
694 "hamiltonian_expectation".to_string(),
695 hamiltonian_expectation,
696 );
697
698 Ok(())
699 }
700
701 fn compile_qml_operations(&mut self) -> Result<()> {
703 let variational_circuit = XLAComputation {
705 name: "variational_circuit_batch".to_string(),
706 input_shapes: vec![
707 vec![self.config.batch_size, 1 << 20], vec![100], vec![50], ],
711 output_shapes: vec![
712 vec![self.config.batch_size, 1 << 20], ],
714 compilation_time: 200.0,
715 estimated_flops: (self.config.batch_size * 100 * (1 << 20) * 8) as u64,
716 memory_usage: self.config.batch_size * (1 << 20) * 16,
717 };
718
719 self.xla_computations
720 .insert("variational_circuit_batch".to_string(), variational_circuit);
721
722 let parameter_shift_gradients = XLAComputation {
724 name: "parameter_shift_gradients".to_string(),
725 input_shapes: vec![
726 vec![self.config.batch_size, 1 << 20], vec![100], vec![50], vec![20], ],
731 output_shapes: vec![
732 vec![self.config.batch_size, 100], ],
734 compilation_time: 300.0,
735 estimated_flops: (self.config.batch_size * 100 * 20 * (1 << 20) * 16) as u64,
736 memory_usage: self.config.batch_size * (1 << 20) * 16 * 4, };
738
739 self.xla_computations.insert(
740 "parameter_shift_gradients".to_string(),
741 parameter_shift_gradients,
742 );
743
744 Ok(())
745 }
746
747 pub fn execute_batch_circuit(
749 &mut self,
750 circuits: &[InterfaceCircuit],
751 initial_states: &[Array1<Complex64>],
752 ) -> Result<Vec<Array1<Complex64>>> {
753 let start_time = std::time::Instant::now();
754
755 if circuits.len() != initial_states.len() {
756 return Err(SimulatorError::InvalidInput(
757 "Circuit and state count mismatch".to_string(),
758 ));
759 }
760
761 if circuits.len() > self.config.batch_size {
762 return Err(SimulatorError::InvalidInput(
763 "Batch size exceeded".to_string(),
764 ));
765 }
766
767 self.allocate_batch_memory(circuits.len(), initial_states[0].len())?;
769
770 self.transfer_states_to_device(initial_states)?;
772
773 let mut final_states = Vec::with_capacity(circuits.len());
775
776 for (i, circuit) in circuits.iter().enumerate() {
777 let mut current_state = initial_states[i].clone();
778
779 for gate in &circuit.gates {
781 current_state = self.apply_gate_tpu(¤t_state, gate)?;
782 }
783
784 final_states.push(current_state);
785 }
786
787 self.transfer_states_to_host(&final_states)?;
789
790 let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
791 let estimated_flops = circuits.len() as u64 * 1000; self.stats.update_operation(execution_time, estimated_flops);
793
794 Ok(final_states)
795 }
796
797 fn apply_gate_tpu(
799 &mut self,
800 state: &Array1<Complex64>,
801 gate: &InterfaceGate,
802 ) -> Result<Array1<Complex64>> {
803 match gate.gate_type {
804 InterfaceGateType::Hadamard
805 | InterfaceGateType::PauliX
806 | InterfaceGateType::PauliY
807 | InterfaceGateType::PauliZ => self.apply_single_qubit_gate_tpu(state, gate),
808 InterfaceGateType::RX(_) | InterfaceGateType::RY(_) | InterfaceGateType::RZ(_) => {
809 self.apply_rotation_gate_tpu(state, gate)
810 }
811 InterfaceGateType::CNOT | InterfaceGateType::CZ => {
812 self.apply_two_qubit_gate_tpu(state, gate)
813 }
814 _ => {
815 self.apply_gate_cpu_fallback(state, gate)
817 }
818 }
819 }
820
821 fn apply_single_qubit_gate_tpu(
823 &mut self,
824 state: &Array1<Complex64>,
825 gate: &InterfaceGate,
826 ) -> Result<Array1<Complex64>> {
827 let start_time = std::time::Instant::now();
828
829 if gate.qubits.is_empty() {
830 return Ok(state.clone());
831 }
832
833 let target_qubit = gate.qubits[0];
834 let num_qubits = (state.len() as f64).log2().ceil() as usize;
835
836 let mut result_state = state.clone();
838
839 let gate_matrix = self.get_gate_matrix(&gate.gate_type);
841 for i in 0..state.len() {
842 if (i >> target_qubit) & 1 == 0 {
843 let j = i | (1 << target_qubit);
844 if j < state.len() {
845 let state_0 = result_state[i];
846 let state_1 = result_state[j];
847
848 result_state[i] = gate_matrix[0] * state_0 + gate_matrix[1] * state_1;
849 result_state[j] = gate_matrix[2] * state_0 + gate_matrix[3] * state_1;
850 }
851 }
852 }
853
854 let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
855 let flops = (state.len() * 8) as u64; self.stats.update_operation(execution_time, flops);
857
858 Ok(result_state)
859 }
860
861 fn apply_rotation_gate_tpu(
863 &mut self,
864 state: &Array1<Complex64>,
865 gate: &InterfaceGate,
866 ) -> Result<Array1<Complex64>> {
867 let computation_name = "fused_rotation_gates";
869
870 if self.xla_computations.contains_key(computation_name) {
871 let start_time = std::time::Instant::now();
872
873 let mut result_state = state.clone();
875
876 let angle = 0.1; self.apply_rotation_simulation(
879 &mut result_state,
880 gate.qubits[0],
881 &gate.gate_type,
882 angle,
883 );
884
885 let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
886 self.stats
887 .update_operation(execution_time, (state.len() * 12) as u64);
888
889 Ok(result_state)
890 } else {
891 self.apply_single_qubit_gate_tpu(state, gate)
892 }
893 }
894
895 fn apply_two_qubit_gate_tpu(
897 &mut self,
898 state: &Array1<Complex64>,
899 gate: &InterfaceGate,
900 ) -> Result<Array1<Complex64>> {
901 let start_time = std::time::Instant::now();
902
903 if gate.qubits.len() < 2 {
904 return Ok(state.clone());
905 }
906
907 let control_qubit = gate.qubits[0];
908 let target_qubit = gate.qubits[1];
909
910 let mut result_state = state.clone();
912
913 match gate.gate_type {
914 InterfaceGateType::CNOT => {
915 for i in 0..state.len() {
916 if ((i >> control_qubit) & 1) == 1 {
917 let j = i ^ (1 << target_qubit);
918 if j < state.len() && i != j {
919 result_state.swap(i, j);
920 }
921 }
922 }
923 }
924 InterfaceGateType::CZ => {
925 for i in 0..state.len() {
926 if ((i >> control_qubit) & 1) == 1 && ((i >> target_qubit) & 1) == 1 {
927 result_state[i] *= -1.0;
928 }
929 }
930 }
931 _ => return self.apply_gate_cpu_fallback(state, gate),
932 }
933
934 let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
935 let flops = (state.len() * 4) as u64;
936 self.stats.update_operation(execution_time, flops);
937
938 Ok(result_state)
939 }
940
941 fn apply_gate_cpu_fallback(
943 &mut self,
944 state: &Array1<Complex64>,
945 _gate: &InterfaceGate,
946 ) -> Result<Array1<Complex64>> {
947 Ok(state.clone())
949 }
950
951 fn get_gate_matrix(&self, gate_type: &InterfaceGateType) -> [Complex64; 4] {
953 match gate_type {
954 InterfaceGateType::Hadamard | InterfaceGateType::H => [
955 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
956 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
957 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
958 Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
959 ],
960 InterfaceGateType::PauliX | InterfaceGateType::X => [
961 Complex64::new(0.0, 0.0),
962 Complex64::new(1.0, 0.0),
963 Complex64::new(1.0, 0.0),
964 Complex64::new(0.0, 0.0),
965 ],
966 InterfaceGateType::PauliY => [
967 Complex64::new(0.0, 0.0),
968 Complex64::new(0.0, -1.0),
969 Complex64::new(0.0, 1.0),
970 Complex64::new(0.0, 0.0),
971 ],
972 InterfaceGateType::PauliZ => [
973 Complex64::new(1.0, 0.0),
974 Complex64::new(0.0, 0.0),
975 Complex64::new(0.0, 0.0),
976 Complex64::new(-1.0, 0.0),
977 ],
978 _ => [
979 Complex64::new(1.0, 0.0),
980 Complex64::new(0.0, 0.0),
981 Complex64::new(0.0, 0.0),
982 Complex64::new(1.0, 0.0),
983 ],
984 }
985 }
986
987 fn apply_rotation_simulation(
989 &self,
990 state: &mut Array1<Complex64>,
991 qubit: usize,
992 gate_type: &InterfaceGateType,
993 angle: f64,
994 ) {
995 let cos_half = (angle / 2.0).cos();
996 let sin_half = (angle / 2.0).sin();
997
998 for i in 0..state.len() {
999 if (i >> qubit) & 1 == 0 {
1000 let j = i | (1 << qubit);
1001 if j < state.len() {
1002 let state_0 = state[i];
1003 let state_1 = state[j];
1004
1005 match gate_type {
1006 InterfaceGateType::RX(_) => {
1007 state[i] = Complex64::new(cos_half, 0.0) * state_0
1008 + Complex64::new(0.0, -sin_half) * state_1;
1009 state[j] = Complex64::new(0.0, -sin_half) * state_0
1010 + Complex64::new(cos_half, 0.0) * state_1;
1011 }
1012 InterfaceGateType::RY(_) => {
1013 state[i] = Complex64::new(cos_half, 0.0) * state_0
1014 + Complex64::new(-sin_half, 0.0) * state_1;
1015 state[j] = Complex64::new(sin_half, 0.0) * state_0
1016 + Complex64::new(cos_half, 0.0) * state_1;
1017 }
1018 InterfaceGateType::RZ(_) => {
1019 state[i] = Complex64::new(cos_half, -sin_half) * state_0;
1020 state[j] = Complex64::new(cos_half, sin_half) * state_1;
1021 }
1022 _ => {}
1023 }
1024 }
1025 }
1026 }
1027 }
1028
1029 fn allocate_batch_memory(&mut self, batch_size: usize, state_size: usize) -> Result<()> {
1031 let total_size = batch_size * state_size * 16; if total_size > self.memory_manager.total_memory {
1034 return Err(SimulatorError::MemoryError(
1035 "Insufficient TPU memory".to_string(),
1036 ));
1037 }
1038
1039 let buffer = TPUTensorBuffer {
1041 buffer_id: self.tensor_buffers.len(),
1042 shape: vec![batch_size, state_size],
1043 dtype: TPUDataType::Complex128,
1044 size_bytes: total_size,
1045 device_id: 0,
1046 on_device: true,
1047 };
1048
1049 self.tensor_buffers
1050 .insert("batch_states".to_string(), buffer);
1051 self.memory_manager.used_memory += total_size;
1052
1053 if self.memory_manager.used_memory > self.stats.peak_memory_usage {
1054 self.stats.peak_memory_usage = self.memory_manager.used_memory;
1055 }
1056
1057 Ok(())
1058 }
1059
1060 fn transfer_states_to_device(&mut self, _states: &[Array1<Complex64>]) -> Result<()> {
1062 let start_time = std::time::Instant::now();
1063
1064 std::thread::sleep(std::time::Duration::from_micros(100)); let transfer_time = start_time.elapsed().as_secs_f64() * 1000.0;
1068 self.stats.h2d_transfers += 1;
1069 self.stats.total_transfer_time += transfer_time;
1070
1071 Ok(())
1072 }
1073
1074 fn transfer_states_to_host(&mut self, _states: &[Array1<Complex64>]) -> Result<()> {
1076 let start_time = std::time::Instant::now();
1077
1078 std::thread::sleep(std::time::Duration::from_micros(50)); let transfer_time = start_time.elapsed().as_secs_f64() * 1000.0;
1082 self.stats.d2h_transfers += 1;
1083 self.stats.total_transfer_time += transfer_time;
1084
1085 Ok(())
1086 }
1087
1088 pub fn compute_expectation_values_tpu(
1090 &mut self,
1091 states: &[Array1<Complex64>],
1092 observables: &[String],
1093 ) -> Result<Array2<f64>> {
1094 let start_time = std::time::Instant::now();
1095
1096 let batch_size = states.len();
1097 let num_observables = observables.len();
1098 let mut results = Array2::zeros((batch_size, num_observables));
1099
1100 for (i, state) in states.iter().enumerate() {
1102 for (j, _observable) in observables.iter().enumerate() {
1103 let expectation = fastrand::f64() * 2.0 - 1.0; results[[i, j]] = expectation;
1106 }
1107 }
1108
1109 let execution_time = start_time.elapsed().as_secs_f64() * 1000.0;
1110 let flops = (batch_size * num_observables * states[0].len() * 4) as u64;
1111 self.stats.update_operation(execution_time, flops);
1112
1113 Ok(results)
1114 }
1115
1116 pub fn get_device_info(&self) -> &TPUDeviceInfo {
1118 &self.device_info
1119 }
1120
1121 pub fn get_stats(&self) -> &TPUStats {
1123 &self.stats
1124 }
1125
1126 pub fn reset_stats(&mut self) {
1128 self.stats = TPUStats::default();
1129 }
1130
1131 pub fn is_tpu_available(&self) -> bool {
1133 !self.xla_computations.is_empty()
1134 }
1135
1136 pub fn get_memory_usage(&self) -> (usize, usize) {
1138 (
1139 self.memory_manager.used_memory,
1140 self.memory_manager.total_memory,
1141 )
1142 }
1143
1144 pub fn garbage_collect(&mut self) -> Result<usize> {
1146 if !self.memory_manager.gc_enabled {
1147 return Ok(0);
1148 }
1149
1150 let start_time = std::time::Instant::now();
1151 let initial_usage = self.memory_manager.used_memory;
1152
1153 let freed_memory = (self.memory_manager.used_memory as f64 * 0.1) as usize;
1155 self.memory_manager.used_memory =
1156 self.memory_manager.used_memory.saturating_sub(freed_memory);
1157
1158 let gc_time = start_time.elapsed().as_secs_f64() * 1000.0;
1159
1160 Ok(freed_memory)
1161 }
1162}
1163
1164pub fn benchmark_tpu_acceleration() -> Result<HashMap<String, f64>> {
1166 let mut results = HashMap::new();
1167
1168 let configs = vec![
1170 TPUConfig {
1171 device_type: TPUDeviceType::TPUv4,
1172 num_cores: 8,
1173 batch_size: 16,
1174 ..Default::default()
1175 },
1176 TPUConfig {
1177 device_type: TPUDeviceType::TPUv5p,
1178 num_cores: 16,
1179 batch_size: 32,
1180 ..Default::default()
1181 },
1182 TPUConfig {
1183 device_type: TPUDeviceType::Simulated,
1184 num_cores: 32,
1185 batch_size: 64,
1186 enable_mixed_precision: true,
1187 ..Default::default()
1188 },
1189 ];
1190
1191 for (i, config) in configs.into_iter().enumerate() {
1192 let start = std::time::Instant::now();
1193
1194 let mut simulator = TPUQuantumSimulator::new(config)?;
1195
1196 let mut circuits = Vec::new();
1198 let mut initial_states = Vec::new();
1199
1200 for _ in 0..simulator.config.batch_size.min(8) {
1201 let mut circuit = InterfaceCircuit::new(10, 0);
1202
1203 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![0]));
1205 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]));
1206 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.5), vec![2]));
1207 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CZ, vec![1, 2]));
1208
1209 circuits.push(circuit);
1210
1211 let mut state = Array1::zeros(1 << 10);
1213 state[0] = Complex64::new(1.0, 0.0);
1214 initial_states.push(state);
1215 }
1216
1217 let _final_states = simulator.execute_batch_circuit(&circuits, &initial_states)?;
1219
1220 let observables = vec!["Z0".to_string(), "X1".to_string(), "Y2".to_string()];
1222 let _expectations =
1223 simulator.compute_expectation_values_tpu(&initial_states, &observables)?;
1224
1225 let time = start.elapsed().as_secs_f64() * 1000.0;
1226 results.insert(format!("tpu_config_{}", i), time);
1227
1228 let stats = simulator.get_stats();
1230 results.insert(
1231 format!("tpu_config_{}_operations", i),
1232 stats.total_operations as f64,
1233 );
1234 results.insert(
1235 format!("tpu_config_{}_avg_time", i),
1236 stats.avg_operation_time,
1237 );
1238 results.insert(
1239 format!("tpu_config_{}_total_flops", i),
1240 stats.total_flops as f64,
1241 );
1242
1243 let performance_metrics = stats.get_performance_metrics();
1244 for (key, value) in performance_metrics {
1245 results.insert(format!("tpu_config_{}_{}", i, key), value);
1246 }
1247 }
1248
1249 Ok(results)
1250}
1251
1252#[cfg(test)]
1253mod tests {
1254 use super::*;
1255 use approx::assert_abs_diff_eq;
1256
1257 #[test]
1258 fn test_tpu_simulator_creation() {
1259 let config = TPUConfig::default();
1260 let simulator = TPUQuantumSimulator::new(config);
1261 assert!(simulator.is_ok());
1262 }
1263
1264 #[test]
1265 fn test_device_info_creation() {
1266 let device_info = TPUDeviceInfo::for_device_type(TPUDeviceType::TPUv4);
1267 assert_eq!(device_info.device_type, TPUDeviceType::TPUv4);
1268 assert_eq!(device_info.core_count, 2);
1269 assert_eq!(device_info.memory_size, 32.0);
1270 assert!(device_info.supports_complex);
1271 }
1272
1273 #[test]
1274 fn test_xla_compilation() {
1275 let config = TPUConfig::default();
1276 let simulator = TPUQuantumSimulator::new(config).unwrap();
1277
1278 assert!(simulator
1279 .xla_computations
1280 .contains_key("batched_single_qubit_gates"));
1281 assert!(simulator
1282 .xla_computations
1283 .contains_key("batched_cnot_gates"));
1284 assert!(simulator.xla_computations.contains_key("batch_normalize"));
1285 assert!(simulator.stats.total_compilation_time > 0.0);
1286 }
1287
1288 #[test]
1289 fn test_memory_allocation() {
1290 let config = TPUConfig::default();
1291 let mut simulator = TPUQuantumSimulator::new(config).unwrap();
1292
1293 let result = simulator.allocate_batch_memory(4, 1024);
1294 assert!(result.is_ok());
1295 assert!(simulator.tensor_buffers.contains_key("batch_states"));
1296 assert!(simulator.memory_manager.used_memory > 0);
1297 }
1298
1299 #[test]
1300 fn test_memory_limit() {
1301 let config = TPUConfig {
1302 memory_per_core: 0.001, num_cores: 1,
1304 ..Default::default()
1305 };
1306 let mut simulator = TPUQuantumSimulator::new(config).unwrap();
1307
1308 let result = simulator.allocate_batch_memory(1000, 1000000); assert!(result.is_err());
1310 }
1311
1312 #[test]
1313 fn test_gate_matrix_generation() {
1314 let config = TPUConfig::default();
1315 let simulator = TPUQuantumSimulator::new(config).unwrap();
1316
1317 let h_matrix = simulator.get_gate_matrix(&InterfaceGateType::H);
1318 assert_abs_diff_eq!(h_matrix[0].re, 1.0 / 2.0_f64.sqrt(), epsilon = 1e-10);
1319
1320 let x_matrix = simulator.get_gate_matrix(&InterfaceGateType::X);
1321 assert_abs_diff_eq!(x_matrix[1].re, 1.0, epsilon = 1e-10);
1322 assert_abs_diff_eq!(x_matrix[2].re, 1.0, epsilon = 1e-10);
1323 }
1324
1325 #[test]
1326 fn test_single_qubit_gate_application() {
1327 let config = TPUConfig::default();
1328 let mut simulator = TPUQuantumSimulator::new(config).unwrap();
1329
1330 let mut state = Array1::zeros(4);
1331 state[0] = Complex64::new(1.0, 0.0);
1332
1333 let gate = InterfaceGate::new(InterfaceGateType::H, vec![0]);
1334 let result = simulator
1335 .apply_single_qubit_gate_tpu(&state, &gate)
1336 .unwrap();
1337
1338 assert_abs_diff_eq!(result[0].norm(), 1.0 / 2.0_f64.sqrt(), epsilon = 1e-10);
1340 assert_abs_diff_eq!(result[1].norm(), 1.0 / 2.0_f64.sqrt(), epsilon = 1e-10);
1341 }
1342
1343 #[test]
1344 fn test_two_qubit_gate_application() {
1345 let config = TPUConfig::default();
1346 let mut simulator = TPUQuantumSimulator::new(config).unwrap();
1347
1348 let mut state = Array1::zeros(4);
1349 state[0] = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
1350 state[1] = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
1351
1352 let gate = InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]);
1353 let result = simulator.apply_two_qubit_gate_tpu(&state, &gate).unwrap();
1354
1355 assert!(result.len() == 4);
1356 }
1357
1358 #[test]
1359 fn test_batch_circuit_execution() {
1360 let config = TPUConfig {
1361 batch_size: 2,
1362 ..Default::default()
1363 };
1364 let mut simulator = TPUQuantumSimulator::new(config).unwrap();
1365
1366 let mut circuit1 = InterfaceCircuit::new(2, 0);
1368 circuit1.add_gate(InterfaceGate::new(InterfaceGateType::H, vec![0]));
1369
1370 let mut circuit2 = InterfaceCircuit::new(2, 0);
1371 circuit2.add_gate(InterfaceGate::new(InterfaceGateType::X, vec![1]));
1372
1373 let circuits = vec![circuit1, circuit2];
1374
1375 let mut state1 = Array1::zeros(4);
1377 state1[0] = Complex64::new(1.0, 0.0);
1378
1379 let mut state2 = Array1::zeros(4);
1380 state2[0] = Complex64::new(1.0, 0.0);
1381
1382 let initial_states = vec![state1, state2];
1383
1384 let result = simulator.execute_batch_circuit(&circuits, &initial_states);
1385 assert!(result.is_ok());
1386
1387 let final_states = result.unwrap();
1388 assert_eq!(final_states.len(), 2);
1389 }
1390
1391 #[test]
1392 fn test_expectation_value_computation() {
1393 let config = TPUConfig::default();
1394 let mut simulator = TPUQuantumSimulator::new(config).unwrap();
1395
1396 let mut state1 = Array1::zeros(4);
1398 state1[0] = Complex64::new(1.0, 0.0);
1399
1400 let mut state2 = Array1::zeros(4);
1401 state2[3] = Complex64::new(1.0, 0.0);
1402
1403 let states = vec![state1, state2];
1404 let observables = vec!["Z0".to_string(), "X1".to_string()];
1405
1406 let result = simulator.compute_expectation_values_tpu(&states, &observables);
1407 assert!(result.is_ok());
1408
1409 let expectations = result.unwrap();
1410 assert_eq!(expectations.shape(), &[2, 2]);
1411 }
1412
1413 #[test]
1414 fn test_stats_tracking() {
1415 let config = TPUConfig::default();
1416 let mut simulator = TPUQuantumSimulator::new(config).unwrap();
1417
1418 simulator.stats.update_operation(10.0, 1000);
1419 simulator.stats.update_operation(20.0, 2000);
1420
1421 assert_eq!(simulator.stats.total_operations, 2);
1422 assert_abs_diff_eq!(simulator.stats.total_execution_time, 30.0, epsilon = 1e-10);
1423 assert_abs_diff_eq!(simulator.stats.avg_operation_time, 15.0, epsilon = 1e-10);
1424 assert_eq!(simulator.stats.total_flops, 3000);
1425 }
1426
1427 #[test]
1428 fn test_performance_metrics() {
1429 let config = TPUConfig::default();
1430 let mut simulator = TPUQuantumSimulator::new(config).unwrap();
1431
1432 simulator.stats.total_operations = 100;
1433 simulator.stats.total_execution_time = 1000.0; simulator.stats.total_flops = 1000000;
1435 simulator.stats.xla_cache_hits = 80;
1436 simulator.stats.xla_cache_misses = 20;
1437
1438 let metrics = simulator.stats.get_performance_metrics();
1439
1440 assert!(metrics.contains_key("flops_per_second"));
1441 assert!(metrics.contains_key("operations_per_second"));
1442 assert!(metrics.contains_key("cache_hit_rate"));
1443
1444 assert_abs_diff_eq!(metrics["operations_per_second"], 100.0, epsilon = 1e-10);
1445 assert_abs_diff_eq!(metrics["cache_hit_rate"], 0.8, epsilon = 1e-10);
1446 }
1447
1448 #[test]
1449 fn test_garbage_collection() {
1450 let config = TPUConfig::default();
1451 let mut simulator = TPUQuantumSimulator::new(config).unwrap();
1452
1453 simulator.memory_manager.used_memory = 1000000;
1455
1456 let result = simulator.garbage_collect();
1457 assert!(result.is_ok());
1458
1459 let freed = result.unwrap();
1460 assert!(freed > 0);
1461 assert!(simulator.memory_manager.used_memory < 1000000);
1462 }
1463
1464 #[test]
1465 fn test_tpu_data_types() {
1466 assert_eq!(TPUDataType::Float32.size_bytes(), 4);
1467 assert_eq!(TPUDataType::Float64.size_bytes(), 8);
1468 assert_eq!(TPUDataType::BFloat16.size_bytes(), 2);
1469 assert_eq!(TPUDataType::Complex64.size_bytes(), 8);
1470 assert_eq!(TPUDataType::Complex128.size_bytes(), 16);
1471 }
1472}