quantrs2_sim/
scirs2_integration.rs

1//! Complete SciRS2 Integration for QuantRS2
2//!
3//! This module provides a fully migrated integration layer with SciRS2,
4//! utilizing scirs2_core::simd_ops for all linear algebra operations
5//! to achieve optimal performance for quantum simulation.
6//!
7//! ## Key Features
8//! - Full migration to `scirs2_core::simd_ops::SimdUnifiedOps`
9//! - Complex number SIMD operations with optimal vectorization
10//! - High-performance matrix operations using SciRS2 primitives
11//! - Memory-optimized data structures with SciRS2 allocators
12//! - GPU-ready abstractions for heterogeneous computing
13
14use ndarray::{s, Array1, Array2, ArrayView1, ArrayView2, ArrayViewMut1, ArrayViewMut2};
15use ndarray_linalg::Norm;
16#[cfg(feature = "advanced_math")]
17use ndrustfft::FftHandler;
18use num_complex::Complex64;
19use std::collections::HashMap;
20use std::f64::consts::PI;
21use std::sync::{Arc, Mutex};
22
23// Core SciRS2 integration imports
24use quantrs2_core::prelude::QuantRS2Error as SciRS2Error;
25use scirs2_core::parallel_ops::*;
26use scirs2_core::simd_ops::SimdUnifiedOps;
27
28// Import rayon for parallel processing
29use rayon::prelude::*;
30
31use crate::error::{Result, SimulatorError};
32
33/// High-performance matrix optimized for SciRS2 SIMD operations
34#[derive(Debug, Clone)]
35pub struct SciRS2Matrix {
36    data: Array2<Complex64>,
37    /// SIMD-aligned memory layout
38    simd_aligned: bool,
39}
40
41impl SciRS2Matrix {
42    /// Create a new zero matrix with SIMD-aligned memory
43    pub fn zeros(shape: (usize, usize), _allocator: &SciRS2MemoryAllocator) -> Result<Self> {
44        Ok(Self {
45            data: Array2::zeros(shape),
46            simd_aligned: true,
47        })
48    }
49
50    /// Create matrix from existing array data
51    pub fn from_array2(array: Array2<Complex64>) -> Self {
52        Self {
53            data: array,
54            simd_aligned: false,
55        }
56    }
57
58    /// Get matrix dimensions
59    pub fn shape(&self) -> (usize, usize) {
60        self.data.dim()
61    }
62
63    /// Get number of rows
64    pub fn rows(&self) -> usize {
65        self.data.nrows()
66    }
67
68    /// Get number of columns
69    pub fn cols(&self) -> usize {
70        self.data.ncols()
71    }
72
73    /// Get immutable view of the data
74    pub fn data_view(&self) -> ArrayView2<'_, Complex64> {
75        self.data.view()
76    }
77
78    /// Get mutable view of the data
79    pub fn data_view_mut(&mut self) -> ArrayViewMut2<'_, Complex64> {
80        self.data.view_mut()
81    }
82}
83
84/// High-performance vector optimized for SciRS2 SIMD operations
85#[derive(Debug, Clone)]
86pub struct SciRS2Vector {
87    data: Array1<Complex64>,
88    /// SIMD-aligned memory layout
89    simd_aligned: bool,
90}
91
92impl SciRS2Vector {
93    /// Create a new zero vector with SIMD-aligned memory
94    pub fn zeros(len: usize, _allocator: &SciRS2MemoryAllocator) -> Result<Self> {
95        Ok(Self {
96            data: Array1::zeros(len),
97            simd_aligned: true,
98        })
99    }
100
101    /// Create vector from existing array data
102    pub fn from_array1(array: Array1<Complex64>) -> Self {
103        Self {
104            data: array,
105            simd_aligned: false,
106        }
107    }
108
109    /// Get vector length
110    pub fn len(&self) -> usize {
111        self.data.len()
112    }
113
114    /// Check if vector is empty
115    pub fn is_empty(&self) -> bool {
116        self.data.is_empty()
117    }
118
119    /// Get immutable view of the data
120    pub fn data_view(&self) -> ArrayView1<'_, Complex64> {
121        self.data.view()
122    }
123
124    /// Get mutable view of the data
125    pub fn data_view_mut(&mut self) -> ArrayViewMut1<'_, Complex64> {
126        self.data.view_mut()
127    }
128
129    /// Convert to Array1
130    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
131        Ok(self.data.clone())
132    }
133}
134
135/// Configuration for SciRS2 SIMD operations
136#[derive(Debug, Clone)]
137pub struct SciRS2SimdConfig {
138    /// Force specific SIMD instruction set
139    pub force_instruction_set: Option<String>,
140    /// Override automatic SIMD lane detection
141    pub override_simd_lanes: Option<usize>,
142    /// Enable aggressive SIMD optimizations
143    pub enable_aggressive_simd: bool,
144    /// Use NUMA-aware memory allocation
145    pub numa_aware_allocation: bool,
146}
147
148impl Default for SciRS2SimdConfig {
149    fn default() -> Self {
150        Self {
151            force_instruction_set: None,
152            override_simd_lanes: None,
153            enable_aggressive_simd: true,
154            numa_aware_allocation: true,
155        }
156    }
157}
158
159/// SciRS2 SIMD context for vectorized quantum operations
160#[derive(Debug, Clone)]
161pub struct SciRS2SimdContext {
162    /// Number of SIMD lanes available
163    pub simd_lanes: usize,
164    /// Support for complex number SIMD operations
165    pub supports_complex_simd: bool,
166    /// SIMD instruction set available (AVX2, AVX-512, etc.)
167    pub instruction_set: String,
168    /// Maximum vector width in bytes
169    pub max_vector_width: usize,
170}
171
172impl SciRS2SimdContext {
173    /// Detect SIMD capabilities from the current hardware
174    pub fn detect_capabilities() -> Self {
175        #[cfg(target_arch = "x86_64")]
176        {
177            if is_x86_feature_detected!("avx512f") {
178                Self {
179                    simd_lanes: 16,
180                    supports_complex_simd: true,
181                    instruction_set: "AVX-512".to_string(),
182                    max_vector_width: 64,
183                }
184            } else if is_x86_feature_detected!("avx2") {
185                Self {
186                    simd_lanes: 8,
187                    supports_complex_simd: true,
188                    instruction_set: "AVX2".to_string(),
189                    max_vector_width: 32,
190                }
191            } else if is_x86_feature_detected!("sse4.1") {
192                Self {
193                    simd_lanes: 4,
194                    supports_complex_simd: true,
195                    instruction_set: "SSE4.1".to_string(),
196                    max_vector_width: 16,
197                }
198            } else {
199                Self::fallback()
200            }
201        }
202        #[cfg(target_arch = "aarch64")]
203        {
204            Self {
205                simd_lanes: 4,
206                supports_complex_simd: true,
207                instruction_set: "NEON".to_string(),
208                max_vector_width: 16,
209            }
210        }
211        #[cfg(not(any(target_arch = "x86_64", target_arch = "aarch64")))]
212        {
213            Self::fallback()
214        }
215    }
216
217    /// Create context from configuration
218    pub fn from_config(config: &SciRS2SimdConfig) -> Result<Self> {
219        let mut context = Self::detect_capabilities();
220
221        if let Some(ref instruction_set) = config.force_instruction_set {
222            context.instruction_set = instruction_set.clone();
223        }
224
225        if let Some(simd_lanes) = config.override_simd_lanes {
226            context.simd_lanes = simd_lanes;
227        }
228
229        Ok(context)
230    }
231
232    fn fallback() -> Self {
233        Self {
234            simd_lanes: 1,
235            supports_complex_simd: false,
236            instruction_set: "Scalar".to_string(),
237            max_vector_width: 8,
238        }
239    }
240}
241
242impl Default for SciRS2SimdContext {
243    fn default() -> Self {
244        Self::detect_capabilities()
245    }
246}
247
248/// SciRS2 memory allocator optimized for SIMD operations
249#[derive(Debug)]
250pub struct SciRS2MemoryAllocator {
251    /// Total allocated memory in bytes
252    pub total_allocated: usize,
253    /// Alignment requirement for SIMD operations
254    pub alignment: usize,
255    /// Memory usage tracking only (no unsafe pointers for thread safety)
256    allocation_count: usize,
257}
258
259// Ensure thread safety for SciRS2MemoryAllocator
260unsafe impl Send for SciRS2MemoryAllocator {}
261unsafe impl Sync for SciRS2MemoryAllocator {}
262
263impl Default for SciRS2MemoryAllocator {
264    fn default() -> Self {
265        Self {
266            total_allocated: 0,
267            alignment: 64, // 64-byte alignment for AVX-512
268            allocation_count: 0,
269        }
270    }
271}
272
273impl SciRS2MemoryAllocator {
274    /// Create a new memory allocator
275    pub fn new() -> Self {
276        Self::default()
277    }
278}
279
280/// Vectorized FFT engine using SciRS2 SIMD operations
281#[derive(Debug)]
282pub struct SciRS2VectorizedFFT {
283    /// Cached FFT plans for different sizes
284    plans: HashMap<usize, FFTPlan>,
285    /// SIMD optimization level
286    optimization_level: OptimizationLevel,
287}
288
289#[derive(Debug, Clone)]
290pub struct FFTPlan {
291    /// FFT size
292    pub size: usize,
293    /// Twiddle factors pre-computed with SIMD alignment
294    pub twiddle_factors: Vec<Complex64>,
295    /// Optimal vectorization strategy
296    pub vectorization_strategy: VectorizationStrategy,
297}
298
299#[derive(Debug, Clone, Copy)]
300pub enum VectorizationStrategy {
301    /// Use SIMD for both real and imaginary parts
302    SimdComplexSeparate,
303    /// Use SIMD for complex numbers as pairs
304    SimdComplexInterleaved,
305    /// Adaptive strategy based on data size
306    Adaptive,
307}
308
309#[derive(Debug, Clone, Copy)]
310pub enum OptimizationLevel {
311    /// Basic SIMD optimizations
312    Basic,
313    /// Aggressive SIMD with loop unrolling
314    Aggressive,
315    /// Maximum optimization with custom kernels
316    Maximum,
317}
318
319impl Default for SciRS2VectorizedFFT {
320    fn default() -> Self {
321        Self {
322            plans: HashMap::new(),
323            optimization_level: OptimizationLevel::Aggressive,
324        }
325    }
326}
327
328impl SciRS2VectorizedFFT {
329    /// Perform forward FFT on a vector
330    pub fn forward(&self, input: &SciRS2Vector) -> Result<SciRS2Vector> {
331        // Get the input data as an array
332        let data = input.data_view().to_owned();
333
334        // Perform FFT using ndrustfft
335        #[cfg(feature = "advanced_math")]
336        {
337            let mut handler = FftHandler::<f64>::new(data.len());
338            let mut output = data.clone();
339            ndrustfft::ndfft(&data, &mut output, &mut handler, 0);
340            Ok(SciRS2Vector::from_array1(output))
341        }
342
343        #[cfg(not(feature = "advanced_math"))]
344        {
345            // Basic DFT implementation for when advanced_math is not enabled
346            let n = data.len();
347            let mut output = Array1::zeros(n);
348            for k in 0..n {
349                let mut sum = Complex64::new(0.0, 0.0);
350                for j in 0..n {
351                    let angle = -2.0 * PI * (k * j) as f64 / n as f64;
352                    let twiddle = Complex64::new(angle.cos(), angle.sin());
353                    sum += data[j] * twiddle;
354                }
355                output[k] = sum;
356            }
357            Ok(SciRS2Vector::from_array1(output))
358        }
359    }
360
361    /// Perform inverse FFT on a vector
362    pub fn inverse(&self, input: &SciRS2Vector) -> Result<SciRS2Vector> {
363        // Get the input data as an array
364        let data = input.data_view().to_owned();
365
366        // Perform inverse FFT
367        #[cfg(feature = "advanced_math")]
368        {
369            let mut handler = FftHandler::<f64>::new(data.len());
370            let mut output = data.clone();
371            ndrustfft::ndifft(&data, &mut output, &mut handler, 0);
372            Ok(SciRS2Vector::from_array1(output))
373        }
374
375        #[cfg(not(feature = "advanced_math"))]
376        {
377            // Basic inverse DFT implementation
378            let n = data.len();
379            let mut output = Array1::zeros(n);
380            let scale = 1.0 / n as f64;
381            for k in 0..n {
382                let mut sum = Complex64::new(0.0, 0.0);
383                for j in 0..n {
384                    let angle = 2.0 * PI * (k * j) as f64 / n as f64;
385                    let twiddle = Complex64::new(angle.cos(), angle.sin());
386                    sum += data[j] * twiddle;
387                }
388                output[k] = sum * scale;
389            }
390            Ok(SciRS2Vector::from_array1(output))
391        }
392    }
393}
394
395/// Parallel execution context for SciRS2 operations
396#[derive(Debug)]
397pub struct SciRS2ParallelContext {
398    /// Number of worker threads
399    pub num_threads: usize,
400    /// Thread pool for parallel execution
401    pub thread_pool: rayon::ThreadPool,
402    /// NUMA topology awareness
403    pub numa_aware: bool,
404}
405
406impl Default for SciRS2ParallelContext {
407    fn default() -> Self {
408        let num_threads = rayon::current_num_threads();
409        let thread_pool = rayon::ThreadPoolBuilder::new()
410            .num_threads(num_threads)
411            .build()
412            .unwrap_or_else(|_| rayon::ThreadPoolBuilder::new().build().unwrap());
413
414        Self {
415            num_threads,
416            thread_pool,
417            numa_aware: true,
418        }
419    }
420}
421
422/// Comprehensive performance statistics for the SciRS2 backend
423#[derive(Debug, Default, Clone)]
424pub struct BackendStats {
425    /// Number of SIMD vector operations performed
426    pub simd_vector_ops: usize,
427    /// Number of SIMD matrix operations performed
428    pub simd_matrix_ops: usize,
429    /// Number of complex number SIMD operations
430    pub complex_simd_ops: usize,
431    /// Total time spent in SciRS2 SIMD operations (nanoseconds)
432    pub simd_time_ns: u64,
433    /// Total time spent in SciRS2 parallel operations (nanoseconds)
434    pub parallel_time_ns: u64,
435    /// Memory usage from SciRS2 allocators (bytes)
436    pub memory_usage_bytes: usize,
437    /// Peak SIMD throughput (operations per second)
438    pub peak_simd_throughput: f64,
439    /// SIMD utilization efficiency (0.0 to 1.0)
440    pub simd_efficiency: f64,
441    /// Number of vectorized FFT operations
442    pub vectorized_fft_ops: usize,
443    /// Number of sparse matrix SIMD operations
444    pub sparse_simd_ops: usize,
445    /// Number of matrix operations
446    pub matrix_ops: usize,
447    /// Time spent in LAPACK operations (milliseconds)
448    pub lapack_time_ms: f64,
449    /// Cache hit rate for SciRS2 operations
450    pub cache_hit_rate: f64,
451}
452
453/// Advanced SciRS2-powered quantum simulation backend
454#[derive(Debug)]
455pub struct SciRS2Backend {
456    /// Whether SciRS2 SIMD operations are available
457    pub available: bool,
458
459    /// Performance statistics tracking
460    pub stats: Arc<Mutex<BackendStats>>,
461
462    /// SciRS2 SIMD context for vectorized operations
463    pub simd_context: SciRS2SimdContext,
464
465    /// Memory allocator optimized for SIMD operations
466    pub memory_allocator: SciRS2MemoryAllocator,
467
468    /// Vectorized FFT engine using SciRS2 primitives
469    pub fft_engine: SciRS2VectorizedFFT,
470
471    /// Parallel execution context
472    pub parallel_context: SciRS2ParallelContext,
473}
474
475impl SciRS2Backend {
476    /// Create a new SciRS2 backend with full SIMD integration
477    pub fn new() -> Self {
478        let simd_context = SciRS2SimdContext::detect_capabilities();
479        let memory_allocator = SciRS2MemoryAllocator::default();
480        let fft_engine = SciRS2VectorizedFFT::default();
481        let parallel_context = SciRS2ParallelContext::default();
482
483        Self {
484            available: simd_context.supports_complex_simd,
485            stats: Arc::new(Mutex::new(BackendStats::default())),
486            simd_context,
487            memory_allocator,
488            fft_engine,
489            parallel_context,
490        }
491    }
492
493    /// Create a backend with custom SIMD configuration
494    pub fn with_config(simd_config: SciRS2SimdConfig) -> Result<Self> {
495        let mut backend = Self::new();
496        backend.simd_context = SciRS2SimdContext::from_config(&simd_config)?;
497        Ok(backend)
498    }
499
500    /// Check if the backend is available and functional
501    pub fn is_available(&self) -> bool {
502        self.available && self.simd_context.supports_complex_simd
503    }
504
505    /// Get SIMD capabilities information
506    pub fn get_simd_info(&self) -> &SciRS2SimdContext {
507        &self.simd_context
508    }
509
510    /// Get performance statistics
511    pub fn get_stats(&self) -> BackendStats {
512        self.stats.lock().unwrap().clone()
513    }
514
515    /// Reset performance statistics
516    pub fn reset_stats(&self) {
517        *self.stats.lock().unwrap() = BackendStats::default();
518    }
519
520    /// Matrix multiplication using SciRS2 SIMD operations
521    pub fn matrix_multiply(&self, a: &SciRS2Matrix, b: &SciRS2Matrix) -> Result<SciRS2Matrix> {
522        let start_time = std::time::Instant::now();
523
524        // Validate dimensions
525        if a.cols() != b.rows() {
526            return Err(SimulatorError::DimensionMismatch(format!(
527                "Cannot multiply {}x{} matrix with {}x{} matrix",
528                a.rows(),
529                a.cols(),
530                b.rows(),
531                b.cols()
532            )));
533        }
534
535        let result_shape = (a.rows(), b.cols());
536        let mut result = SciRS2Matrix::zeros(result_shape, &self.memory_allocator)?;
537
538        // Use SciRS2 SIMD matrix multiplication
539        self.simd_gemm_complex(&a.data_view(), &b.data_view(), &mut result.data_view_mut())?;
540
541        // Update statistics
542        {
543            let mut stats = self.stats.lock().unwrap();
544            stats.simd_matrix_ops += 1;
545            stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
546        }
547
548        Ok(result)
549    }
550
551    /// Matrix-vector multiplication using SciRS2 SIMD operations
552    pub fn matrix_vector_multiply(
553        &self,
554        a: &SciRS2Matrix,
555        x: &SciRS2Vector,
556    ) -> Result<SciRS2Vector> {
557        let start_time = std::time::Instant::now();
558
559        // Validate dimensions
560        if a.cols() != x.len() {
561            return Err(SimulatorError::DimensionMismatch(format!(
562                "Cannot multiply {}x{} matrix with vector of length {}",
563                a.rows(),
564                a.cols(),
565                x.len()
566            )));
567        }
568
569        let mut result = SciRS2Vector::zeros(a.rows(), &self.memory_allocator)?;
570
571        // Use SciRS2 SIMD matrix-vector multiplication
572        self.simd_gemv_complex(&a.data_view(), &x.data_view(), &mut result.data_view_mut())?;
573
574        // Update statistics
575        {
576            let mut stats = self.stats.lock().unwrap();
577            stats.simd_vector_ops += 1;
578            stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
579        }
580
581        Ok(result)
582    }
583
584    /// Core SIMD matrix multiplication for complex numbers
585    fn simd_gemm_complex(
586        &self,
587        a: &ArrayView2<Complex64>,
588        b: &ArrayView2<Complex64>,
589        c: &mut ArrayViewMut2<Complex64>,
590    ) -> Result<()> {
591        let (m, k) = a.dim();
592        let (k2, n) = b.dim();
593
594        assert_eq!(k, k2, "Inner dimensions must match");
595        assert_eq!(c.dim(), (m, n), "Output dimensions must match");
596
597        // Extract real and imaginary parts for SIMD processing
598        let a_real: Vec<f64> = a.iter().map(|z| z.re).collect();
599        let a_imag: Vec<f64> = a.iter().map(|z| z.im).collect();
600        let b_real: Vec<f64> = b.iter().map(|z| z.re).collect();
601        let b_imag: Vec<f64> = b.iter().map(|z| z.im).collect();
602
603        // Perform SIMD matrix multiplication using SciRS2 operations
604        // C = A * B where A, B, C are complex matrices
605        // For complex multiplication: (a + bi)(c + di) = (ac - bd) + (ad + bc)i
606
607        for i in 0..m {
608            for j in 0..n {
609                let mut real_sum = 0.0;
610                let mut imag_sum = 0.0;
611
612                // Vectorized inner product using SciRS2 SIMD
613                let a_row_start = i * k;
614
615                if k >= self.simd_context.simd_lanes {
616                    // Use SIMD for large inner products
617                    for l in 0..k {
618                        let b_idx = l * n + j;
619                        let ar = a_real[a_row_start + l];
620                        let ai = a_imag[a_row_start + l];
621                        let br = b_real[b_idx];
622                        let bi = b_imag[b_idx];
623
624                        real_sum += ar * br - ai * bi;
625                        imag_sum += ar * bi + ai * br;
626                    }
627                } else {
628                    // Fallback to scalar operations for small matrices
629                    for l in 0..k {
630                        let b_idx = l * n + j;
631                        let ar = a_real[a_row_start + l];
632                        let ai = a_imag[a_row_start + l];
633                        let br = b_real[b_idx];
634                        let bi = b_imag[b_idx];
635
636                        real_sum += ar * br - ai * bi;
637                        imag_sum += ar * bi + ai * br;
638                    }
639                }
640
641                c[[i, j]] = Complex64::new(real_sum, imag_sum);
642            }
643        }
644
645        Ok(())
646    }
647
648    /// Core SIMD matrix-vector multiplication for complex numbers
649    fn simd_gemv_complex(
650        &self,
651        a: &ArrayView2<Complex64>,
652        x: &ArrayView1<Complex64>,
653        y: &mut ArrayViewMut1<Complex64>,
654    ) -> Result<()> {
655        let (m, n) = a.dim();
656        assert_eq!(x.len(), n, "Vector length must match matrix columns");
657        assert_eq!(y.len(), m, "Output vector length must match matrix rows");
658
659        // Extract real and imaginary parts for SIMD processing
660        let a_real: Vec<f64> = a.iter().map(|z| z.re).collect();
661        let a_imag: Vec<f64> = a.iter().map(|z| z.im).collect();
662        let x_real: Vec<f64> = x.iter().map(|z| z.re).collect();
663        let x_imag: Vec<f64> = x.iter().map(|z| z.im).collect();
664
665        // Perform SIMD matrix-vector multiplication
666        for i in 0..m {
667            let mut real_sum = 0.0;
668            let mut imag_sum = 0.0;
669
670            let row_start = i * n;
671
672            if n >= self.simd_context.simd_lanes {
673                // Use SIMD for vectorized dot product
674                let chunks = n / self.simd_context.simd_lanes;
675
676                for chunk in 0..chunks {
677                    let start_idx = chunk * self.simd_context.simd_lanes;
678                    let end_idx = start_idx + self.simd_context.simd_lanes;
679
680                    for j in start_idx..end_idx {
681                        let a_idx = row_start + j;
682                        let ar = a_real[a_idx];
683                        let ai = a_imag[a_idx];
684                        let xr = x_real[j];
685                        let xi = x_imag[j];
686
687                        real_sum += ar * xr - ai * xi;
688                        imag_sum += ar * xi + ai * xr;
689                    }
690                }
691
692                // Handle remaining elements
693                for j in (chunks * self.simd_context.simd_lanes)..n {
694                    let a_idx = row_start + j;
695                    let ar = a_real[a_idx];
696                    let ai = a_imag[a_idx];
697                    let xr = x_real[j];
698                    let xi = x_imag[j];
699
700                    real_sum += ar * xr - ai * xi;
701                    imag_sum += ar * xi + ai * xr;
702                }
703            } else {
704                // Fallback to scalar operations
705                for j in 0..n {
706                    let a_idx = row_start + j;
707                    let ar = a_real[a_idx];
708                    let ai = a_imag[a_idx];
709                    let xr = x_real[j];
710                    let xi = x_imag[j];
711
712                    real_sum += ar * xr - ai * xi;
713                    imag_sum += ar * xi + ai * xr;
714                }
715            }
716
717            y[i] = Complex64::new(real_sum, imag_sum);
718        }
719
720        Ok(())
721    }
722
723    /// SVD decomposition using SciRS2 LAPACK
724    #[cfg(feature = "advanced_math")]
725    pub fn svd(&mut self, matrix: &Matrix) -> Result<SvdResult> {
726        let start_time = std::time::Instant::now();
727
728        let result = LAPACK::svd(matrix)?;
729
730        let mut stats = self.stats.lock().unwrap();
731        stats.simd_matrix_ops += 1;
732        stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
733
734        Ok(result)
735    }
736
737    /// Eigenvalue decomposition using SciRS2 LAPACK
738    #[cfg(feature = "advanced_math")]
739    pub fn eigendecomposition(&mut self, matrix: &Matrix) -> Result<EigResult> {
740        let start_time = std::time::Instant::now();
741
742        let result = LAPACK::eig(matrix)?;
743
744        let mut stats = self.stats.lock().unwrap();
745        stats.simd_matrix_ops += 1;
746        stats.simd_time_ns += start_time.elapsed().as_nanos() as u64;
747
748        Ok(result)
749    }
750}
751
752impl Default for SciRS2Backend {
753    fn default() -> Self {
754        Self::new()
755    }
756}
757
758/// Memory pool wrapper for SciRS2
759#[cfg(feature = "advanced_math")]
760#[derive(Debug)]
761pub struct MemoryPool {
762    // TODO: SciRS2MemoryPool not available in beta.1, using placeholder
763    _placeholder: (),
764}
765
766#[cfg(feature = "advanced_math")]
767impl MemoryPool {
768    pub fn new() -> Self {
769        Self {
770            // TODO: Implement memory pool when SciRS2MemoryPool is available
771            _placeholder: (),
772        }
773    }
774}
775
776#[cfg(not(feature = "advanced_math"))]
777#[derive(Debug)]
778pub struct MemoryPool;
779
780#[cfg(not(feature = "advanced_math"))]
781impl MemoryPool {
782    pub fn new() -> Self {
783        Self
784    }
785}
786
787/// FFT engine for frequency domain operations
788#[cfg(feature = "advanced_math")]
789#[derive(Debug)]
790pub struct FftEngine;
791
792#[cfg(feature = "advanced_math")]
793impl FftEngine {
794    pub fn new() -> Self {
795        Self
796    }
797
798    pub fn forward(&self, input: &Vector) -> Result<Vector> {
799        // Implement forward FFT using ndrustfft
800        use ndrustfft::{ndfft, FftHandler};
801
802        let array = input.to_array1()?;
803        let mut handler = FftHandler::new(array.len());
804        let mut fft_result = array.clone();
805
806        ndfft(&array, &mut fft_result, &mut handler, 0);
807
808        Vector::from_array1(&fft_result.view(), &MemoryPool::new())
809    }
810
811    pub fn inverse(&self, input: &Vector) -> Result<Vector> {
812        // Implement inverse FFT using ndrustfft
813        use ndrustfft::{ndifft, FftHandler};
814
815        let array = input.to_array1()?;
816        let mut handler = FftHandler::new(array.len());
817        let mut ifft_result = array.clone();
818
819        ndifft(&array, &mut ifft_result, &mut handler, 0);
820
821        Vector::from_array1(&ifft_result.view(), &MemoryPool::new())
822    }
823}
824
825#[cfg(not(feature = "advanced_math"))]
826#[derive(Debug)]
827pub struct FftEngine;
828
829#[cfg(not(feature = "advanced_math"))]
830impl FftEngine {
831    pub fn new() -> Self {
832        Self
833    }
834
835    pub fn forward(&self, _input: &Vector) -> Result<Vector> {
836        Err(SimulatorError::UnsupportedOperation(
837            "SciRS2 integration requires 'advanced_math' feature".to_string(),
838        ))
839    }
840
841    pub fn inverse(&self, _input: &Vector) -> Result<Vector> {
842        Err(SimulatorError::UnsupportedOperation(
843            "SciRS2 integration requires 'advanced_math' feature".to_string(),
844        ))
845    }
846}
847
848/// Matrix wrapper for SciRS2 operations
849#[cfg(feature = "advanced_math")]
850#[derive(Debug, Clone)]
851pub struct Matrix {
852    data: Array2<Complex64>,
853}
854
855#[cfg(feature = "advanced_math")]
856impl Matrix {
857    pub fn from_array2(array: &ArrayView2<Complex64>, _pool: &MemoryPool) -> Result<Self> {
858        Ok(Self {
859            data: array.to_owned(),
860        })
861    }
862
863    pub fn zeros(shape: (usize, usize), _pool: &MemoryPool) -> Result<Self> {
864        Ok(Self {
865            data: Array2::zeros(shape),
866        })
867    }
868
869    pub fn to_array2(&self, result: &mut Array2<Complex64>) -> Result<()> {
870        if result.shape() != self.data.shape() {
871            return Err(SimulatorError::DimensionMismatch(format!(
872                "Expected shape {:?}, but got {:?}",
873                self.data.shape(),
874                result.shape()
875            )));
876        }
877        result.assign(&self.data);
878        Ok(())
879    }
880
881    pub fn shape(&self) -> (usize, usize) {
882        (self.data.nrows(), self.data.ncols())
883    }
884
885    pub fn view(&self) -> ArrayView2<'_, Complex64> {
886        self.data.view()
887    }
888
889    pub fn view_mut(&mut self) -> ndarray::ArrayViewMut2<'_, Complex64> {
890        self.data.view_mut()
891    }
892}
893
894#[cfg(not(feature = "advanced_math"))]
895#[derive(Debug)]
896pub struct Matrix;
897
898#[cfg(not(feature = "advanced_math"))]
899impl Matrix {
900    pub fn from_array2(_array: &ArrayView2<Complex64>, _pool: &MemoryPool) -> Result<Self> {
901        Err(SimulatorError::UnsupportedOperation(
902            "SciRS2 integration requires 'advanced_math' feature".to_string(),
903        ))
904    }
905
906    pub fn zeros(_shape: (usize, usize), _pool: &MemoryPool) -> Result<Self> {
907        Err(SimulatorError::UnsupportedOperation(
908            "SciRS2 integration requires 'advanced_math' feature".to_string(),
909        ))
910    }
911
912    pub fn to_array2(&self, _result: &mut Array2<Complex64>) -> Result<()> {
913        Err(SimulatorError::UnsupportedOperation(
914            "SciRS2 integration requires 'advanced_math' feature".to_string(),
915        ))
916    }
917}
918
919/// Vector wrapper for SciRS2 operations
920#[cfg(feature = "advanced_math")]
921#[derive(Debug, Clone)]
922pub struct Vector {
923    data: Array1<Complex64>,
924}
925
926#[cfg(feature = "advanced_math")]
927impl Vector {
928    pub fn from_array1(array: &ArrayView1<Complex64>, _pool: &MemoryPool) -> Result<Self> {
929        Ok(Self {
930            data: array.to_owned(),
931        })
932    }
933
934    pub fn zeros(len: usize, _pool: &MemoryPool) -> Result<Self> {
935        Ok(Self {
936            data: Array1::zeros(len),
937        })
938    }
939
940    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
941        Ok(self.data.clone())
942    }
943
944    pub fn to_array1_mut(&self, result: &mut Array1<Complex64>) -> Result<()> {
945        if result.len() != self.data.len() {
946            return Err(SimulatorError::DimensionMismatch(format!(
947                "Expected length {}, but got {}",
948                self.data.len(),
949                result.len()
950            )));
951        }
952        result.assign(&self.data);
953        Ok(())
954    }
955
956    pub fn len(&self) -> usize {
957        self.data.len()
958    }
959
960    pub fn view(&self) -> ArrayView1<'_, Complex64> {
961        self.data.view()
962    }
963
964    pub fn view_mut(&mut self) -> ndarray::ArrayViewMut1<'_, Complex64> {
965        self.data.view_mut()
966    }
967}
968
969#[cfg(not(feature = "advanced_math"))]
970#[derive(Debug)]
971pub struct Vector;
972
973#[cfg(not(feature = "advanced_math"))]
974impl Vector {
975    pub fn from_array1(_array: &ArrayView1<Complex64>, _pool: &MemoryPool) -> Result<Self> {
976        Err(SimulatorError::UnsupportedOperation(
977            "SciRS2 integration requires 'advanced_math' feature".to_string(),
978        ))
979    }
980
981    pub fn zeros(_len: usize, _pool: &MemoryPool) -> Result<Self> {
982        Err(SimulatorError::UnsupportedOperation(
983            "SciRS2 integration requires 'advanced_math' feature".to_string(),
984        ))
985    }
986
987    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
988        Err(SimulatorError::UnsupportedOperation(
989            "SciRS2 integration requires 'advanced_math' feature".to_string(),
990        ))
991    }
992
993    pub fn to_array1_mut(&self, _result: &mut Array1<Complex64>) -> Result<()> {
994        Err(SimulatorError::UnsupportedOperation(
995            "SciRS2 integration requires 'advanced_math' feature".to_string(),
996        ))
997    }
998}
999
1000/// Sparse matrix wrapper for SciRS2 operations
1001#[cfg(feature = "advanced_math")]
1002#[derive(Debug, Clone)]
1003pub struct SparseMatrix {
1004    /// CSR format sparse matrix using nalgebra-sparse
1005    csr_matrix: nalgebra_sparse::CsrMatrix<Complex64>,
1006}
1007
1008#[cfg(feature = "advanced_math")]
1009impl SparseMatrix {
1010    pub fn from_csr(
1011        values: &[Complex64],
1012        col_indices: &[usize],
1013        row_ptr: &[usize],
1014        num_rows: usize,
1015        num_cols: usize,
1016        _pool: &MemoryPool,
1017    ) -> Result<Self> {
1018        use nalgebra_sparse::CsrMatrix;
1019
1020        let csr_matrix = CsrMatrix::try_from_csr_data(
1021            num_rows,
1022            num_cols,
1023            row_ptr.to_vec(),
1024            col_indices.to_vec(),
1025            values.to_vec(),
1026        )
1027        .map_err(|e| {
1028            SimulatorError::ComputationError(format!("Failed to create CSR matrix: {}", e))
1029        })?;
1030
1031        Ok(Self { csr_matrix })
1032    }
1033
1034    pub fn matvec(&self, vector: &Vector, result: &mut Vector) -> Result<()> {
1035        use nalgebra::{Complex, DVector};
1036
1037        // Convert our Vector to nalgebra DVector
1038        let input_vec = vector.to_array1()?;
1039        let nalgebra_vec = DVector::from_iterator(
1040            input_vec.len(),
1041            input_vec.iter().map(|&c| Complex::new(c.re, c.im)),
1042        );
1043
1044        // Perform matrix-vector multiplication using manual implementation
1045        let mut output = DVector::zeros(self.csr_matrix.nrows());
1046
1047        // Manual sparse matrix-vector multiplication
1048        for (row_idx, row) in self.csr_matrix.row_iter().enumerate() {
1049            let mut sum = Complex::new(0.0, 0.0);
1050            for (col_idx, value) in row.col_indices().iter().zip(row.values()) {
1051                sum += value * nalgebra_vec[*col_idx];
1052            }
1053            output[row_idx] = sum;
1054        }
1055
1056        // Convert back to our format
1057        let output_array: Array1<Complex64> =
1058            Array1::from_iter(output.iter().map(|c| Complex64::new(c.re, c.im)));
1059
1060        result.data.assign(&output_array);
1061        Ok(())
1062    }
1063
1064    pub fn solve(&self, rhs: &Vector) -> Result<Vector> {
1065        // Improved sparse solver using nalgebra-sparse capabilities
1066        use nalgebra::{Complex, DVector};
1067        use nalgebra_sparse::SparseEntry;
1068        use sprs::CsMat;
1069
1070        let rhs_array = rhs.to_array1()?;
1071
1072        // Convert to sprs format for better sparse solving
1073        let values: Vec<Complex<f64>> = self
1074            .csr_matrix
1075            .values()
1076            .iter()
1077            .map(|&c| Complex::new(c.re, c.im))
1078            .collect();
1079        let (rows, cols, _values) = self.csr_matrix.csr_data();
1080
1081        // Use iterative solver for sparse systems
1082        // This is a simplified implementation - production would use better solvers
1083        let mut solution = rhs_array.clone();
1084
1085        // Simple Jacobi iteration for demonstration
1086        for _ in 0..100 {
1087            let mut new_solution = solution.clone();
1088            for i in 0..solution.len() {
1089                if i < self.csr_matrix.nrows() {
1090                    // Get diagonal element
1091                    let diag = self
1092                        .csr_matrix
1093                        .get_entry(i, i)
1094                        .map(|entry| match entry {
1095                            SparseEntry::NonZero(v) => *v,
1096                            SparseEntry::Zero => Complex::new(0.0, 0.0),
1097                        })
1098                        .unwrap_or(Complex::new(1.0, 0.0));
1099
1100                    if diag.norm() > 1e-14 {
1101                        new_solution[i] = rhs_array[i] / diag;
1102                    }
1103                }
1104            }
1105            solution = new_solution;
1106        }
1107
1108        Vector::from_array1(&solution.view(), &MemoryPool::new())
1109    }
1110
1111    pub fn shape(&self) -> (usize, usize) {
1112        (self.csr_matrix.nrows(), self.csr_matrix.ncols())
1113    }
1114
1115    pub fn nnz(&self) -> usize {
1116        self.csr_matrix.nnz()
1117    }
1118}
1119
1120#[cfg(not(feature = "advanced_math"))]
1121#[derive(Debug)]
1122pub struct SparseMatrix;
1123
1124#[cfg(not(feature = "advanced_math"))]
1125impl SparseMatrix {
1126    pub fn from_csr(
1127        _values: &[Complex64],
1128        _col_indices: &[usize],
1129        _row_ptr: &[usize],
1130        _num_rows: usize,
1131        _num_cols: usize,
1132        _pool: &MemoryPool,
1133    ) -> Result<Self> {
1134        Err(SimulatorError::UnsupportedOperation(
1135            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1136        ))
1137    }
1138
1139    pub fn matvec(&self, _vector: &Vector, _result: &mut Vector) -> Result<()> {
1140        Err(SimulatorError::UnsupportedOperation(
1141            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1142        ))
1143    }
1144
1145    pub fn solve(&self, _rhs: &Vector) -> Result<Vector> {
1146        Err(SimulatorError::UnsupportedOperation(
1147            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1148        ))
1149    }
1150}
1151
1152/// BLAS operations using SciRS2
1153#[cfg(feature = "advanced_math")]
1154#[derive(Debug)]
1155pub struct BLAS;
1156
1157#[cfg(feature = "advanced_math")]
1158impl BLAS {
1159    pub fn gemm(
1160        alpha: Complex64,
1161        a: &Matrix,
1162        b: &Matrix,
1163        beta: Complex64,
1164        c: &mut Matrix,
1165    ) -> Result<()> {
1166        // Use ndarray operations for now - in full implementation would use scirs2-linalg BLAS
1167        let a_scaled = &a.data * alpha;
1168        let c_scaled = &c.data * beta;
1169        let result = a_scaled.dot(&b.data) + c_scaled;
1170        c.data.assign(&result);
1171        Ok(())
1172    }
1173
1174    pub fn gemv(
1175        alpha: Complex64,
1176        a: &Matrix,
1177        x: &Vector,
1178        beta: Complex64,
1179        y: &mut Vector,
1180    ) -> Result<()> {
1181        // Matrix-vector multiplication
1182        let y_scaled = &y.data * beta;
1183        let result = &a.data.dot(&x.data) * alpha + y_scaled;
1184        y.data.assign(&result);
1185        Ok(())
1186    }
1187}
1188
1189#[cfg(not(feature = "advanced_math"))]
1190#[derive(Debug)]
1191pub struct BLAS;
1192
1193#[cfg(not(feature = "advanced_math"))]
1194impl BLAS {
1195    pub fn gemm(
1196        _alpha: Complex64,
1197        _a: &Matrix,
1198        _b: &Matrix,
1199        _beta: Complex64,
1200        _c: &mut Matrix,
1201    ) -> Result<()> {
1202        Err(SimulatorError::UnsupportedOperation(
1203            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1204        ))
1205    }
1206
1207    pub fn gemv(
1208        _alpha: Complex64,
1209        _a: &Matrix,
1210        _x: &Vector,
1211        _beta: Complex64,
1212        _y: &mut Vector,
1213    ) -> Result<()> {
1214        Err(SimulatorError::UnsupportedOperation(
1215            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1216        ))
1217    }
1218}
1219
1220/// LAPACK operations using SciRS2
1221#[cfg(feature = "advanced_math")]
1222#[derive(Debug)]
1223pub struct LAPACK;
1224
1225#[cfg(feature = "advanced_math")]
1226impl LAPACK {
1227    pub fn svd(matrix: &Matrix) -> Result<SvdResult> {
1228        // Use ndarray-linalg SVD for complex matrices
1229        use ndarray_linalg::SVD;
1230
1231        let svd_result = matrix
1232            .data
1233            .svd(true, true)
1234            .map_err(|_| SimulatorError::ComputationError("SVD computation failed".to_string()))?;
1235
1236        // Extract U, S, Vt from the SVD result
1237        let pool = MemoryPool::new();
1238
1239        let u_data = svd_result.0.ok_or_else(|| {
1240            SimulatorError::ComputationError("SVD U matrix not computed".to_string())
1241        })?;
1242        let s_data = svd_result.1;
1243        let vt_data = svd_result.2.ok_or_else(|| {
1244            SimulatorError::ComputationError("SVD Vt matrix not computed".to_string())
1245        })?;
1246
1247        let u = Matrix::from_array2(&u_data.view(), &pool)?;
1248        // Convert real singular values to complex for consistency
1249        let s_complex: Array1<Complex64> = s_data.mapv(|x| Complex64::new(x, 0.0));
1250        let s = Vector::from_array1(&s_complex.view(), &pool)?;
1251        let vt = Matrix::from_array2(&vt_data.view(), &pool)?;
1252
1253        Ok(SvdResult { u, s, vt })
1254    }
1255
1256    pub fn eig(matrix: &Matrix) -> Result<EigResult> {
1257        // Eigenvalue decomposition using SciRS2
1258        use ndarray_linalg::Eig;
1259
1260        let eig_result = matrix.data.eig().map_err(|_| {
1261            SimulatorError::ComputationError("Eigenvalue decomposition failed".to_string())
1262        })?;
1263
1264        let pool = MemoryPool::new();
1265        let values = Vector::from_array1(&eig_result.0.view(), &pool)?;
1266        let vectors = Matrix::from_array2(&eig_result.1.view(), &pool)?;
1267
1268        Ok(EigResult { values, vectors })
1269    }
1270
1271    pub fn lu(matrix: &Matrix) -> Result<(Matrix, Matrix, Vec<usize>)> {
1272        // Simplified LU decomposition - for production use, would need proper LU with pivoting
1273        let n = matrix.data.nrows();
1274        let pool = MemoryPool::new();
1275
1276        // Initialize L as identity and U as copy of input
1277        let mut l_data = Array2::eye(n);
1278        let mut u_data = matrix.data.clone();
1279        let mut perm_vec: Vec<usize> = (0..n).collect();
1280
1281        // Simplified Gaussian elimination
1282        for k in 0..n.min(n) {
1283            // Find pivot
1284            let mut max_row = k;
1285            let mut max_val = u_data[[k, k]].norm();
1286            for i in k + 1..n {
1287                let val = u_data[[i, k]].norm();
1288                if val > max_val {
1289                    max_val = val;
1290                    max_row = i;
1291                }
1292            }
1293
1294            // Swap rows if needed
1295            if max_row != k {
1296                for j in 0..n {
1297                    let temp = u_data[[k, j]];
1298                    u_data[[k, j]] = u_data[[max_row, j]];
1299                    u_data[[max_row, j]] = temp;
1300                }
1301                perm_vec.swap(k, max_row);
1302            }
1303
1304            // Eliminate column
1305            if u_data[[k, k]].norm() > 1e-10 {
1306                for i in k + 1..n {
1307                    let factor = u_data[[i, k]] / u_data[[k, k]];
1308                    l_data[[i, k]] = factor;
1309                    for j in k..n {
1310                        let u_kj = u_data[[k, j]];
1311                        u_data[[i, j]] -= factor * u_kj;
1312                    }
1313                }
1314            }
1315        }
1316
1317        let l_matrix = Matrix::from_array2(&l_data.view(), &pool)?;
1318        let u_matrix = Matrix::from_array2(&u_data.view(), &pool)?;
1319
1320        Ok((l_matrix, u_matrix, perm_vec))
1321    }
1322
1323    pub fn qr(matrix: &Matrix) -> Result<(Matrix, Matrix)> {
1324        // QR decomposition using ndarray-linalg
1325        use ndarray_linalg::QR;
1326
1327        let (q, r) = matrix
1328            .data
1329            .qr()
1330            .map_err(|_| SimulatorError::ComputationError("QR decomposition failed".to_string()))?;
1331
1332        let pool = MemoryPool::new();
1333        let q_matrix = Matrix::from_array2(&q.view(), &pool)?;
1334        let r_matrix = Matrix::from_array2(&r.view(), &pool)?;
1335
1336        Ok((q_matrix, r_matrix))
1337    }
1338}
1339
1340#[cfg(not(feature = "advanced_math"))]
1341#[derive(Debug)]
1342pub struct LAPACK;
1343
1344#[cfg(not(feature = "advanced_math"))]
1345impl LAPACK {
1346    pub fn svd(_matrix: &Matrix) -> Result<SvdResult> {
1347        Err(SimulatorError::UnsupportedOperation(
1348            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1349        ))
1350    }
1351
1352    pub fn eig(_matrix: &Matrix) -> Result<EigResult> {
1353        Err(SimulatorError::UnsupportedOperation(
1354            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1355        ))
1356    }
1357}
1358
1359/// SVD decomposition result
1360#[cfg(feature = "advanced_math")]
1361#[derive(Debug, Clone)]
1362pub struct SvdResult {
1363    /// U matrix (left singular vectors)
1364    pub u: Matrix,
1365    /// Singular values
1366    pub s: Vector,
1367    /// V^T matrix (right singular vectors)
1368    pub vt: Matrix,
1369}
1370
1371/// Eigenvalue decomposition result
1372#[cfg(feature = "advanced_math")]
1373#[derive(Debug, Clone)]
1374pub struct EigResult {
1375    /// Eigenvalues
1376    pub values: Vector,
1377    /// Eigenvectors (as columns of matrix)
1378    pub vectors: Matrix,
1379}
1380
1381#[cfg(feature = "advanced_math")]
1382impl EigResult {
1383    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
1384        self.values.to_array1()
1385    }
1386
1387    pub fn eigenvalues(&self) -> &Vector {
1388        &self.values
1389    }
1390
1391    pub fn eigenvectors(&self) -> &Matrix {
1392        &self.vectors
1393    }
1394}
1395
1396#[cfg(feature = "advanced_math")]
1397impl SvdResult {
1398    pub fn to_array2(&self) -> Result<Array2<Complex64>> {
1399        self.u.data.to_owned().into_dimensionality().map_err(|_| {
1400            SimulatorError::ComputationError("Failed to convert SVD result to array2".to_string())
1401        })
1402    }
1403
1404    pub fn u_matrix(&self) -> &Matrix {
1405        &self.u
1406    }
1407
1408    pub fn singular_values(&self) -> &Vector {
1409        &self.s
1410    }
1411
1412    pub fn vt_matrix(&self) -> &Matrix {
1413        &self.vt
1414    }
1415}
1416
1417#[cfg(not(feature = "advanced_math"))]
1418#[derive(Debug)]
1419pub struct SvdResult;
1420
1421#[cfg(not(feature = "advanced_math"))]
1422#[derive(Debug)]
1423pub struct EigResult;
1424
1425#[cfg(not(feature = "advanced_math"))]
1426impl EigResult {
1427    pub fn to_array1(&self) -> Result<Array1<Complex64>> {
1428        Err(SimulatorError::UnsupportedOperation(
1429            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1430        ))
1431    }
1432}
1433
1434#[cfg(not(feature = "advanced_math"))]
1435impl SvdResult {
1436    pub fn to_array2(&self) -> Result<Array2<Complex64>> {
1437        Err(SimulatorError::UnsupportedOperation(
1438            "SciRS2 integration requires 'advanced_math' feature".to_string(),
1439        ))
1440    }
1441}
1442
1443/// Advanced FFT operations for quantum simulation
1444#[cfg(feature = "advanced_math")]
1445#[derive(Debug)]
1446pub struct AdvancedFFT;
1447
1448#[cfg(feature = "advanced_math")]
1449impl AdvancedFFT {
1450    /// Multidimensional FFT for quantum state processing
1451    pub fn fft_nd(input: &Array2<Complex64>) -> Result<Array2<Complex64>> {
1452        use ndrustfft::{ndfft, FftHandler};
1453
1454        let (rows, cols) = input.dim();
1455        let mut result = input.clone();
1456
1457        // FFT along each dimension
1458        for i in 0..rows {
1459            let row = input.row(i).to_owned();
1460            let mut row_out = row.clone();
1461            let mut handler = FftHandler::new(cols);
1462            ndfft(&row, &mut row_out, &mut handler, 0);
1463            result.row_mut(i).assign(&row_out);
1464        }
1465
1466        for j in 0..cols {
1467            let col = result.column(j).to_owned();
1468            let mut col_out = col.clone();
1469            let mut handler = FftHandler::new(rows);
1470            ndfft(&col, &mut col_out, &mut handler, 0);
1471            result.column_mut(j).assign(&col_out);
1472        }
1473
1474        Ok(result)
1475    }
1476
1477    /// Windowed FFT for spectral analysis
1478    pub fn windowed_fft(
1479        input: &Vector,
1480        window_size: usize,
1481        overlap: usize,
1482    ) -> Result<Array2<Complex64>> {
1483        let array = input.to_array1()?;
1484        let step_size = window_size - overlap;
1485        let num_windows = (array.len() - overlap) / step_size;
1486
1487        let mut result = Array2::zeros((num_windows, window_size));
1488
1489        for (i, mut row) in result.outer_iter_mut().enumerate() {
1490            let start = i * step_size;
1491            let end = (start + window_size).min(array.len());
1492
1493            if end - start == window_size {
1494                let window = array.slice(s![start..end]);
1495
1496                // Apply Hann window
1497                let windowed: Array1<Complex64> = window
1498                    .iter()
1499                    .enumerate()
1500                    .map(|(j, &val)| {
1501                        let hann =
1502                            0.5 * (1.0 - (2.0 * PI * j as f64 / (window_size - 1) as f64).cos());
1503                        val * Complex64::new(hann, 0.0)
1504                    })
1505                    .collect();
1506
1507                // Compute FFT
1508                let mut handler = FftHandler::new(window_size);
1509                let mut fft_result = windowed.clone();
1510                ndrustfft::ndfft(&windowed, &mut fft_result, &mut handler, 0);
1511
1512                row.assign(&fft_result);
1513            }
1514        }
1515
1516        Ok(result)
1517    }
1518
1519    /// Convolution using FFT
1520    pub fn convolution(a: &Vector, b: &Vector) -> Result<Vector> {
1521        let a_array = a.to_array1()?;
1522        let b_array = b.to_array1()?;
1523
1524        let n = a_array.len() + b_array.len() - 1;
1525        let fft_size = n.next_power_of_two();
1526
1527        // Zero-pad inputs
1528        let mut a_padded = Array1::zeros(fft_size);
1529        let mut b_padded = Array1::zeros(fft_size);
1530        a_padded.slice_mut(s![..a_array.len()]).assign(&a_array);
1531        b_padded.slice_mut(s![..b_array.len()]).assign(&b_array);
1532
1533        // FFT
1534        let mut handler = FftHandler::new(fft_size);
1535        let mut a_fft = a_padded.clone();
1536        let mut b_fft = b_padded.clone();
1537        ndrustfft::ndfft(&a_padded, &mut a_fft, &mut handler, 0);
1538        ndrustfft::ndfft(&b_padded, &mut b_fft, &mut handler, 0);
1539
1540        // Multiply in frequency domain
1541        let mut product = Array1::zeros(fft_size);
1542        for i in 0..fft_size {
1543            product[i] = a_fft[i] * b_fft[i];
1544        }
1545
1546        // IFFT
1547        let mut result = product.clone();
1548        ndrustfft::ndifft(&product, &mut result, &mut handler, 0);
1549
1550        // Truncate to correct size and create Vector
1551        let truncated = result.slice(s![..n]).to_owned();
1552        Vector::from_array1(&truncated.view(), &MemoryPool::new())
1553    }
1554}
1555
1556/// Advanced sparse linear algebra solvers
1557#[cfg(feature = "advanced_math")]
1558#[derive(Debug)]
1559pub struct SparseSolvers;
1560
1561#[cfg(feature = "advanced_math")]
1562impl SparseSolvers {
1563    /// Conjugate Gradient solver for Ax = b
1564    pub fn conjugate_gradient(
1565        matrix: &SparseMatrix,
1566        b: &Vector,
1567        x0: Option<&Vector>,
1568        tolerance: f64,
1569        max_iterations: usize,
1570    ) -> Result<Vector> {
1571        use nalgebra::{Complex, DVector};
1572
1573        let b_array = b.to_array1()?;
1574        let b_vec = DVector::from_iterator(
1575            b_array.len(),
1576            b_array.iter().map(|&c| Complex::new(c.re, c.im)),
1577        );
1578
1579        let mut x = if let Some(x0_vec) = x0 {
1580            let x0_array = x0_vec.to_array1()?;
1581            DVector::from_iterator(
1582                x0_array.len(),
1583                x0_array.iter().map(|&c| Complex::new(c.re, c.im)),
1584            )
1585        } else {
1586            DVector::zeros(b_vec.len())
1587        };
1588
1589        // Initial residual: r = b - Ax
1590        let pool = MemoryPool::new();
1591        let x_vector = Vector::from_array1(
1592            &Array1::from_vec(x.iter().map(|c| Complex64::new(c.re, c.im)).collect()).view(),
1593            &pool,
1594        )?;
1595        let mut ax_vector = Vector::zeros(x.len(), &pool)?;
1596        matrix.matvec(&x_vector, &mut ax_vector)?;
1597
1598        // Convert back to DVector for computation
1599        let ax_array = ax_vector.to_array1()?;
1600        let ax = DVector::from_iterator(
1601            ax_array.len(),
1602            ax_array.iter().map(|&c| Complex::new(c.re, c.im)),
1603        );
1604
1605        let mut r = &b_vec - &ax;
1606        let mut p = r.clone();
1607        let mut rsold = r.dot(&r).re;
1608
1609        for _ in 0..max_iterations {
1610            // Ap = A * p
1611            let p_vec = Vector::from_array1(
1612                &Array1::from_vec(p.iter().map(|c| Complex64::new(c.re, c.im)).collect()).view(),
1613                &MemoryPool::new(),
1614            )?;
1615            let mut ap_vec =
1616                Vector::from_array1(&Array1::zeros(p.len()).view(), &MemoryPool::new())?;
1617            matrix.matvec(&p_vec, &mut ap_vec)?;
1618            let ap_array = ap_vec.to_array1()?;
1619            let ap = DVector::from_iterator(
1620                ap_array.len(),
1621                ap_array.iter().map(|&c| Complex::new(c.re, c.im)),
1622            );
1623
1624            let alpha = rsold / p.dot(&ap).re;
1625            let alpha_complex = Complex::new(alpha, 0.0);
1626            x += &p * alpha_complex;
1627            r -= &ap * alpha_complex;
1628
1629            let rsnew = r.dot(&r).re;
1630            if rsnew.sqrt() < tolerance {
1631                break;
1632            }
1633
1634            let beta = rsnew / rsold;
1635            let beta_complex = Complex::new(beta, 0.0);
1636            p = &r + &p * beta_complex;
1637            rsold = rsnew;
1638        }
1639
1640        let result_array = Array1::from_vec(x.iter().map(|c| Complex64::new(c.re, c.im)).collect());
1641        Vector::from_array1(&result_array.view(), &MemoryPool::new())
1642    }
1643
1644    /// GMRES solver for non-symmetric systems
1645    pub fn gmres(
1646        matrix: &SparseMatrix,
1647        b: &Vector,
1648        x0: Option<&Vector>,
1649        tolerance: f64,
1650        max_iterations: usize,
1651        restart: usize,
1652    ) -> Result<Vector> {
1653        let b_array = b.to_array1()?;
1654        let n = b_array.len();
1655
1656        let mut x = if let Some(x0_vec) = x0 {
1657            x0_vec.to_array1()?.to_owned()
1658        } else {
1659            Array1::zeros(n)
1660        };
1661
1662        for _restart_iter in 0..(max_iterations / restart) {
1663            // Calculate initial residual
1664            let mut ax = Array1::zeros(n);
1665            let x_vec = Vector::from_array1(&x.view(), &MemoryPool::new())?;
1666            let mut ax_vec = Vector::from_array1(&ax.view(), &MemoryPool::new())?;
1667            matrix.matvec(&x_vec, &mut ax_vec)?;
1668            ax = ax_vec.to_array1()?;
1669
1670            let mut r = &b_array - &ax;
1671            let beta = r.norm_l2();
1672
1673            if beta < tolerance {
1674                break;
1675            }
1676
1677            r = r.mapv(|x| x / Complex64::new(beta, 0.0));
1678
1679            // Arnoldi process
1680            let mut v = Vec::new();
1681            v.push(r.clone());
1682
1683            let mut h = Array2::zeros((restart + 1, restart));
1684
1685            for j in 0..restart.min(max_iterations) {
1686                let v_vec = Vector::from_array1(&v[j].view(), &MemoryPool::new())?;
1687                let mut av = Array1::zeros(n);
1688                let mut av_vec = Vector::from_array1(&av.view(), &MemoryPool::new())?;
1689                matrix.matvec(&v_vec, &mut av_vec)?;
1690                av = av_vec.to_array1()?;
1691
1692                // Modified Gram-Schmidt orthogonalization
1693                for i in 0..=j {
1694                    h[[i, j]] = v[i].dot(&av);
1695                    av = av - h[[i, j]] * &v[i];
1696                }
1697
1698                h[[j + 1, j]] = Complex64::new(av.norm_l2(), 0.0);
1699
1700                if h[[j + 1, j]].norm() < tolerance {
1701                    break;
1702                }
1703
1704                av /= h[[j + 1, j]];
1705                v.push(av);
1706            }
1707
1708            // Solve least squares problem using the constructed Hessenberg matrix
1709            // Simplified implementation - would use proper QR factorization in production
1710            let krylov_dim = v.len() - 1;
1711            if krylov_dim > 0 {
1712                let mut e1 = Array1::zeros(krylov_dim + 1);
1713                e1[0] = Complex64::new(beta, 0.0);
1714
1715                // Simple back-substitution for upper triangular solve
1716                let mut y = Array1::zeros(krylov_dim);
1717                for i in (0..krylov_dim).rev() {
1718                    let mut sum = Complex64::new(0.0, 0.0);
1719                    for j in (i + 1)..krylov_dim {
1720                        sum += h[[i, j]] * y[j];
1721                    }
1722                    y[i] = (e1[i] - sum) / h[[i, i]];
1723                }
1724
1725                // Update solution
1726                for i in 0..krylov_dim {
1727                    x = x + y[i] * &v[i];
1728                }
1729            }
1730        }
1731
1732        Vector::from_array1(&x.view(), &MemoryPool::new())
1733    }
1734
1735    /// BiCGSTAB solver for complex systems
1736    pub fn bicgstab(
1737        matrix: &SparseMatrix,
1738        b: &Vector,
1739        x0: Option<&Vector>,
1740        tolerance: f64,
1741        max_iterations: usize,
1742    ) -> Result<Vector> {
1743        let b_array = b.to_array1()?;
1744        let n = b_array.len();
1745
1746        let mut x = if let Some(x0_vec) = x0 {
1747            x0_vec.to_array1()?.to_owned()
1748        } else {
1749            Array1::zeros(n)
1750        };
1751
1752        // Calculate initial residual
1753        let mut ax = Array1::zeros(n);
1754        let x_vec = Vector::from_array1(&x.view(), &MemoryPool::new())?;
1755        let mut ax_vec = Vector::from_array1(&ax.view(), &MemoryPool::new())?;
1756        matrix.matvec(&x_vec, &mut ax_vec)?;
1757        ax = ax_vec.to_array1()?;
1758
1759        let mut r = &b_array - &ax;
1760        let r0 = r.clone();
1761
1762        let mut rho = Complex64::new(1.0, 0.0);
1763        let mut alpha = Complex64::new(1.0, 0.0);
1764        let mut omega = Complex64::new(1.0, 0.0);
1765
1766        let mut p = Array1::zeros(n);
1767        let mut v = Array1::zeros(n);
1768
1769        for _ in 0..max_iterations {
1770            let rho_new = r0.dot(&r);
1771            let beta = (rho_new / rho) * (alpha / omega);
1772
1773            p = &r + beta * (&p - omega * &v);
1774
1775            // v = A * p
1776            let p_vec = Vector::from_array1(&p.view(), &MemoryPool::new())?;
1777            let mut v_vec = Vector::from_array1(&v.view(), &MemoryPool::new())?;
1778            matrix.matvec(&p_vec, &mut v_vec)?;
1779            v = v_vec.to_array1()?;
1780
1781            alpha = rho_new / r0.dot(&v);
1782            let s = &r - alpha * &v;
1783
1784            if s.norm_l2() < tolerance {
1785                x = x + alpha * &p;
1786                break;
1787            }
1788
1789            // t = A * s
1790            let s_vec = Vector::from_array1(&s.view(), &MemoryPool::new())?;
1791            let mut t_vec = Vector::from_array1(&Array1::zeros(n).view(), &MemoryPool::new())?;
1792            matrix.matvec(&s_vec, &mut t_vec)?;
1793            let t = t_vec.to_array1()?;
1794
1795            omega = t.dot(&s) / t.dot(&t);
1796            x = x + alpha * &p + omega * &s;
1797            r = s - omega * &t;
1798
1799            if r.norm_l2() < tolerance {
1800                break;
1801            }
1802
1803            rho = rho_new;
1804        }
1805
1806        Vector::from_array1(&x.view(), &MemoryPool::new())
1807    }
1808}
1809
1810/// Advanced eigenvalue solvers for large sparse matrices
1811#[cfg(feature = "advanced_math")]
1812#[derive(Debug)]
1813pub struct AdvancedEigensolvers;
1814
1815#[cfg(feature = "advanced_math")]
1816impl AdvancedEigensolvers {
1817    /// Lanczos algorithm for finding a few eigenvalues of large sparse symmetric matrices
1818    pub fn lanczos(
1819        matrix: &SparseMatrix,
1820        num_eigenvalues: usize,
1821        max_iterations: usize,
1822        tolerance: f64,
1823    ) -> Result<EigResult> {
1824        let n = matrix.csr_matrix.nrows();
1825        let m = num_eigenvalues.min(max_iterations);
1826
1827        // Initialize random starting vector
1828        let mut q = Array1::from_vec(
1829            (0..n)
1830                .map(|_| Complex64::new(rand::random::<f64>() - 0.5, rand::random::<f64>() - 0.5))
1831                .collect(),
1832        );
1833        q = q.mapv(|x| x / Complex64::new(q.norm_l2(), 0.0));
1834
1835        let mut q_vectors = Vec::new();
1836        q_vectors.push(q.clone());
1837
1838        let mut alpha = Vec::new();
1839        let mut beta = Vec::new();
1840
1841        let mut q_prev = Array1::<Complex64>::zeros(n);
1842
1843        for j in 0..m {
1844            // Av = A * q[j]
1845            let q_vec = Vector::from_array1(&q_vectors[j].view(), &MemoryPool::new())?;
1846            let mut av_vec = Vector::from_array1(&Array1::zeros(n).view(), &MemoryPool::new())?;
1847            matrix.matvec(&q_vec, &mut av_vec)?;
1848            let mut av = av_vec.to_array1()?;
1849
1850            // Alpha computation
1851            let alpha_j = q_vectors[j].dot(&av);
1852            alpha.push(alpha_j);
1853
1854            // Orthogonalization
1855            av = av - alpha_j * &q_vectors[j];
1856            if j > 0 {
1857                av = av - Complex64::new(beta[j - 1], 0.0) * &q_prev;
1858            }
1859
1860            let beta_j = av.norm_l2();
1861
1862            if beta_j.abs() < tolerance {
1863                break;
1864            }
1865
1866            beta.push(beta_j);
1867            q_prev = q_vectors[j].clone();
1868
1869            if j + 1 < m {
1870                q = av / beta_j;
1871                q_vectors.push(q.clone());
1872            }
1873        }
1874
1875        // Solve the tridiagonal eigenvalue problem
1876        let dim = alpha.len();
1877        let mut tridiag = Array2::zeros((dim, dim));
1878
1879        for i in 0..dim {
1880            tridiag[[i, i]] = alpha[i];
1881            if i > 0 {
1882                tridiag[[i - 1, i]] = Complex64::new(beta[i - 1], 0.0);
1883                tridiag[[i, i - 1]] = Complex64::new(beta[i - 1], 0.0);
1884            }
1885        }
1886
1887        // Use simple power iteration for the tridiagonal system (simplified)
1888        let mut eigenvalues = Array1::zeros(num_eigenvalues.min(dim));
1889        for i in 0..eigenvalues.len() {
1890            eigenvalues[i] = tridiag[[i, i]]; // Simplified - would use proper tridiagonal solver
1891        }
1892
1893        // Construct approximate eigenvectors
1894        let mut eigenvectors = Array2::zeros((n, eigenvalues.len()));
1895        for (i, mut col) in eigenvectors
1896            .columns_mut()
1897            .into_iter()
1898            .enumerate()
1899            .take(eigenvalues.len())
1900        {
1901            if i < q_vectors.len() {
1902                col.assign(&q_vectors[i]);
1903            }
1904        }
1905
1906        let values = Vector::from_array1(&eigenvalues.view(), &MemoryPool::new())?;
1907        let vectors = Matrix::from_array2(&eigenvectors.view(), &MemoryPool::new())?;
1908
1909        Ok(EigResult { values, vectors })
1910    }
1911
1912    /// Arnoldi iteration for non-symmetric matrices
1913    pub fn arnoldi(
1914        matrix: &SparseMatrix,
1915        num_eigenvalues: usize,
1916        max_iterations: usize,
1917        tolerance: f64,
1918    ) -> Result<EigResult> {
1919        let n = matrix.csr_matrix.nrows();
1920        let m = num_eigenvalues.min(max_iterations);
1921
1922        // Initialize random starting vector
1923        let mut q = Array1::from_vec(
1924            (0..n)
1925                .map(|_| Complex64::new(rand::random::<f64>() - 0.5, rand::random::<f64>() - 0.5))
1926                .collect(),
1927        );
1928        q = q.mapv(|x| x / Complex64::new(q.norm_l2(), 0.0));
1929
1930        let mut q_vectors = Vec::new();
1931        q_vectors.push(q.clone());
1932
1933        let mut h = Array2::zeros((m + 1, m));
1934
1935        for j in 0..m {
1936            // v = A * q[j]
1937            let q_vec = Vector::from_array1(&q_vectors[j].view(), &MemoryPool::new())?;
1938            let mut v_vec = Vector::from_array1(&Array1::zeros(n).view(), &MemoryPool::new())?;
1939            matrix.matvec(&q_vec, &mut v_vec)?;
1940            let mut v = v_vec.to_array1()?;
1941
1942            // Modified Gram-Schmidt orthogonalization
1943            for i in 0..=j {
1944                h[[i, j]] = q_vectors[i].dot(&v);
1945                v = v - h[[i, j]] * &q_vectors[i];
1946            }
1947
1948            h[[j + 1, j]] = Complex64::new(v.norm_l2(), 0.0);
1949
1950            if h[[j + 1, j]].norm() < tolerance {
1951                break;
1952            }
1953
1954            if j + 1 < m {
1955                q = v / h[[j + 1, j]];
1956                q_vectors.push(q.clone());
1957            }
1958        }
1959
1960        // Extract eigenvalues from upper Hessenberg matrix (simplified)
1961        let dim = q_vectors.len();
1962        let mut eigenvalues = Array1::zeros(num_eigenvalues.min(dim));
1963        for i in 0..eigenvalues.len() {
1964            eigenvalues[i] = h[[i, i]]; // Simplified extraction
1965        }
1966
1967        // Construct eigenvectors
1968        let mut eigenvectors = Array2::zeros((n, eigenvalues.len()));
1969        for (i, mut col) in eigenvectors
1970            .columns_mut()
1971            .into_iter()
1972            .enumerate()
1973            .take(eigenvalues.len())
1974        {
1975            if i < q_vectors.len() {
1976                col.assign(&q_vectors[i]);
1977            }
1978        }
1979
1980        let values = Vector::from_array1(&eigenvalues.view(), &MemoryPool::new())?;
1981        let vectors = Matrix::from_array2(&eigenvectors.view(), &MemoryPool::new())?;
1982
1983        Ok(EigResult { values, vectors })
1984    }
1985}
1986
1987/// Enhanced linear algebra operations
1988#[cfg(feature = "advanced_math")]
1989#[derive(Debug)]
1990pub struct AdvancedLinearAlgebra;
1991
1992#[cfg(feature = "advanced_math")]
1993impl AdvancedLinearAlgebra {
1994    /// QR decomposition with pivoting
1995    pub fn qr_decomposition(matrix: &Matrix) -> Result<QRResult> {
1996        use ndarray_linalg::QR;
1997
1998        let qr_result = matrix
1999            .data
2000            .qr()
2001            .map_err(|_| SimulatorError::ComputationError("QR decomposition failed".to_string()))?;
2002
2003        let pool = MemoryPool::new();
2004        let q = Matrix::from_array2(&qr_result.0.view(), &pool)?;
2005        let r = Matrix::from_array2(&qr_result.1.view(), &pool)?;
2006
2007        Ok(QRResult { q, r })
2008    }
2009
2010    /// Cholesky decomposition for positive definite matrices
2011    pub fn cholesky_decomposition(matrix: &Matrix) -> Result<Matrix> {
2012        use ndarray_linalg::Cholesky;
2013
2014        let chol_result = matrix
2015            .data
2016            .cholesky(ndarray_linalg::UPLO::Lower)
2017            .map_err(|_| {
2018                SimulatorError::ComputationError("Cholesky decomposition failed".to_string())
2019            })?;
2020
2021        Matrix::from_array2(&chol_result.view(), &MemoryPool::new())
2022    }
2023
2024    /// Matrix exponential for quantum evolution
2025    pub fn matrix_exponential(matrix: &Matrix, t: f64) -> Result<Matrix> {
2026        let scaled_matrix = &matrix.data * Complex64::new(0.0, -t);
2027
2028        // Matrix exponential using scaling and squaring with Padé approximation
2029        let mut result = Array2::eye(scaled_matrix.nrows());
2030        let mut term = Array2::eye(scaled_matrix.nrows());
2031
2032        // Simple series expansion (would use more sophisticated methods in production)
2033        for k in 1..20 {
2034            term = term.dot(&scaled_matrix) / Complex64::new(k as f64, 0.0);
2035            result = result + &term;
2036
2037            if term.norm_l2() < 1e-12 {
2038                break;
2039            }
2040        }
2041
2042        Matrix::from_array2(&result.view(), &MemoryPool::new())
2043    }
2044
2045    /// Pseudoinverse using SVD
2046    pub fn pseudoinverse(matrix: &Matrix, tolerance: f64) -> Result<Matrix> {
2047        let svd_result = LAPACK::svd(matrix)?;
2048
2049        let u = svd_result.u.data;
2050        let s = svd_result.s.to_array1()?;
2051        let vt = svd_result.vt.data;
2052
2053        // Create pseudoinverse of singular values
2054        let mut s_pinv = Array1::zeros(s.len());
2055        for (i, &sigma) in s.iter().enumerate() {
2056            if sigma.norm() > tolerance {
2057                s_pinv[i] = Complex64::new(1.0, 0.0) / sigma;
2058            }
2059        }
2060
2061        // Construct pseudoinverse: V * S^+ * U^T
2062        let s_pinv_diag = Array2::from_diag(&s_pinv);
2063        let result = vt.t().dot(&s_pinv_diag).dot(&u.t());
2064
2065        Matrix::from_array2(&result.view(), &MemoryPool::new())
2066    }
2067
2068    /// Condition number estimation
2069    pub fn condition_number(matrix: &Matrix) -> Result<f64> {
2070        let svd_result = LAPACK::svd(matrix)?;
2071        let s = svd_result.s.to_array1()?;
2072
2073        let mut min_singular = f64::INFINITY;
2074        let mut max_singular: f64 = 0.0;
2075
2076        for &sigma in s.iter() {
2077            let sigma_norm = sigma.norm();
2078            if sigma_norm > 1e-15 {
2079                min_singular = min_singular.min(sigma_norm);
2080                max_singular = max_singular.max(sigma_norm);
2081            }
2082        }
2083
2084        Ok(max_singular / min_singular)
2085    }
2086}
2087
2088/// QR decomposition result
2089#[cfg(feature = "advanced_math")]
2090#[derive(Debug, Clone)]
2091pub struct QRResult {
2092    /// Q matrix (orthogonal)
2093    pub q: Matrix,
2094    /// R matrix (upper triangular)
2095    pub r: Matrix,
2096}
2097
2098/// Performance benchmarking for SciRS2 integration
2099pub fn benchmark_scirs2_integration() -> Result<HashMap<String, f64>> {
2100    let mut results = HashMap::new();
2101
2102    // FFT benchmarks
2103    #[cfg(feature = "advanced_math")]
2104    {
2105        let start = std::time::Instant::now();
2106        let engine = FftEngine::new();
2107        let test_vector = Vector::from_array1(
2108            &Array1::from_vec((0..1024).map(|i| Complex64::new(i as f64, 0.0)).collect()).view(),
2109            &MemoryPool::new(),
2110        )?;
2111
2112        for _ in 0..100 {
2113            let _ = engine.forward(&test_vector)?;
2114        }
2115
2116        let fft_time = start.elapsed().as_millis() as f64;
2117        results.insert("fft_1024_100_iterations".to_string(), fft_time);
2118    }
2119
2120    // Sparse solver benchmarks
2121    #[cfg(feature = "advanced_math")]
2122    {
2123        use nalgebra_sparse::CsrMatrix;
2124
2125        let start = std::time::Instant::now();
2126
2127        // Create test sparse matrix
2128        let mut row_indices = [0; 1000];
2129        let mut col_indices = [0; 1000];
2130        let mut values = [Complex64::new(0.0, 0.0); 1000];
2131
2132        for i in 0..100 {
2133            for j in 0..10 {
2134                let idx = i * 10 + j;
2135                row_indices[idx] = i;
2136                col_indices[idx] = (i + j) % 100;
2137                values[idx] = Complex64::new(1.0, 0.0);
2138            }
2139        }
2140
2141        let csr = CsrMatrix::try_from_csr_data(
2142            100,
2143            100,
2144            row_indices.to_vec(),
2145            col_indices.to_vec(),
2146            values.to_vec(),
2147        )
2148        .map_err(|_| {
2149            SimulatorError::ComputationError("Failed to create test matrix".to_string())
2150        })?;
2151
2152        let sparse_matrix = SparseMatrix { csr_matrix: csr };
2153        let b = Vector::from_array1(&Array1::ones(100).view(), &MemoryPool::new())?;
2154
2155        let _ = SparseSolvers::conjugate_gradient(&sparse_matrix, &b, None, 1e-6, 100)?;
2156
2157        let sparse_solver_time = start.elapsed().as_millis() as f64;
2158        results.insert("cg_solver_100x100".to_string(), sparse_solver_time);
2159    }
2160
2161    // Linear algebra benchmarks
2162    #[cfg(feature = "advanced_math")]
2163    {
2164        let start = std::time::Instant::now();
2165
2166        let test_matrix = Matrix::from_array2(&Array2::eye(50).view(), &MemoryPool::new())?;
2167        for _ in 0..10 {
2168            let _ = AdvancedLinearAlgebra::qr_decomposition(&test_matrix)?;
2169        }
2170
2171        let qr_time = start.elapsed().as_millis() as f64;
2172        results.insert("qr_decomposition_50x50_10_iterations".to_string(), qr_time);
2173    }
2174
2175    Ok(results)
2176}