quantrs2_sim/
quantum_supremacy.rs

1//! Quantum supremacy verification algorithms and benchmarks.
2//!
3//! This module implements various algorithms and statistical tests for verifying
4//! quantum supremacy claims, including cross-entropy benchmarking, Porter-Thomas
5//! distribution analysis, and linear cross-entropy benchmarking (Linear XEB).
6
7use ndarray::{Array1, Array2, ArrayView1};
8use num_complex::Complex64;
9use rand::{Rng, SeedableRng};
10use rand_chacha::ChaCha8Rng;
11use scirs2_core::parallel_ops::*;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18use crate::shot_sampling::{QuantumSampler, SamplingConfig};
19use crate::statevector::StateVectorSimulator;
20
21/// Cross-entropy benchmarking result
22#[derive(Debug, Clone, Serialize, Deserialize)]
23pub struct CrossEntropyResult {
24    /// Linear cross-entropy benchmarking (XEB) fidelity
25    pub linear_xeb_fidelity: f64,
26    /// Cross-entropy difference
27    pub cross_entropy_difference: f64,
28    /// Number of samples used
29    pub num_samples: usize,
30    /// Statistical confidence (p-value)
31    pub confidence: f64,
32    /// Porter-Thomas test results
33    pub porter_thomas: PorterThomasResult,
34    /// Heavy output generation (HOG) score
35    pub hog_score: f64,
36    /// Computational cost comparison
37    pub cost_comparison: CostComparison,
38}
39
40/// Porter-Thomas distribution analysis
41#[derive(Debug, Clone, Serialize, Deserialize)]
42pub struct PorterThomasResult {
43    /// Chi-squared statistic
44    pub chi_squared: f64,
45    /// Degrees of freedom
46    pub degrees_freedom: usize,
47    /// P-value of the test
48    pub p_value: f64,
49    /// Whether distribution matches Porter-Thomas
50    pub is_porter_thomas: bool,
51    /// Kolmogorov-Smirnov test statistic
52    pub ks_statistic: f64,
53    /// Mean of the distribution
54    pub mean: f64,
55    /// Variance of the distribution
56    pub variance: f64,
57}
58
59/// Heavy Output Generation analysis
60#[derive(Debug, Clone, Serialize, Deserialize)]
61pub struct HOGAnalysis {
62    /// Fraction of heavy outputs
63    pub heavy_fraction: f64,
64    /// Expected heavy fraction for random circuit
65    pub expected_heavy_fraction: f64,
66    /// Threshold for heavy outputs
67    pub threshold: f64,
68    /// Total outputs analyzed
69    pub total_outputs: usize,
70    /// Heavy outputs count
71    pub heavy_count: usize,
72}
73
74/// Computational cost comparison
75#[derive(Debug, Clone, Serialize, Deserialize)]
76pub struct CostComparison {
77    /// Classical simulation time (seconds)
78    pub classical_time: f64,
79    /// Quantum execution time estimate (seconds)
80    pub quantum_time: f64,
81    /// Memory usage for classical simulation (bytes)
82    pub classical_memory: usize,
83    /// Speedup factor
84    pub speedup_factor: f64,
85    /// Number of operations
86    pub operation_count: usize,
87}
88
89/// Quantum supremacy verifier
90pub struct QuantumSupremacyVerifier {
91    /// Number of qubits
92    num_qubits: usize,
93    /// Random number generator
94    rng: ChaCha8Rng,
95    /// SciRS2 backend for optimization
96    backend: Option<SciRS2Backend>,
97    /// Verification parameters
98    params: VerificationParams,
99}
100
101/// Parameters for quantum supremacy verification
102#[derive(Debug, Clone)]
103pub struct VerificationParams {
104    /// Number of random circuits to test
105    pub num_circuits: usize,
106    /// Number of samples per circuit
107    pub samples_per_circuit: usize,
108    /// Circuit depth
109    pub circuit_depth: usize,
110    /// Gate set to use
111    pub gate_set: GateSet,
112    /// Significance level for statistical tests
113    pub significance_level: f64,
114    /// Porter-Thomas test bins
115    pub pt_bins: usize,
116    /// Heavy output threshold percentile
117    pub heavy_threshold_percentile: f64,
118}
119
120/// Gate set for random circuit generation
121#[derive(Debug, Clone)]
122pub enum GateSet {
123    /// Sycamore-like gate set (√X, √Y, √W, CZ)
124    Sycamore,
125    /// Google's quantum supremacy gate set
126    GoogleSupremacy,
127    /// Universal gate set (H, T, CNOT)
128    Universal,
129    /// IBM-like gate set (RZ, SX, CNOT)
130    IBM,
131    /// Custom gate set
132    Custom(Vec<String>),
133}
134
135impl Default for VerificationParams {
136    fn default() -> Self {
137        Self {
138            num_circuits: 100,
139            samples_per_circuit: 1000,
140            circuit_depth: 20,
141            gate_set: GateSet::Sycamore,
142            significance_level: 0.05,
143            pt_bins: 100,
144            heavy_threshold_percentile: 50.0,
145        }
146    }
147}
148
149impl QuantumSupremacyVerifier {
150    /// Create new quantum supremacy verifier
151    pub fn new(num_qubits: usize, params: VerificationParams) -> Result<Self> {
152        Ok(Self {
153            num_qubits,
154            rng: ChaCha8Rng::from_rng(&mut rand::thread_rng()),
155            backend: None,
156            params,
157        })
158    }
159
160    /// Initialize with SciRS2 backend
161    pub fn with_scirs2_backend(mut self) -> Result<Self> {
162        self.backend = Some(SciRS2Backend::new());
163        Ok(self)
164    }
165
166    /// Set random seed for reproducibility
167    pub fn with_seed(mut self, seed: u64) -> Self {
168        self.rng = ChaCha8Rng::seed_from_u64(seed);
169        self
170    }
171
172    /// Perform comprehensive quantum supremacy verification
173    pub fn verify_quantum_supremacy(&mut self) -> Result<CrossEntropyResult> {
174        let start_time = std::time::Instant::now();
175
176        // Generate random quantum circuits
177        let circuits = self.generate_random_circuits()?;
178
179        // Compute ideal amplitudes (classical simulation)
180        let ideal_amplitudes = self.compute_ideal_amplitudes(&circuits)?;
181
182        // Simulate quantum sampling
183        let quantum_samples = self.simulate_quantum_sampling(&circuits)?;
184
185        // Perform cross-entropy benchmarking
186        let linear_xeb = self.compute_linear_xeb(&ideal_amplitudes, &quantum_samples)?;
187
188        // Analyze Porter-Thomas distribution
189        let porter_thomas = self.analyze_porter_thomas(&ideal_amplitudes)?;
190
191        // Compute Heavy Output Generation score
192        let hog_score = self.compute_hog_score(&ideal_amplitudes, &quantum_samples)?;
193
194        // Cross-entropy difference
195        let cross_entropy_diff =
196            self.compute_cross_entropy_difference(&ideal_amplitudes, &quantum_samples)?;
197
198        // Statistical confidence
199        let confidence =
200            self.compute_statistical_confidence(&ideal_amplitudes, &quantum_samples)?;
201
202        let classical_time = start_time.elapsed().as_secs_f64();
203
204        // Cost comparison
205        let cost_comparison = CostComparison {
206            classical_time,
207            quantum_time: self.estimate_quantum_time()?,
208            classical_memory: self.estimate_classical_memory(),
209            speedup_factor: classical_time / self.estimate_quantum_time()?,
210            operation_count: circuits.len() * self.params.circuit_depth,
211        };
212
213        Ok(CrossEntropyResult {
214            linear_xeb_fidelity: linear_xeb,
215            cross_entropy_difference: cross_entropy_diff,
216            num_samples: self.params.samples_per_circuit,
217            confidence,
218            porter_thomas,
219            hog_score,
220            cost_comparison,
221        })
222    }
223
224    /// Generate random quantum circuits
225    fn generate_random_circuits(&mut self) -> Result<Vec<RandomCircuit>> {
226        let mut circuits = Vec::with_capacity(self.params.num_circuits);
227
228        for _ in 0..self.params.num_circuits {
229            let circuit = self.generate_single_random_circuit()?;
230            circuits.push(circuit);
231        }
232
233        Ok(circuits)
234    }
235
236    /// Generate a single random circuit
237    fn generate_single_random_circuit(&mut self) -> Result<RandomCircuit> {
238        let mut layers = Vec::with_capacity(self.params.circuit_depth);
239
240        for layer_idx in 0..self.params.circuit_depth {
241            let layer = match &self.params.gate_set {
242                GateSet::Sycamore => self.generate_sycamore_layer(layer_idx)?,
243                GateSet::GoogleSupremacy => self.generate_google_supremacy_layer(layer_idx)?,
244                GateSet::Universal => self.generate_universal_layer(layer_idx)?,
245                GateSet::IBM => self.generate_ibm_layer(layer_idx)?,
246                GateSet::Custom(gates) => {
247                    let gates_clone = gates.clone();
248                    self.generate_custom_layer(layer_idx, &gates_clone)?
249                }
250            };
251            layers.push(layer);
252        }
253
254        Ok(RandomCircuit {
255            num_qubits: self.num_qubits,
256            layers,
257            measurement_pattern: self.generate_measurement_pattern(),
258        })
259    }
260
261    /// Generate Sycamore-style layer
262    fn generate_sycamore_layer(&mut self, layer_idx: usize) -> Result<CircuitLayer> {
263        let mut gates = Vec::new();
264
265        // Single-qubit gates
266        for qubit in 0..self.num_qubits {
267            let gate_type = match self.rng.gen_range(0..3) {
268                0 => "SqrtX",
269                1 => "SqrtY",
270                _ => "SqrtW",
271            };
272
273            gates.push(QuantumGate {
274                gate_type: gate_type.to_string(),
275                qubits: vec![qubit],
276                parameters: vec![],
277            });
278        }
279
280        // Two-qubit gates (CZ gates with connectivity pattern)
281        let offset = layer_idx % 2;
282        for row in 0..((self.num_qubits as f64).sqrt() as usize) {
283            for col in (offset..((self.num_qubits as f64).sqrt() as usize)).step_by(2) {
284                let qubit1 = row * ((self.num_qubits as f64).sqrt() as usize) + col;
285                let qubit2 = qubit1 + 1;
286
287                if qubit2 < self.num_qubits {
288                    gates.push(QuantumGate {
289                        gate_type: "CZ".to_string(),
290                        qubits: vec![qubit1, qubit2],
291                        parameters: vec![],
292                    });
293                }
294            }
295        }
296
297        Ok(CircuitLayer { gates })
298    }
299
300    /// Generate Google quantum supremacy layer
301    fn generate_google_supremacy_layer(&mut self, layer_idx: usize) -> Result<CircuitLayer> {
302        // Similar to Sycamore but with specific gate rotations
303        self.generate_sycamore_layer(layer_idx)
304    }
305
306    /// Generate universal gate set layer
307    fn generate_universal_layer(&mut self, _layer_idx: usize) -> Result<CircuitLayer> {
308        let mut gates = Vec::new();
309
310        // Random single-qubit gates
311        for qubit in 0..self.num_qubits {
312            let gate_type = match self.rng.gen_range(0..3) {
313                0 => "H",
314                1 => "T",
315                _ => "S",
316            };
317
318            gates.push(QuantumGate {
319                gate_type: gate_type.to_string(),
320                qubits: vec![qubit],
321                parameters: vec![],
322            });
323        }
324
325        // Random CNOT gates
326        let num_cnots = self.rng.gen_range(1..=self.num_qubits / 2);
327        for _ in 0..num_cnots {
328            let control = self.rng.gen_range(0..self.num_qubits);
329            let target = self.rng.gen_range(0..self.num_qubits);
330
331            if control != target {
332                gates.push(QuantumGate {
333                    gate_type: "CNOT".to_string(),
334                    qubits: vec![control, target],
335                    parameters: vec![],
336                });
337            }
338        }
339
340        Ok(CircuitLayer { gates })
341    }
342
343    /// Generate IBM gate set layer
344    fn generate_ibm_layer(&mut self, _layer_idx: usize) -> Result<CircuitLayer> {
345        let mut gates = Vec::new();
346
347        // RZ and SX gates
348        for qubit in 0..self.num_qubits {
349            // Random RZ rotation
350            let angle = self.rng.gen::<f64>() * 2.0 * PI;
351            gates.push(QuantumGate {
352                gate_type: "RZ".to_string(),
353                qubits: vec![qubit],
354                parameters: vec![angle],
355            });
356
357            // SX gate with probability 0.5
358            if self.rng.gen::<bool>() {
359                gates.push(QuantumGate {
360                    gate_type: "SX".to_string(),
361                    qubits: vec![qubit],
362                    parameters: vec![],
363                });
364            }
365        }
366
367        Ok(CircuitLayer { gates })
368    }
369
370    /// Generate custom gate set layer
371    fn generate_custom_layer(
372        &mut self,
373        _layer_idx: usize,
374        _gates: &[String],
375    ) -> Result<CircuitLayer> {
376        // Implement custom gate generation
377        Ok(CircuitLayer { gates: Vec::new() })
378    }
379
380    /// Generate measurement pattern
381    fn generate_measurement_pattern(&mut self) -> Vec<usize> {
382        // For now, measure all qubits in computational basis
383        (0..self.num_qubits).collect()
384    }
385
386    /// Compute ideal amplitudes using classical simulation
387    fn compute_ideal_amplitudes(
388        &self,
389        circuits: &[RandomCircuit],
390    ) -> Result<Vec<Array1<Complex64>>> {
391        let mut amplitudes = Vec::with_capacity(circuits.len());
392
393        for circuit in circuits {
394            let mut simulator = StateVectorSimulator::new();
395
396            // Apply circuit layers
397            for layer in &circuit.layers {
398                for gate in &layer.gates {
399                    self.apply_gate_to_simulator(&mut simulator, gate)?;
400                }
401            }
402
403            // Get final state (placeholder - would need proper simulator integration)
404            let dim = 1 << self.num_qubits;
405            let state = Array1::zeros(dim);
406            amplitudes.push(state);
407        }
408
409        Ok(amplitudes)
410    }
411
412    /// Apply gate to simulator
413    fn apply_gate_to_simulator(
414        &self,
415        _simulator: &mut StateVectorSimulator,
416        _gate: &QuantumGate,
417    ) -> Result<()> {
418        // This would need proper integration with the state vector simulator
419        // For now, placeholder implementation
420        Ok(())
421    }
422
423    /// Simulate quantum sampling
424    fn simulate_quantum_sampling(
425        &mut self,
426        circuits: &[RandomCircuit],
427    ) -> Result<Vec<Vec<Vec<u8>>>> {
428        let mut all_samples = Vec::with_capacity(circuits.len());
429
430        for circuit in circuits {
431            let samples = self.sample_from_circuit(circuit)?;
432            all_samples.push(samples);
433        }
434
435        Ok(all_samples)
436    }
437
438    /// Sample from a single circuit
439    fn sample_from_circuit(&mut self, _circuit: &RandomCircuit) -> Result<Vec<Vec<u8>>> {
440        // For now, generate random samples (should use actual quantum sampling)
441        let mut samples = Vec::with_capacity(self.params.samples_per_circuit);
442
443        for _ in 0..self.params.samples_per_circuit {
444            let mut sample = Vec::with_capacity(self.num_qubits);
445            for _ in 0..self.num_qubits {
446                sample.push(if self.rng.gen::<bool>() { 1 } else { 0 });
447            }
448            samples.push(sample);
449        }
450
451        Ok(samples)
452    }
453
454    /// Compute Linear Cross-Entropy Benchmarking (XEB) fidelity
455    fn compute_linear_xeb(
456        &self,
457        ideal_amplitudes: &[Array1<Complex64>],
458        quantum_samples: &[Vec<Vec<u8>>],
459    ) -> Result<f64> {
460        let mut total_fidelity = 0.0;
461
462        for (amplitudes, samples) in ideal_amplitudes.iter().zip(quantum_samples.iter()) {
463            let circuit_fidelity = self.compute_circuit_linear_xeb(amplitudes, samples)?;
464            total_fidelity += circuit_fidelity;
465        }
466
467        Ok(total_fidelity / ideal_amplitudes.len() as f64)
468    }
469
470    /// Compute linear XEB for a single circuit
471    fn compute_circuit_linear_xeb(
472        &self,
473        amplitudes: &Array1<Complex64>,
474        samples: &[Vec<u8>],
475    ) -> Result<f64> {
476        let dim = amplitudes.len();
477        let uniform_prob = 1.0 / dim as f64;
478
479        let mut sum_probs = 0.0;
480
481        for sample in samples {
482            let bitstring_index = self.bitstring_to_index(sample);
483            if bitstring_index < dim {
484                let prob = amplitudes[bitstring_index].norm_sqr();
485                sum_probs += prob;
486            }
487        }
488
489        let mean_prob = sum_probs / samples.len() as f64;
490        let linear_xeb = (mean_prob - uniform_prob) / uniform_prob;
491
492        Ok(linear_xeb)
493    }
494
495    /// Convert bit string to state index
496    fn bitstring_to_index(&self, bitstring: &[u8]) -> usize {
497        let mut index = 0;
498        for (i, &bit) in bitstring.iter().enumerate() {
499            if bit == 1 {
500                index |= 1 << (self.num_qubits - 1 - i);
501            }
502        }
503        index
504    }
505
506    /// Analyze Porter-Thomas distribution
507    fn analyze_porter_thomas(
508        &self,
509        ideal_amplitudes: &[Array1<Complex64>],
510    ) -> Result<PorterThomasResult> {
511        // Collect all probability amplitudes
512        let mut all_probs = Vec::new();
513
514        for amplitudes in ideal_amplitudes {
515            for amplitude in amplitudes {
516                all_probs.push(amplitude.norm_sqr());
517            }
518        }
519
520        // Compute statistics
521        let mean = all_probs.iter().sum::<f64>() / all_probs.len() as f64;
522        let variance =
523            all_probs.iter().map(|p| (p - mean).powi(2)).sum::<f64>() / all_probs.len() as f64;
524
525        // Expected values for Porter-Thomas distribution
526        let expected_mean = 1.0 / (1 << self.num_qubits) as f64;
527        let expected_variance = expected_mean.powi(2);
528
529        // Chi-squared test
530        let bins = self.params.pt_bins;
531        let mut observed = vec![0; bins];
532        let mut expected = vec![0.0; bins];
533
534        // Create histogram
535        let max_prob = all_probs.iter().copied().fold(0.0f64, f64::max);
536        for &prob in &all_probs {
537            let bin = ((prob / max_prob) * (bins - 1) as f64) as usize;
538            observed[bin.min(bins - 1)] += 1;
539        }
540
541        // Expected counts for Porter-Thomas
542        let total_samples = all_probs.len() as f64;
543        for i in 0..bins {
544            let x = (i as f64 + 0.5) / bins as f64 * max_prob;
545            // Porter-Thomas: p(P) = N * exp(-N*P) where N = 2^n
546            let n = 1 << self.num_qubits;
547            expected[i] = total_samples * (n as f64) * (-n as f64 * x).exp() / bins as f64;
548        }
549
550        // Chi-squared statistic
551        let mut chi_squared = 0.0;
552        let mut degrees_freedom: usize = 0;
553
554        for i in 0..bins {
555            if expected[i] > 5.0 {
556                // Only use bins with sufficient expected count
557                chi_squared += (observed[i] as f64 - expected[i]).powi(2) / expected[i];
558                degrees_freedom += 1;
559            }
560        }
561
562        degrees_freedom = degrees_freedom.saturating_sub(1);
563
564        // Approximate p-value (simplified)
565        let p_value = self.chi_squared_p_value(chi_squared, degrees_freedom);
566
567        // Kolmogorov-Smirnov test (simplified)
568        let ks_statistic = self.kolmogorov_smirnov_test(&all_probs, expected_mean);
569
570        Ok(PorterThomasResult {
571            chi_squared,
572            degrees_freedom,
573            p_value,
574            is_porter_thomas: p_value > self.params.significance_level,
575            ks_statistic,
576            mean,
577            variance,
578        })
579    }
580
581    /// Compute HOG (Heavy Output Generation) score
582    fn compute_hog_score(
583        &self,
584        ideal_amplitudes: &[Array1<Complex64>],
585        quantum_samples: &[Vec<Vec<u8>>],
586    ) -> Result<f64> {
587        let mut total_heavy_fraction = 0.0;
588
589        for (amplitudes, samples) in ideal_amplitudes.iter().zip(quantum_samples.iter()) {
590            let heavy_fraction = self.compute_circuit_hog_score(amplitudes, samples)?;
591            total_heavy_fraction += heavy_fraction;
592        }
593
594        Ok(total_heavy_fraction / ideal_amplitudes.len() as f64)
595    }
596
597    /// Compute HOG score for single circuit
598    fn compute_circuit_hog_score(
599        &self,
600        amplitudes: &Array1<Complex64>,
601        samples: &[Vec<u8>],
602    ) -> Result<f64> {
603        // Find median probability
604        let mut probs: Vec<f64> = amplitudes.iter().map(|amp| amp.norm_sqr()).collect();
605        probs.sort_by(|a, b| a.partial_cmp(b).unwrap());
606        let median_prob = probs[probs.len() / 2];
607
608        // Count heavy outputs (above median)
609        let mut heavy_count = 0;
610
611        for sample in samples {
612            let index = self.bitstring_to_index(sample);
613            if index < amplitudes.len() {
614                let prob = amplitudes[index].norm_sqr();
615                if prob > median_prob {
616                    heavy_count += 1;
617                }
618            }
619        }
620
621        Ok(heavy_count as f64 / samples.len() as f64)
622    }
623
624    /// Compute cross-entropy difference
625    fn compute_cross_entropy_difference(
626        &self,
627        ideal_amplitudes: &[Array1<Complex64>],
628        quantum_samples: &[Vec<Vec<u8>>],
629    ) -> Result<f64> {
630        let mut total_difference = 0.0;
631
632        for (amplitudes, samples) in ideal_amplitudes.iter().zip(quantum_samples.iter()) {
633            let difference = self.compute_circuit_cross_entropy(amplitudes, samples)?;
634            total_difference += difference;
635        }
636
637        Ok(total_difference / ideal_amplitudes.len() as f64)
638    }
639
640    /// Compute cross-entropy for single circuit
641    fn compute_circuit_cross_entropy(
642        &self,
643        amplitudes: &Array1<Complex64>,
644        samples: &[Vec<u8>],
645    ) -> Result<f64> {
646        let dim = amplitudes.len();
647        let uniform_entropy = (dim as f64).ln();
648
649        let mut quantum_entropy = 0.0;
650        let mut sample_counts = HashMap::new();
651
652        // Count sample frequencies
653        for sample in samples {
654            *sample_counts.entry(sample.clone()).or_insert(0) += 1;
655        }
656
657        // Compute empirical entropy
658        for count in sample_counts.values() {
659            let prob = *count as f64 / samples.len() as f64;
660            if prob > 0.0 {
661                quantum_entropy -= prob * prob.ln();
662            }
663        }
664
665        Ok(uniform_entropy - quantum_entropy)
666    }
667
668    /// Compute statistical confidence
669    fn compute_statistical_confidence(
670        &self,
671        _ideal_amplitudes: &[Array1<Complex64>],
672        _quantum_samples: &[Vec<Vec<u8>>],
673    ) -> Result<f64> {
674        // Placeholder implementation
675        Ok(0.95)
676    }
677
678    /// Estimate quantum execution time
679    fn estimate_quantum_time(&self) -> Result<f64> {
680        // Estimate based on gate count and typical gate times
681        let gates_per_circuit = self.params.circuit_depth * self.num_qubits;
682        let total_gates = gates_per_circuit * self.params.num_circuits;
683        let gate_time = 100e-9; // 100 ns per gate
684        let readout_time = 1e-6; // 1 μs readout
685
686        Ok(total_gates as f64 * gate_time + self.params.num_circuits as f64 * readout_time)
687    }
688
689    /// Estimate classical memory usage
690    fn estimate_classical_memory(&self) -> usize {
691        let state_size = (1 << self.num_qubits) * std::mem::size_of::<Complex64>();
692        state_size * self.params.num_circuits
693    }
694
695    /// Simplified chi-squared p-value computation
696    fn chi_squared_p_value(&self, chi_squared: f64, degrees_freedom: usize) -> f64 {
697        // Very simplified approximation
698        if degrees_freedom == 0 {
699            return 1.0;
700        }
701
702        let expected = degrees_freedom as f64;
703        if chi_squared < expected {
704            0.95 // High p-value
705        } else if chi_squared < 2.0 * expected {
706            0.5 // Medium p-value
707        } else {
708            0.01 // Low p-value
709        }
710    }
711
712    /// Kolmogorov-Smirnov test statistic
713    fn kolmogorov_smirnov_test(&self, data: &[f64], expected_mean: f64) -> f64 {
714        // Simplified implementation
715        let n = data.len() as f64;
716        let mut sorted_data = data.to_vec();
717        sorted_data.sort_by(|a, b| a.partial_cmp(b).unwrap());
718
719        let mut max_diff: f64 = 0.0;
720
721        for (i, &value) in sorted_data.iter().enumerate() {
722            let empirical_cdf = (i + 1) as f64 / n;
723            let theoretical_cdf = 1.0 - (-value / expected_mean).exp(); // Exponential CDF
724            let diff = (empirical_cdf - theoretical_cdf).abs();
725            max_diff = max_diff.max(diff);
726        }
727
728        max_diff
729    }
730}
731
732/// Random quantum circuit representation
733#[derive(Debug, Clone)]
734pub struct RandomCircuit {
735    pub num_qubits: usize,
736    pub layers: Vec<CircuitLayer>,
737    pub measurement_pattern: Vec<usize>,
738}
739
740/// Layer of gates in a circuit
741#[derive(Debug, Clone)]
742pub struct CircuitLayer {
743    pub gates: Vec<QuantumGate>,
744}
745
746/// Quantum gate representation
747#[derive(Debug, Clone)]
748pub struct QuantumGate {
749    pub gate_type: String,
750    pub qubits: Vec<usize>,
751    pub parameters: Vec<f64>,
752}
753
754/// Benchmark quantum supremacy verification
755pub fn benchmark_quantum_supremacy(num_qubits: usize) -> Result<CrossEntropyResult> {
756    let params = VerificationParams {
757        num_circuits: 10,
758        samples_per_circuit: 100,
759        circuit_depth: 10,
760        ..Default::default()
761    };
762
763    let mut verifier = QuantumSupremacyVerifier::new(num_qubits, params)?;
764    verifier.verify_quantum_supremacy()
765}
766
767/// Verify specific quantum supremacy claim
768pub fn verify_supremacy_claim(
769    num_qubits: usize,
770    circuit_depth: usize,
771    experimental_data: &[Vec<u8>],
772) -> Result<CrossEntropyResult> {
773    let params = VerificationParams {
774        num_circuits: 1,
775        samples_per_circuit: experimental_data.len(),
776        circuit_depth,
777        ..Default::default()
778    };
779
780    let mut verifier = QuantumSupremacyVerifier::new(num_qubits, params)?;
781
782    // This would require the actual circuit that produced the experimental data
783    // For now, return a placeholder result
784    Ok(CrossEntropyResult {
785        linear_xeb_fidelity: 0.0,
786        cross_entropy_difference: 0.0,
787        num_samples: experimental_data.len(),
788        confidence: 0.0,
789        porter_thomas: PorterThomasResult {
790            chi_squared: 0.0,
791            degrees_freedom: 0,
792            p_value: 0.0,
793            is_porter_thomas: false,
794            ks_statistic: 0.0,
795            mean: 0.0,
796            variance: 0.0,
797        },
798        hog_score: 0.0,
799        cost_comparison: CostComparison {
800            classical_time: 0.0,
801            quantum_time: 0.0,
802            classical_memory: 0,
803            speedup_factor: 0.0,
804            operation_count: 0,
805        },
806    })
807}
808
809#[cfg(test)]
810mod tests {
811    use super::*;
812
813    #[test]
814    fn test_verifier_creation() {
815        let params = VerificationParams::default();
816        let verifier = QuantumSupremacyVerifier::new(10, params);
817        assert!(verifier.is_ok());
818    }
819
820    #[test]
821    fn test_linear_xeb_calculation() {
822        let mut verifier = QuantumSupremacyVerifier::new(3, VerificationParams::default()).unwrap();
823
824        // Create dummy data
825        let amplitudes = Array1::from_vec(vec![
826            Complex64::new(0.5, 0.0),
827            Complex64::new(0.5, 0.0),
828            Complex64::new(0.5, 0.0),
829            Complex64::new(0.5, 0.0),
830            Complex64::new(0.0, 0.0),
831            Complex64::new(0.0, 0.0),
832            Complex64::new(0.0, 0.0),
833            Complex64::new(0.0, 0.0),
834        ]);
835
836        let samples = vec![vec![0, 0, 0], vec![0, 0, 1], vec![0, 1, 0], vec![0, 1, 1]];
837
838        let xeb = verifier
839            .compute_circuit_linear_xeb(&amplitudes, &samples)
840            .unwrap();
841        assert!(xeb >= 0.0);
842    }
843
844    #[test]
845    fn test_bitstring_conversion() {
846        let verifier = QuantumSupremacyVerifier::new(3, VerificationParams::default()).unwrap();
847
848        assert_eq!(verifier.bitstring_to_index(&[0, 0, 0]), 0);
849        assert_eq!(verifier.bitstring_to_index(&[0, 0, 1]), 1);
850        assert_eq!(verifier.bitstring_to_index(&[1, 1, 1]), 7);
851    }
852
853    #[test]
854    fn test_porter_thomas_analysis() {
855        let verifier = QuantumSupremacyVerifier::new(2, VerificationParams::default()).unwrap();
856
857        // Create uniform random amplitudes
858        let amplitudes = vec![Array1::from_vec(vec![
859            Complex64::new(0.5, 0.0),
860            Complex64::new(0.5, 0.0),
861            Complex64::new(0.5, 0.0),
862            Complex64::new(0.5, 0.0),
863        ])];
864
865        let result = verifier.analyze_porter_thomas(&amplitudes).unwrap();
866        assert!(result.chi_squared >= 0.0);
867        assert!(result.p_value >= 0.0 && result.p_value <= 1.0);
868    }
869}