quantrs2_sim/
quantum_reservoir_computing_enhanced.rs

1//! Enhanced Quantum Reservoir Computing Framework - Ultrathink Mode Implementation
2//!
3//! This module provides a comprehensive implementation of quantum reservoir computing (QRC),
4//! a cutting-edge computational paradigm that leverages the high-dimensional, nonlinear
5//! dynamics of quantum systems for temporal information processing and machine learning.
6//! This ultrathink mode implementation includes advanced learning algorithms, sophisticated
7//! reservoir topologies, real-time adaptation, and comprehensive analysis tools.
8//!
9//! ## Core Features
10//! - **Advanced Quantum Reservoirs**: Multiple sophisticated architectures including scale-free,
11//!   hierarchical, modular, and adaptive topologies
12//! - **Comprehensive Learning Algorithms**: Ridge regression, LASSO, Elastic Net, RLS, Kalman
13//!   filtering, neural network readouts, and meta-learning approaches
14//! - **Time Series Modeling**: ARIMA-like capabilities, nonlinear autoregressive models,
15//!   memory kernels, and temporal correlation analysis
16//! - **Real-time Adaptation**: Online learning algorithms with forgetting factors, plasticity
17//!   mechanisms, and adaptive reservoir modification
18//! - **Memory Analysis Tools**: Quantum memory capacity estimation, nonlinear memory measures,
19//!   temporal information processing capacity, and correlation analysis
20//! - **Hardware-aware Optimization**: Device-specific compilation, noise-aware training,
21//!   error mitigation, and platform-specific optimizations
22//! - **Comprehensive Benchmarking**: Multiple datasets, statistical significance testing,
23//!   comparative analysis, and performance validation frameworks
24//! - **Advanced Quantum Dynamics**: Unitary evolution, open system dynamics, NISQ simulation,
25//!   adiabatic processes, and quantum error correction integration
26
27use ndarray::{s, Array1, Array2, Array3, ArrayView1, ArrayView2, Axis};
28use num_complex::Complex64;
29use rand::{thread_rng, Rng};
30use scirs2_core::parallel_ops::*;
31use serde::{Deserialize, Serialize};
32use std::collections::{HashMap, VecDeque};
33use std::f64::consts::PI;
34use std::sync::{Arc, Mutex};
35
36use crate::circuit_interfaces::{
37    CircuitInterface, InterfaceCircuit, InterfaceGate, InterfaceGateType,
38};
39use crate::error::Result;
40use crate::scirs2_integration::SciRS2Backend;
41use crate::statevector::StateVectorSimulator;
42
43/// Advanced quantum reservoir architecture types
44#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
45pub enum QuantumReservoirArchitecture {
46    /// Random quantum circuit with tunable connectivity
47    RandomCircuit,
48    /// Spin chain with configurable interactions
49    SpinChain,
50    /// Transverse field Ising model with variable field strength
51    TransverseFieldIsing,
52    /// Small-world network with rewiring probability
53    SmallWorld,
54    /// Fully connected all-to-all interactions
55    FullyConnected,
56    /// Scale-free network following power-law degree distribution
57    ScaleFree,
58    /// Hierarchical modular architecture with multiple levels
59    HierarchicalModular,
60    /// Adaptive topology that evolves during computation
61    AdaptiveTopology,
62    /// Quantum cellular automaton structure
63    QuantumCellularAutomaton,
64    /// Ring topology with long-range connections
65    Ring,
66    /// Grid/lattice topology with configurable dimensions
67    Grid,
68    /// Tree topology with branching factor
69    Tree,
70    /// Hypergraph topology with higher-order interactions
71    Hypergraph,
72    /// Tensor network inspired architecture
73    TensorNetwork,
74    /// Custom user-defined architecture
75    Custom,
76}
77
78/// Advanced reservoir dynamics types
79#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
80pub enum ReservoirDynamics {
81    /// Unitary evolution with perfect coherence
82    Unitary,
83    /// Open system dynamics with Lindblad operators
84    Open,
85    /// Noisy intermediate-scale quantum (NISQ) dynamics
86    NISQ,
87    /// Adiabatic quantum evolution
88    Adiabatic,
89    /// Floquet dynamics with periodic driving
90    Floquet,
91    /// Quantum walk dynamics
92    QuantumWalk,
93    /// Continuous-time quantum dynamics
94    ContinuousTime,
95    /// Digital quantum simulation with Trotter decomposition
96    DigitalQuantum,
97    /// Variational quantum dynamics
98    Variational,
99    /// Hamiltonian learning dynamics
100    HamiltonianLearning,
101    /// Many-body localized dynamics
102    ManyBodyLocalized,
103    /// Quantum chaotic dynamics
104    QuantumChaotic,
105}
106
107/// Advanced input encoding methods for temporal data
108#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
109pub enum InputEncoding {
110    /// Amplitude encoding with normalization
111    Amplitude,
112    /// Phase encoding with full 2π range
113    Phase,
114    /// Basis state encoding with binary representation
115    BasisState,
116    /// Coherent state encoding with displacement
117    Coherent,
118    /// Squeezed state encoding with squeezing parameter
119    Squeezed,
120    /// Angle encoding with rotation gates
121    Angle,
122    /// IQP encoding with diagonal unitaries
123    IQP,
124    /// Data re-uploading with multiple layers
125    DataReUploading,
126    /// Quantum feature map encoding
127    QuantumFeatureMap,
128    /// Variational encoding with trainable parameters
129    VariationalEncoding,
130    /// Temporal encoding with time-dependent parameters
131    TemporalEncoding,
132    /// Fourier encoding for frequency domain
133    FourierEncoding,
134    /// Wavelet encoding for multi-resolution
135    WaveletEncoding,
136    /// Haar random encoding
137    HaarRandom,
138    /// Graph encoding for structured data
139    GraphEncoding,
140}
141
142/// Advanced output measurement strategies
143#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
144pub enum OutputMeasurement {
145    /// Pauli expectation values (X, Y, Z)
146    PauliExpectation,
147    /// Computational basis probability measurements
148    Probability,
149    /// Two-qubit correlation functions
150    Correlations,
151    /// Entanglement entropy and concurrence
152    Entanglement,
153    /// State fidelity with reference states
154    Fidelity,
155    /// Quantum Fisher information
156    QuantumFisherInformation,
157    /// Variance of observables
158    Variance,
159    /// Higher-order moments and cumulants
160    HigherOrderMoments,
161    /// Spectral properties and eigenvalues
162    SpectralProperties,
163    /// Quantum coherence measures
164    QuantumCoherence,
165    /// Purity and mixedness measures
166    Purity,
167    /// Quantum mutual information
168    QuantumMutualInformation,
169    /// Process tomography observables
170    ProcessTomography,
171    /// Temporal correlations
172    TemporalCorrelations,
173    /// Non-linear readout functions
174    NonLinearReadout,
175}
176
177/// Advanced learning algorithm types
178#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
179pub enum LearningAlgorithm {
180    /// Ridge regression with L2 regularization
181    Ridge,
182    /// LASSO regression with L1 regularization
183    LASSO,
184    /// Elastic Net combining L1 and L2 regularization
185    ElasticNet,
186    /// Recursive Least Squares with forgetting factor
187    RecursiveLeastSquares,
188    /// Kalman filter for adaptive learning
189    KalmanFilter,
190    /// Extended Kalman filter for nonlinear systems
191    ExtendedKalmanFilter,
192    /// Neural network readout layer
193    NeuralNetwork,
194    /// Support Vector Regression
195    SupportVectorRegression,
196    /// Gaussian Process regression
197    GaussianProcess,
198    /// Random Forest regression
199    RandomForest,
200    /// Gradient boosting regression
201    GradientBoosting,
202    /// Online gradient descent
203    OnlineGradientDescent,
204    /// Adam optimizer
205    Adam,
206    /// Meta-learning approach
207    MetaLearning,
208}
209
210/// Neural network activation functions
211#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
212pub enum ActivationFunction {
213    /// Rectified Linear Unit
214    ReLU,
215    /// Leaky ReLU
216    LeakyReLU,
217    /// Exponential Linear Unit
218    ELU,
219    /// Sigmoid activation
220    Sigmoid,
221    /// Hyperbolic tangent
222    Tanh,
223    /// Swish activation
224    Swish,
225    /// GELU activation
226    GELU,
227    /// Linear activation
228    Linear,
229}
230
231/// Memory kernel types for time series modeling
232#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
233pub enum MemoryKernel {
234    /// Exponential decay kernel
235    Exponential,
236    /// Power law kernel
237    PowerLaw,
238    /// Gaussian kernel
239    Gaussian,
240    /// Polynomial kernel
241    Polynomial,
242    /// Rational kernel
243    Rational,
244    /// Sinusoidal kernel
245    Sinusoidal,
246    /// Custom kernel
247    Custom,
248}
249
250/// Enhanced quantum reservoir computing configuration
251#[derive(Debug, Clone, Serialize, Deserialize)]
252pub struct QuantumReservoirConfig {
253    /// Number of qubits in the reservoir
254    pub num_qubits: usize,
255    /// Reservoir architecture type
256    pub architecture: QuantumReservoirArchitecture,
257    /// Dynamics evolution type
258    pub dynamics: ReservoirDynamics,
259    /// Input encoding method
260    pub input_encoding: InputEncoding,
261    /// Output measurement strategy
262    pub output_measurement: OutputMeasurement,
263    /// Advanced learning algorithm configuration
264    pub learning_config: AdvancedLearningConfig,
265    /// Time series modeling configuration
266    pub time_series_config: TimeSeriesConfig,
267    /// Memory analysis configuration
268    pub memory_config: MemoryAnalysisConfig,
269    /// Time step for evolution
270    pub time_step: f64,
271    /// Number of evolution steps per input
272    pub evolution_steps: usize,
273    /// Reservoir coupling strength
274    pub coupling_strength: f64,
275    /// Noise level (for NISQ dynamics)
276    pub noise_level: f64,
277    /// Memory capacity (time steps to remember)
278    pub memory_capacity: usize,
279    /// Enable real-time adaptation
280    pub adaptive_learning: bool,
281    /// Learning rate for adaptation
282    pub learning_rate: f64,
283    /// Washout period (initial time steps to ignore)
284    pub washout_period: usize,
285    /// Random seed for reproducibility
286    pub random_seed: Option<u64>,
287    /// Enable quantum error correction
288    pub enable_qec: bool,
289    /// Precision for calculations
290    pub precision: f64,
291}
292
293impl Default for QuantumReservoirConfig {
294    fn default() -> Self {
295        Self {
296            num_qubits: 8,
297            architecture: QuantumReservoirArchitecture::RandomCircuit,
298            dynamics: ReservoirDynamics::Unitary,
299            input_encoding: InputEncoding::Amplitude,
300            output_measurement: OutputMeasurement::PauliExpectation,
301            learning_config: AdvancedLearningConfig::default(),
302            time_series_config: TimeSeriesConfig::default(),
303            memory_config: MemoryAnalysisConfig::default(),
304            time_step: 0.1,
305            evolution_steps: 10,
306            coupling_strength: 1.0,
307            noise_level: 0.01,
308            memory_capacity: 100,
309            adaptive_learning: true,
310            learning_rate: 0.01,
311            washout_period: 50,
312            random_seed: None,
313            enable_qec: false,
314            precision: 1e-8,
315        }
316    }
317}
318
319/// Advanced learning algorithm configuration
320#[derive(Debug, Clone, Serialize, Deserialize)]
321pub struct AdvancedLearningConfig {
322    /// Primary learning algorithm
323    pub algorithm: LearningAlgorithm,
324    /// Regularization parameter (lambda)
325    pub regularization: f64,
326    /// L1 ratio for Elastic Net (0.0 = Ridge, 1.0 = LASSO)
327    pub l1_ratio: f64,
328    /// Forgetting factor for RLS
329    pub forgetting_factor: f64,
330    /// Process noise for Kalman filter
331    pub process_noise: f64,
332    /// Measurement noise for Kalman filter
333    pub measurement_noise: f64,
334    /// Neural network architecture
335    pub nn_architecture: Vec<usize>,
336    /// Neural network activation function
337    pub nn_activation: ActivationFunction,
338    /// Number of training epochs
339    pub epochs: usize,
340    /// Batch size for training
341    pub batch_size: usize,
342    /// Early stopping patience
343    pub early_stopping_patience: usize,
344    /// Cross-validation folds
345    pub cv_folds: usize,
346    /// Enable ensemble methods
347    pub enable_ensemble: bool,
348    /// Number of ensemble members
349    pub ensemble_size: usize,
350}
351
352impl Default for AdvancedLearningConfig {
353    fn default() -> Self {
354        Self {
355            algorithm: LearningAlgorithm::Ridge,
356            regularization: 1e-6,
357            l1_ratio: 0.5,
358            forgetting_factor: 0.99,
359            process_noise: 1e-4,
360            measurement_noise: 1e-3,
361            nn_architecture: vec![64, 32, 16],
362            nn_activation: ActivationFunction::ReLU,
363            epochs: 100,
364            batch_size: 32,
365            early_stopping_patience: 10,
366            cv_folds: 5,
367            enable_ensemble: false,
368            ensemble_size: 5,
369        }
370    }
371}
372
373/// Time series modeling configuration
374#[derive(Debug, Clone, Serialize, Deserialize)]
375pub struct TimeSeriesConfig {
376    /// Enable ARIMA-like modeling
377    pub enable_arima: bool,
378    /// AR order (autoregressive)
379    pub ar_order: usize,
380    /// MA order (moving average)
381    pub ma_order: usize,
382    /// Differencing order
383    pub diff_order: usize,
384    /// Enable nonlinear autoregressive model
385    pub enable_nar: bool,
386    /// NAR model order
387    pub nar_order: usize,
388    /// Memory kernel type
389    pub memory_kernel: MemoryKernel,
390    /// Kernel parameters
391    pub kernel_params: Vec<f64>,
392    /// Enable seasonal decomposition
393    pub enable_seasonal: bool,
394    /// Seasonal period
395    pub seasonal_period: usize,
396    /// Enable change point detection
397    pub enable_changepoint: bool,
398    /// Anomaly detection threshold
399    pub anomaly_threshold: f64,
400}
401
402impl Default for TimeSeriesConfig {
403    fn default() -> Self {
404        Self {
405            enable_arima: true,
406            ar_order: 2,
407            ma_order: 1,
408            diff_order: 1,
409            enable_nar: true,
410            nar_order: 3,
411            memory_kernel: MemoryKernel::Exponential,
412            kernel_params: vec![0.9, 0.1],
413            enable_seasonal: false,
414            seasonal_period: 12,
415            enable_changepoint: false,
416            anomaly_threshold: 2.0,
417        }
418    }
419}
420
421/// Memory analysis configuration
422#[derive(Debug, Clone, Serialize, Deserialize)]
423pub struct MemoryAnalysisConfig {
424    /// Enable memory capacity estimation
425    pub enable_capacity_estimation: bool,
426    /// Memory capacity test tasks
427    pub capacity_tasks: Vec<MemoryTask>,
428    /// Enable nonlinear memory analysis
429    pub enable_nonlinear: bool,
430    /// Nonlinearity test orders
431    pub nonlinearity_orders: Vec<usize>,
432    /// Enable temporal correlation analysis
433    pub enable_temporal_correlation: bool,
434    /// Correlation lag range
435    pub correlation_lags: Vec<usize>,
436    /// Information processing capacity
437    pub enable_ipc: bool,
438    /// IPC test functions
439    pub ipc_functions: Vec<IPCFunction>,
440    /// Enable entropy analysis
441    pub enable_entropy: bool,
442}
443
444impl Default for MemoryAnalysisConfig {
445    fn default() -> Self {
446        Self {
447            enable_capacity_estimation: true,
448            capacity_tasks: vec![
449                MemoryTask::DelayLine,
450                MemoryTask::TemporalXOR,
451                MemoryTask::Parity,
452            ],
453            enable_nonlinear: true,
454            nonlinearity_orders: vec![2, 3, 4],
455            enable_temporal_correlation: true,
456            correlation_lags: (1..=20).collect(),
457            enable_ipc: true,
458            ipc_functions: vec![
459                IPCFunction::Linear,
460                IPCFunction::Quadratic,
461                IPCFunction::Cubic,
462            ],
463            enable_entropy: true,
464        }
465    }
466}
467
468/// Memory capacity test tasks
469#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
470pub enum MemoryTask {
471    /// Delay line memory
472    DelayLine,
473    /// Temporal XOR task
474    TemporalXOR,
475    /// Parity check task
476    Parity,
477    /// Sequence prediction
478    SequencePrediction,
479    /// Pattern completion
480    PatternCompletion,
481    /// Temporal integration
482    TemporalIntegration,
483}
484
485/// Information processing capacity functions
486#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
487pub enum IPCFunction {
488    /// Linear function
489    Linear,
490    /// Quadratic function
491    Quadratic,
492    /// Cubic function
493    Cubic,
494    /// Sine function
495    Sine,
496    /// Product function
497    Product,
498    /// XOR function
499    XOR,
500}
501
502/// Enhanced quantum reservoir state
503#[derive(Debug, Clone)]
504pub struct QuantumReservoirState {
505    /// Current quantum state vector
506    pub state_vector: Array1<Complex64>,
507    /// Evolution history buffer
508    pub state_history: VecDeque<Array1<Complex64>>,
509    /// Observable measurements cache
510    pub observables: HashMap<String, f64>,
511    /// Two-qubit correlation matrix
512    pub correlations: Array2<f64>,
513    /// Higher-order correlations
514    pub higher_order_correlations: HashMap<String, f64>,
515    /// Entanglement measures
516    pub entanglement_measures: HashMap<String, f64>,
517    /// Memory capacity metrics
518    pub memory_metrics: MemoryMetrics,
519    /// Time index counter
520    pub time_index: usize,
521    /// Last update timestamp
522    pub last_update: f64,
523    /// Reservoir activity level
524    pub activity_level: f64,
525    /// Performance tracking
526    pub performance_history: VecDeque<f64>,
527}
528
529/// Memory analysis metrics
530#[derive(Debug, Clone, Default, Serialize, Deserialize)]
531pub struct MemoryMetrics {
532    /// Linear memory capacity
533    pub linear_capacity: f64,
534    /// Nonlinear memory capacity
535    pub nonlinear_capacity: f64,
536    /// Total memory capacity
537    pub total_capacity: f64,
538    /// Information processing capacity
539    pub processing_capacity: f64,
540    /// Temporal correlation length
541    pub correlation_length: f64,
542    /// Memory decay rate
543    pub decay_rate: f64,
544    /// Memory efficiency
545    pub efficiency: f64,
546}
547
548impl QuantumReservoirState {
549    /// Create new enhanced reservoir state
550    pub fn new(num_qubits: usize, memory_capacity: usize) -> Self {
551        let state_size = 1 << num_qubits;
552        let mut state_vector = Array1::zeros(state_size);
553        state_vector[0] = Complex64::new(1.0, 0.0); // Start in |0...0⟩
554
555        Self {
556            state_vector,
557            state_history: VecDeque::with_capacity(memory_capacity),
558            observables: HashMap::new(),
559            correlations: Array2::zeros((num_qubits, num_qubits)),
560            higher_order_correlations: HashMap::new(),
561            entanglement_measures: HashMap::new(),
562            memory_metrics: MemoryMetrics::default(),
563            time_index: 0,
564            last_update: 0.0,
565            activity_level: 0.0,
566            performance_history: VecDeque::with_capacity(1000),
567        }
568    }
569
570    /// Update state and maintain comprehensive history
571    pub fn update_state(&mut self, new_state: Array1<Complex64>, timestamp: f64) {
572        // Store previous state
573        self.state_history.push_back(self.state_vector.clone());
574        if self.state_history.len() > self.state_history.capacity() {
575            self.state_history.pop_front();
576        }
577
578        // Update current state
579        self.state_vector = new_state;
580        self.time_index += 1;
581        self.last_update = timestamp;
582
583        // Update activity level
584        self.update_activity_level();
585    }
586
587    /// Update reservoir activity level
588    fn update_activity_level(&mut self) {
589        let activity = self.state_vector.iter().map(|x| x.norm_sqr()).sum::<f64>()
590            / self.state_vector.len() as f64;
591
592        // Exponential moving average
593        let alpha = 0.1;
594        self.activity_level = alpha * activity + (1.0 - alpha) * self.activity_level;
595    }
596
597    /// Calculate memory decay
598    pub fn calculate_memory_decay(&self) -> f64 {
599        if self.state_history.len() < 2 {
600            return 0.0;
601        }
602
603        let mut total_decay = 0.0;
604        let current_state = &self.state_vector;
605
606        for (i, past_state) in self.state_history.iter().enumerate() {
607            let fidelity = self.calculate_fidelity(current_state, past_state);
608            let time_diff = (self.state_history.len() - i) as f64;
609            total_decay += fidelity * (-time_diff * 0.1).exp();
610        }
611
612        total_decay / self.state_history.len() as f64
613    }
614
615    /// Calculate fidelity between two states
616    fn calculate_fidelity(&self, state1: &Array1<Complex64>, state2: &Array1<Complex64>) -> f64 {
617        let overlap = state1
618            .iter()
619            .zip(state2.iter())
620            .map(|(a, b)| a.conj() * b)
621            .sum::<Complex64>();
622        overlap.norm_sqr()
623    }
624}
625
626/// Enhanced training data for reservoir computing
627#[derive(Debug, Clone)]
628pub struct ReservoirTrainingData {
629    /// Input time series
630    pub inputs: Vec<Array1<f64>>,
631    /// Target outputs
632    pub targets: Vec<Array1<f64>>,
633    /// Time stamps
634    pub timestamps: Vec<f64>,
635    /// Additional features
636    pub features: Option<Vec<Array1<f64>>>,
637    /// Data labels for classification
638    pub labels: Option<Vec<usize>>,
639    /// Sequence lengths for variable-length sequences
640    pub sequence_lengths: Option<Vec<usize>>,
641    /// Missing data indicators
642    pub missing_mask: Option<Vec<Array1<bool>>>,
643    /// Data weights for importance sampling
644    pub sample_weights: Option<Vec<f64>>,
645    /// Metadata for each sample
646    pub metadata: Option<Vec<HashMap<String, String>>>,
647}
648
649impl ReservoirTrainingData {
650    /// Create new training data
651    pub fn new(inputs: Vec<Array1<f64>>, targets: Vec<Array1<f64>>, timestamps: Vec<f64>) -> Self {
652        Self {
653            inputs,
654            targets,
655            timestamps,
656            features: None,
657            labels: None,
658            sequence_lengths: None,
659            missing_mask: None,
660            sample_weights: None,
661            metadata: None,
662        }
663    }
664
665    /// Add features to training data
666    pub fn with_features(mut self, features: Vec<Array1<f64>>) -> Self {
667        self.features = Some(features);
668        self
669    }
670
671    /// Add labels for classification
672    pub fn with_labels(mut self, labels: Vec<usize>) -> Self {
673        self.labels = Some(labels);
674        self
675    }
676
677    /// Add sample weights
678    pub fn with_weights(mut self, weights: Vec<f64>) -> Self {
679        self.sample_weights = Some(weights);
680        self
681    }
682
683    /// Get data length
684    pub fn len(&self) -> usize {
685        self.inputs.len()
686    }
687
688    /// Check if data is empty
689    pub fn is_empty(&self) -> bool {
690        self.inputs.is_empty()
691    }
692
693    /// Split data into train/test sets
694    pub fn train_test_split(&self, test_ratio: f64) -> (Self, Self) {
695        let test_size = (self.len() as f64 * test_ratio) as usize;
696        let train_size = self.len() - test_size;
697
698        let train_data = Self {
699            inputs: self.inputs[..train_size].to_vec(),
700            targets: self.targets[..train_size].to_vec(),
701            timestamps: self.timestamps[..train_size].to_vec(),
702            features: self.features.as_ref().map(|f| f[..train_size].to_vec()),
703            labels: self.labels.as_ref().map(|l| l[..train_size].to_vec()),
704            sequence_lengths: self
705                .sequence_lengths
706                .as_ref()
707                .map(|s| s[..train_size].to_vec()),
708            missing_mask: self.missing_mask.as_ref().map(|m| m[..train_size].to_vec()),
709            sample_weights: self
710                .sample_weights
711                .as_ref()
712                .map(|w| w[..train_size].to_vec()),
713            metadata: self.metadata.as_ref().map(|m| m[..train_size].to_vec()),
714        };
715
716        let test_data = Self {
717            inputs: self.inputs[train_size..].to_vec(),
718            targets: self.targets[train_size..].to_vec(),
719            timestamps: self.timestamps[train_size..].to_vec(),
720            features: self.features.as_ref().map(|f| f[train_size..].to_vec()),
721            labels: self.labels.as_ref().map(|l| l[train_size..].to_vec()),
722            sequence_lengths: self
723                .sequence_lengths
724                .as_ref()
725                .map(|s| s[train_size..].to_vec()),
726            missing_mask: self.missing_mask.as_ref().map(|m| m[train_size..].to_vec()),
727            sample_weights: self
728                .sample_weights
729                .as_ref()
730                .map(|w| w[train_size..].to_vec()),
731            metadata: self.metadata.as_ref().map(|m| m[train_size..].to_vec()),
732        };
733
734        (train_data, test_data)
735    }
736}
737
738/// Enhanced training example for reservoir learning
739#[derive(Debug, Clone)]
740pub struct TrainingExample {
741    /// Input data
742    pub input: Array1<f64>,
743    /// Reservoir state after processing
744    pub reservoir_state: Array1<f64>,
745    /// Extracted features
746    pub features: Array1<f64>,
747    /// Target output
748    pub target: Array1<f64>,
749    /// Predicted output
750    pub prediction: Array1<f64>,
751    /// Prediction error
752    pub error: f64,
753    /// Confidence score
754    pub confidence: f64,
755    /// Processing timestamp
756    pub timestamp: f64,
757    /// Additional metadata
758    pub metadata: HashMap<String, f64>,
759}
760
761/// Enhanced performance metrics for reservoir computing
762#[derive(Debug, Clone, Default, Serialize, Deserialize)]
763pub struct ReservoirMetrics {
764    /// Total training examples processed
765    pub training_examples: usize,
766    /// Current prediction accuracy
767    pub prediction_accuracy: f64,
768    /// Memory capacity estimate
769    pub memory_capacity: f64,
770    /// Nonlinear memory capacity
771    pub nonlinear_memory_capacity: f64,
772    /// Information processing capacity
773    pub processing_capacity: f64,
774    /// Generalization error
775    pub generalization_error: f64,
776    /// Echo state property indicator
777    pub echo_state_property: f64,
778    /// Average processing time per input
779    pub avg_processing_time_ms: f64,
780    /// Quantum resource utilization
781    pub quantum_resource_usage: f64,
782    /// Temporal correlation length
783    pub temporal_correlation_length: f64,
784    /// Reservoir efficiency
785    pub reservoir_efficiency: f64,
786    /// Adaptation rate
787    pub adaptation_rate: f64,
788    /// Plasticity level
789    pub plasticity_level: f64,
790    /// Hardware utilization
791    pub hardware_utilization: f64,
792    /// Error mitigation overhead
793    pub error_mitigation_overhead: f64,
794    /// Quantum advantage metric
795    pub quantum_advantage: f64,
796    /// Computational complexity
797    pub computational_complexity: f64,
798}
799
800/// Enhanced quantum reservoir computing system
801pub struct QuantumReservoirComputerEnhanced {
802    /// Configuration
803    config: QuantumReservoirConfig,
804    /// Current reservoir state
805    reservoir_state: QuantumReservoirState,
806    /// Reservoir circuit
807    reservoir_circuit: InterfaceCircuit,
808    /// Input coupling circuit
809    input_coupling_circuit: InterfaceCircuit,
810    /// Output weights (trainable)
811    output_weights: Array2<f64>,
812    /// Time series predictor
813    time_series_predictor: Option<TimeSeriesPredictor>,
814    /// Memory analyzer
815    memory_analyzer: MemoryAnalyzer,
816    /// State vector simulator
817    simulator: StateVectorSimulator,
818    /// Circuit interface
819    circuit_interface: CircuitInterface,
820    /// Performance metrics
821    metrics: ReservoirMetrics,
822    /// Training history
823    training_history: VecDeque<TrainingExample>,
824    /// SciRS2 backend for advanced computations
825    backend: Option<SciRS2Backend>,
826    /// Random number generator
827    rng: Arc<Mutex<rand::rngs::ThreadRng>>,
828}
829
830/// Time series prediction models
831#[derive(Debug, Clone, Serialize, Deserialize)]
832pub struct TimeSeriesPredictor {
833    /// ARIMA model parameters
834    pub arima_params: ARIMAParams,
835    /// NAR model state
836    pub nar_state: NARState,
837    /// Memory kernel weights
838    pub kernel_weights: Array1<f64>,
839    /// Trend model
840    pub trend_model: TrendModel,
841}
842
843/// ARIMA model parameters
844#[derive(Debug, Clone, Serialize, Deserialize)]
845pub struct ARIMAParams {
846    /// AR coefficients
847    pub ar_coeffs: Array1<f64>,
848    /// MA coefficients
849    pub ma_coeffs: Array1<f64>,
850    /// Differencing order
851    pub diff_order: usize,
852    /// Model residuals
853    pub residuals: VecDeque<f64>,
854    /// Model variance
855    pub variance: f64,
856}
857
858/// Nonlinear autoregressive model state
859#[derive(Debug, Clone, Serialize, Deserialize)]
860pub struct NARState {
861    /// Model order
862    pub order: usize,
863    /// Nonlinear coefficients
864    pub coeffs: Array2<f64>,
865    /// Past values buffer
866    pub history: VecDeque<f64>,
867    /// Activation function
868    pub activation: ActivationFunction,
869}
870
871/// Trend model
872#[derive(Debug, Clone, Serialize, Deserialize)]
873pub struct TrendModel {
874    /// Model parameters
875    pub params: Vec<f64>,
876    /// Trend strength
877    pub strength: f64,
878    /// Trend direction
879    pub direction: f64,
880}
881
882/// Memory analyzer for capacity estimation
883#[derive(Debug)]
884pub struct MemoryAnalyzer {
885    /// Analysis configuration
886    pub config: MemoryAnalysisConfig,
887    /// Current capacity estimates
888    pub capacity_estimates: HashMap<String, f64>,
889    /// Nonlinearity measures
890    pub nonlinearity_measures: HashMap<usize, f64>,
891    /// Temporal correlations
892    pub temporal_correlations: Array2<f64>,
893    /// Information processing metrics
894    pub ipc_metrics: HashMap<String, f64>,
895}
896
897impl QuantumReservoirComputerEnhanced {
898    /// Create new enhanced quantum reservoir computer
899    pub fn new(config: QuantumReservoirConfig) -> Result<Self> {
900        let circuit_interface = CircuitInterface::new(Default::default())?;
901        let simulator = StateVectorSimulator::new();
902
903        let reservoir_state = QuantumReservoirState::new(config.num_qubits, config.memory_capacity);
904
905        // Generate reservoir circuit based on architecture
906        let reservoir_circuit = Self::generate_reservoir_circuit(&config)?;
907
908        // Generate input coupling circuit
909        let input_coupling_circuit = Self::generate_input_coupling_circuit(&config)?;
910
911        // Initialize output weights randomly
912        let output_size = Self::calculate_output_size(&config);
913        let feature_size = Self::calculate_feature_size(&config);
914        let mut output_weights = Array2::zeros((output_size, feature_size));
915
916        // Xavier initialization
917        let scale = (2.0 / (output_size + feature_size) as f64).sqrt();
918        for elem in output_weights.iter_mut() {
919            *elem = (fastrand::f64() - 0.5) * 2.0 * scale;
920        }
921
922        // Initialize time series predictor if enabled
923        let time_series_predictor =
924            if config.time_series_config.enable_arima || config.time_series_config.enable_nar {
925                Some(TimeSeriesPredictor::new(&config.time_series_config))
926            } else {
927                None
928            };
929
930        // Initialize memory analyzer
931        let memory_analyzer = MemoryAnalyzer::new(config.memory_config.clone());
932
933        Ok(Self {
934            config,
935            reservoir_state,
936            reservoir_circuit,
937            input_coupling_circuit,
938            output_weights,
939            time_series_predictor,
940            memory_analyzer,
941            simulator,
942            circuit_interface,
943            metrics: ReservoirMetrics::default(),
944            training_history: VecDeque::with_capacity(10000),
945            backend: None,
946            rng: Arc::new(Mutex::new(rand::thread_rng())),
947        })
948    }
949
950    /// Generate reservoir circuit based on architecture
951    fn generate_reservoir_circuit(config: &QuantumReservoirConfig) -> Result<InterfaceCircuit> {
952        let mut circuit = InterfaceCircuit::new(config.num_qubits, 0);
953
954        match config.architecture {
955            QuantumReservoirArchitecture::RandomCircuit => {
956                Self::generate_random_circuit(&mut circuit, config)?;
957            }
958            QuantumReservoirArchitecture::SpinChain => {
959                Self::generate_spin_chain_circuit(&mut circuit, config)?;
960            }
961            QuantumReservoirArchitecture::TransverseFieldIsing => {
962                Self::generate_tfim_circuit(&mut circuit, config)?;
963            }
964            QuantumReservoirArchitecture::SmallWorld => {
965                Self::generate_small_world_circuit(&mut circuit, config)?;
966            }
967            QuantumReservoirArchitecture::FullyConnected => {
968                Self::generate_fully_connected_circuit(&mut circuit, config)?;
969            }
970            QuantumReservoirArchitecture::ScaleFree => {
971                Self::generate_scale_free_circuit(&mut circuit, config)?;
972            }
973            QuantumReservoirArchitecture::HierarchicalModular => {
974                Self::generate_hierarchical_circuit(&mut circuit, config)?;
975            }
976            QuantumReservoirArchitecture::Ring => {
977                Self::generate_ring_circuit(&mut circuit, config)?;
978            }
979            QuantumReservoirArchitecture::Grid => {
980                Self::generate_grid_circuit(&mut circuit, config)?;
981            }
982            _ => {
983                // Default to random circuit for other architectures
984                Self::generate_random_circuit(&mut circuit, config)?;
985            }
986        }
987
988        Ok(circuit)
989    }
990
991    /// Generate random quantum circuit
992    fn generate_random_circuit(
993        circuit: &mut InterfaceCircuit,
994        config: &QuantumReservoirConfig,
995    ) -> Result<()> {
996        let depth = config.evolution_steps;
997
998        for _ in 0..depth {
999            // Add random single-qubit gates
1000            for qubit in 0..config.num_qubits {
1001                let angle = fastrand::f64() * 2.0 * PI;
1002                let gate_type = match fastrand::usize(0..3) {
1003                    0 => InterfaceGateType::RX(angle),
1004                    1 => InterfaceGateType::RY(angle),
1005                    _ => InterfaceGateType::RZ(angle),
1006                };
1007                circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
1008            }
1009
1010            // Add random two-qubit gates
1011            for _ in 0..(config.num_qubits / 2) {
1012                let qubit1 = fastrand::usize(0..config.num_qubits);
1013                let qubit2 = fastrand::usize(0..config.num_qubits);
1014                if qubit1 != qubit2 {
1015                    circuit.add_gate(InterfaceGate::new(
1016                        InterfaceGateType::CNOT,
1017                        vec![qubit1, qubit2],
1018                    ));
1019                }
1020            }
1021        }
1022
1023        Ok(())
1024    }
1025
1026    /// Generate spin chain circuit
1027    fn generate_spin_chain_circuit(
1028        circuit: &mut InterfaceCircuit,
1029        config: &QuantumReservoirConfig,
1030    ) -> Result<()> {
1031        let coupling = config.coupling_strength;
1032
1033        for _ in 0..config.evolution_steps {
1034            // Nearest-neighbor interactions
1035            for i in 0..config.num_qubits - 1 {
1036                // ZZ interaction
1037                circuit.add_gate(InterfaceGate::new(
1038                    InterfaceGateType::RZ(coupling * config.time_step),
1039                    vec![i],
1040                ));
1041                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1042                circuit.add_gate(InterfaceGate::new(
1043                    InterfaceGateType::RZ(coupling * config.time_step),
1044                    vec![i + 1],
1045                ));
1046                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1047            }
1048        }
1049
1050        Ok(())
1051    }
1052
1053    /// Generate transverse field Ising model circuit
1054    fn generate_tfim_circuit(
1055        circuit: &mut InterfaceCircuit,
1056        config: &QuantumReservoirConfig,
1057    ) -> Result<()> {
1058        let coupling = config.coupling_strength;
1059        let field = coupling * 0.5; // Transverse field strength
1060
1061        for _ in 0..config.evolution_steps {
1062            // Transverse field (X rotations)
1063            for qubit in 0..config.num_qubits {
1064                circuit.add_gate(InterfaceGate::new(
1065                    InterfaceGateType::RX(field * config.time_step),
1066                    vec![qubit],
1067                ));
1068            }
1069
1070            // Nearest-neighbor ZZ interactions
1071            for i in 0..config.num_qubits - 1 {
1072                circuit.add_gate(InterfaceGate::new(
1073                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1074                    vec![i],
1075                ));
1076                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1077                circuit.add_gate(InterfaceGate::new(
1078                    InterfaceGateType::RZ(coupling * config.time_step),
1079                    vec![i + 1],
1080                ));
1081                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
1082                circuit.add_gate(InterfaceGate::new(
1083                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1084                    vec![i],
1085                ));
1086            }
1087        }
1088
1089        Ok(())
1090    }
1091
1092    /// Generate small-world network circuit
1093    fn generate_small_world_circuit(
1094        circuit: &mut InterfaceCircuit,
1095        config: &QuantumReservoirConfig,
1096    ) -> Result<()> {
1097        let coupling = config.coupling_strength;
1098        let rewiring_prob = 0.1; // Small-world rewiring probability
1099
1100        for _ in 0..config.evolution_steps {
1101            // Regular lattice connections
1102            for i in 0..config.num_qubits {
1103                let next = (i + 1) % config.num_qubits;
1104
1105                // Random rewiring
1106                let target = if fastrand::f64() < rewiring_prob {
1107                    fastrand::usize(0..config.num_qubits)
1108                } else {
1109                    next
1110                };
1111
1112                if target != i {
1113                    circuit.add_gate(InterfaceGate::new(
1114                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1115                        vec![i],
1116                    ));
1117                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, target]));
1118                    circuit.add_gate(InterfaceGate::new(
1119                        InterfaceGateType::RZ(coupling * config.time_step),
1120                        vec![target],
1121                    ));
1122                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, target]));
1123                    circuit.add_gate(InterfaceGate::new(
1124                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1125                        vec![i],
1126                    ));
1127                }
1128            }
1129        }
1130
1131        Ok(())
1132    }
1133
1134    /// Generate fully connected circuit
1135    fn generate_fully_connected_circuit(
1136        circuit: &mut InterfaceCircuit,
1137        config: &QuantumReservoirConfig,
1138    ) -> Result<()> {
1139        let coupling = config.coupling_strength / config.num_qubits as f64; // Scale by system size
1140
1141        for _ in 0..config.evolution_steps {
1142            // All-to-all interactions
1143            for i in 0..config.num_qubits {
1144                for j in i + 1..config.num_qubits {
1145                    circuit.add_gate(InterfaceGate::new(
1146                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1147                        vec![i],
1148                    ));
1149                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1150                    circuit.add_gate(InterfaceGate::new(
1151                        InterfaceGateType::RZ(coupling * config.time_step),
1152                        vec![j],
1153                    ));
1154                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1155                    circuit.add_gate(InterfaceGate::new(
1156                        InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1157                        vec![i],
1158                    ));
1159                }
1160            }
1161        }
1162
1163        Ok(())
1164    }
1165
1166    /// Generate scale-free network circuit
1167    fn generate_scale_free_circuit(
1168        circuit: &mut InterfaceCircuit,
1169        config: &QuantumReservoirConfig,
1170    ) -> Result<()> {
1171        // Implement scale-free topology with preferential attachment
1172        let mut degree_dist = vec![1; config.num_qubits];
1173        let coupling = config.coupling_strength;
1174
1175        for _ in 0..config.evolution_steps {
1176            // Scale-free connections based on degree distribution
1177            for i in 0..config.num_qubits {
1178                // Probability proportional to degree
1179                let total_degree: usize = degree_dist.iter().sum();
1180                let prob_threshold = degree_dist[i] as f64 / total_degree as f64;
1181
1182                if fastrand::f64() < prob_threshold {
1183                    let j = fastrand::usize(0..config.num_qubits);
1184                    if i != j {
1185                        // Add interaction
1186                        circuit.add_gate(InterfaceGate::new(
1187                            InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1188                            vec![i],
1189                        ));
1190                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1191                        circuit.add_gate(InterfaceGate::new(
1192                            InterfaceGateType::RZ(coupling * config.time_step),
1193                            vec![j],
1194                        ));
1195                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1196
1197                        // Update degrees
1198                        degree_dist[i] += 1;
1199                        degree_dist[j] += 1;
1200                    }
1201                }
1202            }
1203        }
1204
1205        Ok(())
1206    }
1207
1208    /// Generate hierarchical modular circuit
1209    fn generate_hierarchical_circuit(
1210        circuit: &mut InterfaceCircuit,
1211        config: &QuantumReservoirConfig,
1212    ) -> Result<()> {
1213        let coupling = config.coupling_strength;
1214        let module_size = (config.num_qubits as f64).sqrt() as usize;
1215
1216        for _ in 0..config.evolution_steps {
1217            // Intra-module connections (stronger)
1218            for module in 0..(config.num_qubits / module_size) {
1219                let start = module * module_size;
1220                let end = ((module + 1) * module_size).min(config.num_qubits);
1221
1222                for i in start..end {
1223                    for j in (i + 1)..end {
1224                        circuit.add_gate(InterfaceGate::new(
1225                            InterfaceGateType::RZ(coupling * config.time_step),
1226                            vec![i],
1227                        ));
1228                        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1229                    }
1230                }
1231            }
1232
1233            // Inter-module connections (weaker)
1234            for i in 0..config.num_qubits {
1235                let j = fastrand::usize(0..config.num_qubits);
1236                if i / module_size != j / module_size && i != j {
1237                    circuit.add_gate(InterfaceGate::new(
1238                        InterfaceGateType::RZ(coupling * config.time_step * 0.3),
1239                        vec![i],
1240                    ));
1241                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1242                }
1243            }
1244        }
1245
1246        Ok(())
1247    }
1248
1249    /// Generate ring topology circuit
1250    fn generate_ring_circuit(
1251        circuit: &mut InterfaceCircuit,
1252        config: &QuantumReservoirConfig,
1253    ) -> Result<()> {
1254        let coupling = config.coupling_strength;
1255
1256        for _ in 0..config.evolution_steps {
1257            // Ring connections
1258            for i in 0..config.num_qubits {
1259                let j = (i + 1) % config.num_qubits;
1260
1261                circuit.add_gate(InterfaceGate::new(
1262                    InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1263                    vec![i],
1264                ));
1265                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1266                circuit.add_gate(InterfaceGate::new(
1267                    InterfaceGateType::RZ(coupling * config.time_step),
1268                    vec![j],
1269                ));
1270                circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1271            }
1272
1273            // Long-range connections (sparse)
1274            if fastrand::f64() < 0.1 {
1275                let i = fastrand::usize(0..config.num_qubits);
1276                let j = fastrand::usize(0..config.num_qubits);
1277                if i != j && (i as i32 - j as i32).abs() > 2 {
1278                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
1279                }
1280            }
1281        }
1282
1283        Ok(())
1284    }
1285
1286    /// Generate grid topology circuit
1287    fn generate_grid_circuit(
1288        circuit: &mut InterfaceCircuit,
1289        config: &QuantumReservoirConfig,
1290    ) -> Result<()> {
1291        let coupling = config.coupling_strength;
1292        let grid_size = (config.num_qubits as f64).sqrt() as usize;
1293
1294        for _ in 0..config.evolution_steps {
1295            // Grid connections (nearest neighbors)
1296            for i in 0..grid_size {
1297                for j in 0..grid_size {
1298                    let current = i * grid_size + j;
1299                    if current >= config.num_qubits {
1300                        break;
1301                    }
1302
1303                    // Right neighbor
1304                    if j + 1 < grid_size {
1305                        let neighbor = i * grid_size + j + 1;
1306                        if neighbor < config.num_qubits {
1307                            circuit.add_gate(InterfaceGate::new(
1308                                InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1309                                vec![current],
1310                            ));
1311                            circuit.add_gate(InterfaceGate::new(
1312                                InterfaceGateType::CNOT,
1313                                vec![current, neighbor],
1314                            ));
1315                        }
1316                    }
1317
1318                    // Bottom neighbor
1319                    if i + 1 < grid_size {
1320                        let neighbor = (i + 1) * grid_size + j;
1321                        if neighbor < config.num_qubits {
1322                            circuit.add_gate(InterfaceGate::new(
1323                                InterfaceGateType::RZ(coupling * config.time_step / 2.0),
1324                                vec![current],
1325                            ));
1326                            circuit.add_gate(InterfaceGate::new(
1327                                InterfaceGateType::CNOT,
1328                                vec![current, neighbor],
1329                            ));
1330                        }
1331                    }
1332                }
1333            }
1334        }
1335
1336        Ok(())
1337    }
1338
1339    /// Generate input coupling circuit
1340    fn generate_input_coupling_circuit(
1341        config: &QuantumReservoirConfig,
1342    ) -> Result<InterfaceCircuit> {
1343        let mut circuit = InterfaceCircuit::new(config.num_qubits, 0);
1344
1345        match config.input_encoding {
1346            InputEncoding::Amplitude => {
1347                // Amplitude encoding through controlled rotations
1348                for qubit in 0..config.num_qubits {
1349                    circuit.add_gate(InterfaceGate::new(
1350                        InterfaceGateType::RY(0.0), // Will be set dynamically
1351                        vec![qubit],
1352                    ));
1353                }
1354            }
1355            InputEncoding::Phase => {
1356                // Phase encoding through Z rotations
1357                for qubit in 0..config.num_qubits {
1358                    circuit.add_gate(InterfaceGate::new(
1359                        InterfaceGateType::RZ(0.0), // Will be set dynamically
1360                        vec![qubit],
1361                    ));
1362                }
1363            }
1364            InputEncoding::BasisState => {
1365                // Basis state encoding through X gates
1366                for qubit in 0..config.num_qubits {
1367                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::X, vec![qubit]));
1368                }
1369            }
1370            InputEncoding::Angle => {
1371                // Angle encoding with multiple rotation axes
1372                for qubit in 0..config.num_qubits {
1373                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RX(0.0), vec![qubit]));
1374                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
1375                }
1376            }
1377            _ => {
1378                // Default to amplitude encoding
1379                for qubit in 0..config.num_qubits {
1380                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.0), vec![qubit]));
1381                }
1382            }
1383        }
1384
1385        Ok(circuit)
1386    }
1387
1388    /// Calculate output size based on configuration
1389    fn calculate_output_size(config: &QuantumReservoirConfig) -> usize {
1390        // For time series prediction, typically 1 output
1391        1
1392    }
1393
1394    /// Calculate feature size based on configuration
1395    fn calculate_feature_size(config: &QuantumReservoirConfig) -> usize {
1396        match config.output_measurement {
1397            OutputMeasurement::PauliExpectation => config.num_qubits * 3,
1398            OutputMeasurement::Probability => 1 << config.num_qubits.min(10), // Limit for memory
1399            OutputMeasurement::Correlations => config.num_qubits * config.num_qubits,
1400            OutputMeasurement::Entanglement => config.num_qubits,
1401            OutputMeasurement::Fidelity => 1,
1402            OutputMeasurement::QuantumFisherInformation => config.num_qubits,
1403            OutputMeasurement::Variance => config.num_qubits * 3,
1404            OutputMeasurement::HigherOrderMoments => config.num_qubits * 6, // Up to 3rd moments
1405            OutputMeasurement::SpectralProperties => config.num_qubits,
1406            OutputMeasurement::QuantumCoherence => config.num_qubits,
1407            OutputMeasurement::Purity => 1,
1408            OutputMeasurement::QuantumMutualInformation => config.num_qubits * config.num_qubits,
1409            OutputMeasurement::ProcessTomography => config.num_qubits * config.num_qubits * 4,
1410            OutputMeasurement::TemporalCorrelations => config.memory_capacity,
1411            OutputMeasurement::NonLinearReadout => config.num_qubits * 2,
1412        }
1413    }
1414
1415    /// Process input through quantum reservoir
1416    pub fn process_input(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
1417        let start_time = std::time::Instant::now();
1418
1419        // Encode input into quantum state
1420        self.encode_input(input)?;
1421
1422        // Evolve through reservoir dynamics
1423        self.evolve_reservoir()?;
1424
1425        // Extract features from reservoir state
1426        let features = self.extract_features()?;
1427
1428        // Update reservoir state with timestamp
1429        let timestamp = start_time.elapsed().as_secs_f64();
1430        self.reservoir_state
1431            .update_state(self.reservoir_state.state_vector.clone(), timestamp);
1432
1433        // Update metrics
1434        let processing_time = start_time.elapsed().as_secs_f64() * 1000.0;
1435        self.update_processing_time(processing_time);
1436
1437        Ok(features)
1438    }
1439
1440    /// Encode input data into quantum state
1441    fn encode_input(&mut self, input: &Array1<f64>) -> Result<()> {
1442        match self.config.input_encoding {
1443            InputEncoding::Amplitude => {
1444                self.encode_amplitude(input)?;
1445            }
1446            InputEncoding::Phase => {
1447                self.encode_phase(input)?;
1448            }
1449            InputEncoding::BasisState => {
1450                self.encode_basis_state(input)?;
1451            }
1452            InputEncoding::Angle => {
1453                self.encode_angle(input)?;
1454            }
1455            _ => {
1456                self.encode_amplitude(input)?;
1457            }
1458        }
1459        Ok(())
1460    }
1461
1462    /// Amplitude encoding
1463    fn encode_amplitude(&mut self, input: &Array1<f64>) -> Result<()> {
1464        let num_inputs = input.len().min(self.config.num_qubits);
1465
1466        for i in 0..num_inputs {
1467            let angle = input[i] * PI; // Scale to [0, π]
1468            self.apply_single_qubit_rotation(i, InterfaceGateType::RY(angle))?;
1469        }
1470
1471        Ok(())
1472    }
1473
1474    /// Phase encoding
1475    fn encode_phase(&mut self, input: &Array1<f64>) -> Result<()> {
1476        let num_inputs = input.len().min(self.config.num_qubits);
1477
1478        for i in 0..num_inputs {
1479            let angle = input[i] * 2.0 * PI; // Full phase range
1480            self.apply_single_qubit_rotation(i, InterfaceGateType::RZ(angle))?;
1481        }
1482
1483        Ok(())
1484    }
1485
1486    /// Basis state encoding
1487    fn encode_basis_state(&mut self, input: &Array1<f64>) -> Result<()> {
1488        let num_inputs = input.len().min(self.config.num_qubits);
1489
1490        for i in 0..num_inputs {
1491            if input[i] > 0.5 {
1492                self.apply_single_qubit_gate(i, InterfaceGateType::X)?;
1493            }
1494        }
1495
1496        Ok(())
1497    }
1498
1499    /// Angle encoding with multiple rotation axes
1500    fn encode_angle(&mut self, input: &Array1<f64>) -> Result<()> {
1501        let num_inputs = input.len().min(self.config.num_qubits);
1502
1503        for i in 0..num_inputs {
1504            let angle_x = input[i] * PI;
1505            let angle_y = if i + 1 < input.len() {
1506                input[i + 1] * PI
1507            } else {
1508                0.0
1509            };
1510
1511            self.apply_single_qubit_rotation(i, InterfaceGateType::RX(angle_x))?;
1512            self.apply_single_qubit_rotation(i, InterfaceGateType::RY(angle_y))?;
1513        }
1514
1515        Ok(())
1516    }
1517
1518    /// Apply single qubit rotation
1519    fn apply_single_qubit_rotation(
1520        &mut self,
1521        qubit: usize,
1522        gate_type: InterfaceGateType,
1523    ) -> Result<()> {
1524        let mut temp_circuit = InterfaceCircuit::new(self.config.num_qubits, 0);
1525        temp_circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
1526
1527        self.simulator.apply_interface_circuit(&temp_circuit)?;
1528
1529        Ok(())
1530    }
1531
1532    /// Apply single qubit gate
1533    fn apply_single_qubit_gate(
1534        &mut self,
1535        qubit: usize,
1536        gate_type: InterfaceGateType,
1537    ) -> Result<()> {
1538        let mut temp_circuit = InterfaceCircuit::new(self.config.num_qubits, 0);
1539        temp_circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
1540
1541        self.simulator.apply_interface_circuit(&temp_circuit)?;
1542
1543        Ok(())
1544    }
1545
1546    /// Evolve quantum reservoir through dynamics
1547    fn evolve_reservoir(&mut self) -> Result<()> {
1548        match self.config.dynamics {
1549            ReservoirDynamics::Unitary => {
1550                self.evolve_unitary()?;
1551            }
1552            ReservoirDynamics::Open => {
1553                self.evolve_open_system()?;
1554            }
1555            ReservoirDynamics::NISQ => {
1556                self.evolve_nisq()?;
1557            }
1558            ReservoirDynamics::Adiabatic => {
1559                self.evolve_adiabatic()?;
1560            }
1561            ReservoirDynamics::Floquet => {
1562                self.evolve_floquet()?;
1563            }
1564            _ => {
1565                // Default to unitary evolution
1566                self.evolve_unitary()?;
1567            }
1568        }
1569        Ok(())
1570    }
1571
1572    /// Unitary evolution
1573    fn evolve_unitary(&mut self) -> Result<()> {
1574        self.simulator
1575            .apply_interface_circuit(&self.reservoir_circuit)?;
1576        Ok(())
1577    }
1578
1579    /// Open system evolution with noise
1580    fn evolve_open_system(&mut self) -> Result<()> {
1581        // Apply unitary evolution first
1582        self.evolve_unitary()?;
1583
1584        // Apply decoherence
1585        self.apply_decoherence()?;
1586
1587        Ok(())
1588    }
1589
1590    /// NISQ evolution with realistic noise
1591    fn evolve_nisq(&mut self) -> Result<()> {
1592        // Apply unitary evolution
1593        self.evolve_unitary()?;
1594
1595        // Apply gate errors
1596        self.apply_gate_errors()?;
1597
1598        // Apply measurement errors
1599        self.apply_measurement_errors()?;
1600
1601        Ok(())
1602    }
1603
1604    /// Adiabatic evolution
1605    fn evolve_adiabatic(&mut self) -> Result<()> {
1606        // Simplified adiabatic evolution
1607        // In practice, this would implement proper adiabatic dynamics
1608        self.evolve_unitary()?;
1609        Ok(())
1610    }
1611
1612    /// Floquet evolution with periodic driving
1613    fn evolve_floquet(&mut self) -> Result<()> {
1614        // Apply time-dependent Hamiltonian
1615        let drive_frequency = 1.0;
1616        let time = self.reservoir_state.time_index as f64 * self.config.time_step;
1617        let drive_strength = (drive_frequency * time).sin();
1618
1619        // Apply driving field
1620        for qubit in 0..self.config.num_qubits {
1621            let angle = drive_strength * self.config.time_step;
1622            self.apply_single_qubit_rotation(qubit, InterfaceGateType::RX(angle))?;
1623        }
1624
1625        // Apply base evolution
1626        self.evolve_unitary()?;
1627
1628        Ok(())
1629    }
1630
1631    /// Apply decoherence to the reservoir state
1632    fn apply_decoherence(&mut self) -> Result<()> {
1633        let decoherence_rate = self.config.noise_level;
1634
1635        for amplitude in self.reservoir_state.state_vector.iter_mut() {
1636            // Apply phase decoherence
1637            let phase_noise = (fastrand::f64() - 0.5) * decoherence_rate * 2.0 * PI;
1638            *amplitude *= Complex64::new(0.0, phase_noise).exp();
1639
1640            // Apply amplitude damping
1641            let damping = (1.0 - decoherence_rate).sqrt();
1642            *amplitude *= damping;
1643        }
1644
1645        // Renormalize
1646        let norm: f64 = self
1647            .reservoir_state
1648            .state_vector
1649            .iter()
1650            .map(|x| x.norm_sqr())
1651            .sum::<f64>()
1652            .sqrt();
1653
1654        if norm > 1e-15 {
1655            self.reservoir_state.state_vector.mapv_inplace(|x| x / norm);
1656        }
1657
1658        Ok(())
1659    }
1660
1661    /// Apply gate errors
1662    fn apply_gate_errors(&mut self) -> Result<()> {
1663        let error_rate = self.config.noise_level;
1664
1665        for qubit in 0..self.config.num_qubits {
1666            if fastrand::f64() < error_rate {
1667                let error_type = fastrand::usize(0..3);
1668                let gate_type = match error_type {
1669                    0 => InterfaceGateType::X,
1670                    1 => InterfaceGateType::PauliY,
1671                    _ => InterfaceGateType::PauliZ,
1672                };
1673                self.apply_single_qubit_gate(qubit, gate_type)?;
1674            }
1675        }
1676
1677        Ok(())
1678    }
1679
1680    /// Apply measurement errors
1681    fn apply_measurement_errors(&mut self) -> Result<()> {
1682        let error_rate = self.config.noise_level * 0.1; // Lower rate for measurement errors
1683
1684        if fastrand::f64() < error_rate {
1685            let qubit = fastrand::usize(0..self.config.num_qubits);
1686            self.apply_single_qubit_gate(qubit, InterfaceGateType::X)?;
1687        }
1688
1689        Ok(())
1690    }
1691
1692    /// Extract features from reservoir state
1693    fn extract_features(&mut self) -> Result<Array1<f64>> {
1694        match self.config.output_measurement {
1695            OutputMeasurement::PauliExpectation => self.measure_pauli_expectations(),
1696            OutputMeasurement::Probability => self.measure_probabilities(),
1697            OutputMeasurement::Correlations => self.measure_correlations(),
1698            OutputMeasurement::Entanglement => self.measure_entanglement(),
1699            OutputMeasurement::Fidelity => self.measure_fidelity(),
1700            OutputMeasurement::QuantumFisherInformation => {
1701                self.measure_quantum_fisher_information()
1702            }
1703            OutputMeasurement::Variance => self.measure_variance(),
1704            OutputMeasurement::HigherOrderMoments => self.measure_higher_order_moments(),
1705            OutputMeasurement::QuantumCoherence => self.measure_quantum_coherence(),
1706            OutputMeasurement::Purity => self.measure_purity(),
1707            OutputMeasurement::TemporalCorrelations => self.measure_temporal_correlations(),
1708            _ => {
1709                // Default to Pauli expectations
1710                self.measure_pauli_expectations()
1711            }
1712        }
1713    }
1714
1715    /// Measure Pauli expectation values
1716    fn measure_pauli_expectations(&self) -> Result<Array1<f64>> {
1717        let mut expectations = Vec::new();
1718
1719        for qubit in 0..self.config.num_qubits {
1720            // X expectation
1721            let x_exp = self.calculate_single_qubit_expectation(
1722                qubit,
1723                &[
1724                    Complex64::new(0.0, 0.0),
1725                    Complex64::new(1.0, 0.0),
1726                    Complex64::new(1.0, 0.0),
1727                    Complex64::new(0.0, 0.0),
1728                ],
1729            )?;
1730            expectations.push(x_exp);
1731
1732            // Y expectation
1733            let y_exp = self.calculate_single_qubit_expectation(
1734                qubit,
1735                &[
1736                    Complex64::new(0.0, 0.0),
1737                    Complex64::new(0.0, -1.0),
1738                    Complex64::new(0.0, 1.0),
1739                    Complex64::new(0.0, 0.0),
1740                ],
1741            )?;
1742            expectations.push(y_exp);
1743
1744            // Z expectation
1745            let z_exp = self.calculate_single_qubit_expectation(
1746                qubit,
1747                &[
1748                    Complex64::new(1.0, 0.0),
1749                    Complex64::new(0.0, 0.0),
1750                    Complex64::new(0.0, 0.0),
1751                    Complex64::new(-1.0, 0.0),
1752                ],
1753            )?;
1754            expectations.push(z_exp);
1755        }
1756
1757        Ok(Array1::from_vec(expectations))
1758    }
1759
1760    /// Calculate single qubit expectation value
1761    fn calculate_single_qubit_expectation(
1762        &self,
1763        qubit: usize,
1764        pauli_matrix: &[Complex64; 4],
1765    ) -> Result<f64> {
1766        let state = &self.reservoir_state.state_vector;
1767        let mut expectation = 0.0;
1768
1769        for i in 0..state.len() {
1770            for j in 0..state.len() {
1771                let i_bit = (i >> qubit) & 1;
1772                let j_bit = (j >> qubit) & 1;
1773                let matrix_element = pauli_matrix[i_bit * 2 + j_bit];
1774
1775                expectation += (state[i].conj() * matrix_element * state[j]).re;
1776            }
1777        }
1778
1779        Ok(expectation)
1780    }
1781
1782    /// Measure probability distribution
1783    fn measure_probabilities(&self) -> Result<Array1<f64>> {
1784        let probabilities: Vec<f64> = self
1785            .reservoir_state
1786            .state_vector
1787            .iter()
1788            .map(|x| x.norm_sqr())
1789            .collect();
1790
1791        // Limit size for large systems
1792        let max_size = 1 << 10; // 2^10 = 1024
1793        if probabilities.len() > max_size {
1794            // Sample random subset
1795            let mut sampled = Vec::with_capacity(max_size);
1796            for _ in 0..max_size {
1797                let idx = fastrand::usize(0..probabilities.len());
1798                sampled.push(probabilities[idx]);
1799            }
1800            Ok(Array1::from_vec(sampled))
1801        } else {
1802            Ok(Array1::from_vec(probabilities))
1803        }
1804    }
1805
1806    /// Measure two-qubit correlations
1807    fn measure_correlations(&mut self) -> Result<Array1<f64>> {
1808        let mut correlations = Vec::new();
1809
1810        for i in 0..self.config.num_qubits {
1811            for j in 0..self.config.num_qubits {
1812                if i != j {
1813                    // ZZ correlation
1814                    let corr = self.calculate_two_qubit_correlation(i, j)?;
1815                    correlations.push(corr);
1816                    self.reservoir_state.correlations[[i, j]] = corr;
1817                } else {
1818                    correlations.push(1.0); // Self-correlation
1819                    self.reservoir_state.correlations[[i, j]] = 1.0;
1820                }
1821            }
1822        }
1823
1824        Ok(Array1::from_vec(correlations))
1825    }
1826
1827    /// Calculate two-qubit correlation
1828    fn calculate_two_qubit_correlation(&self, qubit1: usize, qubit2: usize) -> Result<f64> {
1829        let state = &self.reservoir_state.state_vector;
1830        let mut correlation = 0.0;
1831
1832        for i in 0..state.len() {
1833            let bit1 = (i >> qubit1) & 1;
1834            let bit2 = (i >> qubit2) & 1;
1835            let sign = if bit1 == bit2 { 1.0 } else { -1.0 };
1836            correlation += sign * state[i].norm_sqr();
1837        }
1838
1839        Ok(correlation)
1840    }
1841
1842    /// Measure entanglement metrics
1843    fn measure_entanglement(&self) -> Result<Array1<f64>> {
1844        let mut entanglement_measures = Vec::new();
1845
1846        // Simplified entanglement measures
1847        for qubit in 0..self.config.num_qubits {
1848            // Von Neumann entropy of reduced state (approximation)
1849            let entropy = self.calculate_von_neumann_entropy(qubit)?;
1850            entanglement_measures.push(entropy);
1851        }
1852
1853        Ok(Array1::from_vec(entanglement_measures))
1854    }
1855
1856    /// Calculate von Neumann entropy (simplified)
1857    fn calculate_von_neumann_entropy(&self, _qubit: usize) -> Result<f64> {
1858        let state = &self.reservoir_state.state_vector;
1859        let mut entropy = 0.0;
1860
1861        for amplitude in state.iter() {
1862            let prob = amplitude.norm_sqr();
1863            if prob > 1e-15 {
1864                entropy -= prob * prob.ln();
1865            }
1866        }
1867
1868        Ok(entropy / (state.len() as f64).ln()) // Normalized entropy
1869    }
1870
1871    /// Measure fidelity with reference state
1872    fn measure_fidelity(&self) -> Result<Array1<f64>> {
1873        // Fidelity with initial state |0...0⟩
1874        let fidelity = self.reservoir_state.state_vector[0].norm_sqr();
1875        Ok(Array1::from_vec(vec![fidelity]))
1876    }
1877
1878    /// Measure quantum Fisher information
1879    fn measure_quantum_fisher_information(&self) -> Result<Array1<f64>> {
1880        let mut qfi_values = Vec::new();
1881
1882        for qubit in 0..self.config.num_qubits {
1883            // Simplified QFI calculation for single qubit observables
1884            let z_exp = self.calculate_single_qubit_expectation(
1885                qubit,
1886                &[
1887                    Complex64::new(1.0, 0.0),
1888                    Complex64::new(0.0, 0.0),
1889                    Complex64::new(0.0, 0.0),
1890                    Complex64::new(-1.0, 0.0),
1891                ],
1892            )?;
1893
1894            // QFI ≈ 4 * Var(Z) for single qubit
1895            let qfi = 4.0 * (1.0 - z_exp * z_exp);
1896            qfi_values.push(qfi);
1897        }
1898
1899        Ok(Array1::from_vec(qfi_values))
1900    }
1901
1902    /// Measure variance of observables
1903    fn measure_variance(&self) -> Result<Array1<f64>> {
1904        let mut variances = Vec::new();
1905
1906        for qubit in 0..self.config.num_qubits {
1907            // X, Y, Z variances
1908            for pauli_idx in 0..3 {
1909                let pauli_matrix = match pauli_idx {
1910                    0 => [
1911                        Complex64::new(0.0, 0.0),
1912                        Complex64::new(1.0, 0.0),
1913                        Complex64::new(1.0, 0.0),
1914                        Complex64::new(0.0, 0.0),
1915                    ],
1916                    1 => [
1917                        Complex64::new(0.0, 0.0),
1918                        Complex64::new(0.0, -1.0),
1919                        Complex64::new(0.0, 1.0),
1920                        Complex64::new(0.0, 0.0),
1921                    ],
1922                    _ => [
1923                        Complex64::new(1.0, 0.0),
1924                        Complex64::new(0.0, 0.0),
1925                        Complex64::new(0.0, 0.0),
1926                        Complex64::new(-1.0, 0.0),
1927                    ],
1928                };
1929
1930                let expectation = self.calculate_single_qubit_expectation(qubit, &pauli_matrix)?;
1931                let variance = 1.0 - expectation * expectation; // For Pauli operators
1932                variances.push(variance);
1933            }
1934        }
1935
1936        Ok(Array1::from_vec(variances))
1937    }
1938
1939    /// Measure higher-order moments
1940    fn measure_higher_order_moments(&self) -> Result<Array1<f64>> {
1941        let mut moments = Vec::new();
1942
1943        for qubit in 0..self.config.num_qubits {
1944            // Calculate moments up to 3rd order for Z observable
1945            let z_exp = self.calculate_single_qubit_expectation(
1946                qubit,
1947                &[
1948                    Complex64::new(1.0, 0.0),
1949                    Complex64::new(0.0, 0.0),
1950                    Complex64::new(0.0, 0.0),
1951                    Complex64::new(-1.0, 0.0),
1952                ],
1953            )?;
1954
1955            // First moment (mean)
1956            moments.push(z_exp);
1957
1958            // Second central moment (variance)
1959            let variance = 1.0 - z_exp * z_exp;
1960            moments.push(variance);
1961
1962            // Third central moment (skewness measure)
1963            // For Pauli-Z, this is typically zero due to symmetry
1964            moments.push(0.0);
1965
1966            // Kurtosis measure
1967            moments.push(variance * variance);
1968
1969            // Fifth moment (for more complex characterization)
1970            moments.push(z_exp * variance);
1971
1972            // Sixth moment
1973            moments.push(variance * variance * variance);
1974        }
1975
1976        Ok(Array1::from_vec(moments))
1977    }
1978
1979    /// Measure quantum coherence
1980    fn measure_quantum_coherence(&self) -> Result<Array1<f64>> {
1981        let mut coherence_measures = Vec::new();
1982
1983        for qubit in 0..self.config.num_qubits {
1984            // L1 norm of coherence (off-diagonal elements in computational basis)
1985            let mut coherence = 0.0;
1986            let state = &self.reservoir_state.state_vector;
1987
1988            for i in 0..state.len() {
1989                for j in 0..state.len() {
1990                    if i != j {
1991                        let i_bit = (i >> qubit) & 1;
1992                        let j_bit = (j >> qubit) & 1;
1993                        if i_bit != j_bit {
1994                            coherence += (state[i].conj() * state[j]).norm();
1995                        }
1996                    }
1997                }
1998            }
1999
2000            coherence_measures.push(coherence);
2001        }
2002
2003        Ok(Array1::from_vec(coherence_measures))
2004    }
2005
2006    /// Measure purity
2007    fn measure_purity(&self) -> Result<Array1<f64>> {
2008        // Purity = Tr(ρ²) for the full state
2009        let state = &self.reservoir_state.state_vector;
2010        let purity = state.iter().map(|x| x.norm_sqr().powi(2)).sum::<f64>();
2011
2012        Ok(Array1::from_vec(vec![purity]))
2013    }
2014
2015    /// Measure temporal correlations
2016    fn measure_temporal_correlations(&self) -> Result<Array1<f64>> {
2017        let mut correlations = Vec::new();
2018
2019        // Calculate autocorrelation with past states
2020        let current_state = &self.reservoir_state.state_vector;
2021
2022        for past_state in self.reservoir_state.state_history.iter() {
2023            let correlation = current_state
2024                .iter()
2025                .zip(past_state.iter())
2026                .map(|(a, b)| (a.conj() * b).re)
2027                .sum::<f64>();
2028            correlations.push(correlation);
2029        }
2030
2031        // Pad with zeros if not enough history
2032        while correlations.len() < self.config.memory_capacity {
2033            correlations.push(0.0);
2034        }
2035
2036        Ok(Array1::from_vec(correlations))
2037    }
2038
2039    /// Train the enhanced reservoir computer
2040    pub fn train(&mut self, training_data: &ReservoirTrainingData) -> Result<TrainingResult> {
2041        let start_time = std::time::Instant::now();
2042
2043        let mut all_features = Vec::new();
2044        let mut all_targets = Vec::new();
2045
2046        // Washout period
2047        for i in 0..self.config.washout_period.min(training_data.inputs.len()) {
2048            let _ = self.process_input(&training_data.inputs[i])?;
2049        }
2050
2051        // Collect training data after washout
2052        for i in self.config.washout_period..training_data.inputs.len() {
2053            let features = self.process_input(&training_data.inputs[i])?;
2054            all_features.push(features);
2055
2056            if i < training_data.targets.len() {
2057                all_targets.push(training_data.targets[i].clone());
2058            }
2059        }
2060
2061        // Train output weights using the specified learning algorithm
2062        self.train_with_learning_algorithm(&all_features, &all_targets)?;
2063
2064        // Analyze memory capacity if enabled
2065        if self.config.memory_config.enable_capacity_estimation {
2066            self.analyze_memory_capacity(&all_features)?;
2067        }
2068
2069        // Evaluate performance
2070        let (training_error, test_error) =
2071            self.evaluate_performance(&all_features, &all_targets)?;
2072
2073        let training_time = start_time.elapsed().as_secs_f64() * 1000.0;
2074
2075        // Update metrics
2076        self.metrics.training_examples += all_features.len();
2077        self.metrics.generalization_error = test_error;
2078        self.metrics.memory_capacity = self.reservoir_state.memory_metrics.total_capacity;
2079
2080        Ok(TrainingResult {
2081            training_error,
2082            test_error,
2083            training_time_ms: training_time,
2084            num_examples: all_features.len(),
2085            echo_state_property: self.estimate_echo_state_property()?,
2086            memory_capacity: self.reservoir_state.memory_metrics.total_capacity,
2087            nonlinear_capacity: self.reservoir_state.memory_metrics.nonlinear_capacity,
2088            processing_capacity: self.reservoir_state.memory_metrics.processing_capacity,
2089        })
2090    }
2091
2092    /// Train using advanced learning algorithms
2093    fn train_with_learning_algorithm(
2094        &mut self,
2095        features: &[Array1<f64>],
2096        targets: &[Array1<f64>],
2097    ) -> Result<()> {
2098        match self.config.learning_config.algorithm {
2099            LearningAlgorithm::Ridge => {
2100                self.train_ridge_regression(features, targets)?;
2101            }
2102            LearningAlgorithm::LASSO => {
2103                self.train_lasso_regression(features, targets)?;
2104            }
2105            LearningAlgorithm::ElasticNet => {
2106                self.train_elastic_net(features, targets)?;
2107            }
2108            LearningAlgorithm::RecursiveLeastSquares => {
2109                self.train_recursive_least_squares(features, targets)?;
2110            }
2111            LearningAlgorithm::KalmanFilter => {
2112                self.train_kalman_filter(features, targets)?;
2113            }
2114            _ => {
2115                // Default to ridge regression
2116                self.train_ridge_regression(features, targets)?;
2117            }
2118        }
2119
2120        Ok(())
2121    }
2122
2123    /// Train ridge regression
2124    fn train_ridge_regression(
2125        &mut self,
2126        features: &[Array1<f64>],
2127        targets: &[Array1<f64>],
2128    ) -> Result<()> {
2129        if features.is_empty() || targets.is_empty() {
2130            return Ok(());
2131        }
2132
2133        let n_samples = features.len().min(targets.len());
2134        let n_features = features[0].len();
2135        let n_outputs = targets[0].len().min(self.output_weights.nrows());
2136
2137        // Create feature matrix
2138        let mut feature_matrix = Array2::zeros((n_samples, n_features));
2139        for (i, feature_vec) in features.iter().enumerate().take(n_samples) {
2140            for (j, &val) in feature_vec.iter().enumerate().take(n_features) {
2141                feature_matrix[[i, j]] = val;
2142            }
2143        }
2144
2145        // Create target matrix
2146        let mut target_matrix = Array2::zeros((n_samples, n_outputs));
2147        for (i, target_vec) in targets.iter().enumerate().take(n_samples) {
2148            for (j, &val) in target_vec.iter().enumerate().take(n_outputs) {
2149                target_matrix[[i, j]] = val;
2150            }
2151        }
2152
2153        // Ridge regression: W = (X^T X + λI)^(-1) X^T Y
2154        let lambda = self.config.learning_config.regularization;
2155
2156        // X^T X
2157        let xtx = feature_matrix.t().dot(&feature_matrix);
2158
2159        // Add regularization
2160        let mut xtx_reg = xtx;
2161        for i in 0..xtx_reg.nrows().min(xtx_reg.ncols()) {
2162            xtx_reg[[i, i]] += lambda;
2163        }
2164
2165        // X^T Y
2166        let xty = feature_matrix.t().dot(&target_matrix);
2167
2168        // Solve using simplified approach (in practice would use proper linear solver)
2169        self.solve_linear_system(&xtx_reg, &xty)?;
2170
2171        Ok(())
2172    }
2173
2174    /// Train LASSO regression (simplified)
2175    fn train_lasso_regression(
2176        &mut self,
2177        features: &[Array1<f64>],
2178        targets: &[Array1<f64>],
2179    ) -> Result<()> {
2180        // Simplified LASSO using coordinate descent
2181        let lambda = self.config.learning_config.regularization;
2182        let max_iter = 100;
2183
2184        for _ in 0..max_iter {
2185            // Coordinate descent updates
2186            for j in 0..self.output_weights.ncols().min(features[0].len()) {
2187                for i in 0..self.output_weights.nrows().min(targets[0].len()) {
2188                    // Soft thresholding update
2189                    let old_weight = self.output_weights[[i, j]];
2190                    let gradient = self.compute_lasso_gradient(features, targets, i, j)?;
2191                    let update = old_weight - 0.01 * gradient;
2192
2193                    // Soft thresholding
2194                    self.output_weights[[i, j]] = if update > lambda {
2195                        update - lambda
2196                    } else if update < -lambda {
2197                        update + lambda
2198                    } else {
2199                        0.0
2200                    };
2201                }
2202            }
2203        }
2204
2205        Ok(())
2206    }
2207
2208    /// Compute LASSO gradient (simplified)
2209    fn compute_lasso_gradient(
2210        &self,
2211        features: &[Array1<f64>],
2212        targets: &[Array1<f64>],
2213        output_idx: usize,
2214        feature_idx: usize,
2215    ) -> Result<f64> {
2216        let mut gradient = 0.0;
2217
2218        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
2219            if feature_idx < feature_vec.len() && output_idx < target_vec.len() {
2220                let prediction = self.predict_single_output(feature_vec, output_idx)?;
2221                let error = prediction - target_vec[output_idx];
2222                gradient += error * feature_vec[feature_idx];
2223            }
2224        }
2225
2226        gradient /= features.len() as f64;
2227        Ok(gradient)
2228    }
2229
2230    /// Train Elastic Net regression
2231    fn train_elastic_net(
2232        &mut self,
2233        features: &[Array1<f64>],
2234        targets: &[Array1<f64>],
2235    ) -> Result<()> {
2236        let l1_ratio = self.config.learning_config.l1_ratio;
2237
2238        // Combine Ridge and LASSO with L1 ratio
2239        if l1_ratio > 0.5 {
2240            // More L1 regularization
2241            self.train_lasso_regression(features, targets)?;
2242        } else {
2243            // More L2 regularization
2244            self.train_ridge_regression(features, targets)?;
2245        }
2246
2247        Ok(())
2248    }
2249
2250    /// Train Recursive Least Squares
2251    fn train_recursive_least_squares(
2252        &mut self,
2253        features: &[Array1<f64>],
2254        targets: &[Array1<f64>],
2255    ) -> Result<()> {
2256        let forgetting_factor = self.config.learning_config.forgetting_factor;
2257        let n_features = features[0].len().min(self.output_weights.ncols());
2258        let n_outputs = targets[0].len().min(self.output_weights.nrows());
2259
2260        // Initialize covariance matrix
2261        let mut p_matrix = Array2::eye(n_features) * 1000.0; // Large initial covariance
2262
2263        // Online RLS updates
2264        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
2265            let x = feature_vec.slice(s![..n_features]).to_owned();
2266            let y = target_vec.slice(s![..n_outputs]).to_owned();
2267
2268            // Update covariance matrix
2269            let px = p_matrix.dot(&x);
2270            let denominator = forgetting_factor + x.dot(&px);
2271
2272            if denominator > 1e-15 {
2273                let k = &px / denominator;
2274
2275                // Update weights for each output
2276                for output_idx in 0..n_outputs {
2277                    let prediction = self.predict_single_output(feature_vec, output_idx)?;
2278                    let error = y[output_idx] - prediction;
2279
2280                    // RLS weight update
2281                    for feature_idx in 0..n_features {
2282                        self.output_weights[[output_idx, feature_idx]] += k[feature_idx] * error;
2283                    }
2284                }
2285
2286                // Update covariance matrix
2287                let outer_product = k
2288                    .view()
2289                    .insert_axis(Axis(1))
2290                    .dot(&x.view().insert_axis(Axis(0)));
2291                p_matrix = (p_matrix - outer_product) / forgetting_factor;
2292            }
2293        }
2294
2295        Ok(())
2296    }
2297
2298    /// Train Kalman filter
2299    fn train_kalman_filter(
2300        &mut self,
2301        features: &[Array1<f64>],
2302        targets: &[Array1<f64>],
2303    ) -> Result<()> {
2304        let process_noise = self.config.learning_config.process_noise;
2305        let measurement_noise = self.config.learning_config.measurement_noise;
2306
2307        let n_features = features[0].len().min(self.output_weights.ncols());
2308        let n_outputs = targets[0].len().min(self.output_weights.nrows());
2309
2310        // Initialize Kalman filter matrices
2311        let mut state_covariance = Array2::eye(n_features) * 1.0;
2312        let process_noise_matrix: Array2<f64> = Array2::eye(n_features) * process_noise;
2313        let measurement_noise_scalar = measurement_noise;
2314
2315        // Kalman filter updates
2316        for (feature_vec, target_vec) in features.iter().zip(targets.iter()) {
2317            let x = feature_vec.slice(s![..n_features]).to_owned();
2318            let y = target_vec.slice(s![..n_outputs]).to_owned();
2319
2320            // Prediction step
2321            let predicted_covariance = &state_covariance + &process_noise_matrix;
2322
2323            // Update step for each output
2324            for output_idx in 0..n_outputs {
2325                let measurement = y[output_idx];
2326                let prediction = self.predict_single_output(feature_vec, output_idx)?;
2327
2328                // Kalman gain
2329                let s = x.dot(&predicted_covariance.dot(&x)) + measurement_noise_scalar;
2330                if s > 1e-15 {
2331                    let k = predicted_covariance.dot(&x) / s;
2332
2333                    // Update weights
2334                    let innovation = measurement - prediction;
2335                    for feature_idx in 0..n_features {
2336                        self.output_weights[[output_idx, feature_idx]] +=
2337                            k[feature_idx] * innovation;
2338                    }
2339
2340                    // Update covariance
2341                    let kh = k
2342                        .view()
2343                        .insert_axis(Axis(1))
2344                        .dot(&x.view().insert_axis(Axis(0)));
2345                    state_covariance = &predicted_covariance - &kh.dot(&predicted_covariance);
2346                }
2347            }
2348        }
2349
2350        Ok(())
2351    }
2352
2353    /// Predict single output value
2354    fn predict_single_output(&self, features: &Array1<f64>, output_idx: usize) -> Result<f64> {
2355        let feature_size = features.len().min(self.output_weights.ncols());
2356        let mut output = 0.0;
2357
2358        for j in 0..feature_size {
2359            output += self.output_weights[[output_idx, j]] * features[j];
2360        }
2361
2362        Ok(output)
2363    }
2364
2365    /// Analyze memory capacity
2366    fn analyze_memory_capacity(&mut self, features: &[Array1<f64>]) -> Result<()> {
2367        // Linear memory capacity
2368        let linear_capacity = self.estimate_linear_memory_capacity(features)?;
2369        self.reservoir_state.memory_metrics.linear_capacity = linear_capacity;
2370
2371        // Nonlinear memory capacity
2372        if self.config.memory_config.enable_nonlinear {
2373            let nonlinear_capacity = self.estimate_nonlinear_memory_capacity(features)?;
2374            self.reservoir_state.memory_metrics.nonlinear_capacity = nonlinear_capacity;
2375        }
2376
2377        // Total capacity
2378        self.reservoir_state.memory_metrics.total_capacity =
2379            self.reservoir_state.memory_metrics.linear_capacity
2380                + self.reservoir_state.memory_metrics.nonlinear_capacity;
2381
2382        // Information processing capacity
2383        if self.config.memory_config.enable_ipc {
2384            let ipc = self.estimate_information_processing_capacity(features)?;
2385            self.reservoir_state.memory_metrics.processing_capacity = ipc;
2386        }
2387
2388        // Update memory analyzer
2389        self.memory_analyzer.capacity_estimates.insert(
2390            "linear".to_string(),
2391            self.reservoir_state.memory_metrics.linear_capacity,
2392        );
2393        self.memory_analyzer.capacity_estimates.insert(
2394            "nonlinear".to_string(),
2395            self.reservoir_state.memory_metrics.nonlinear_capacity,
2396        );
2397        self.memory_analyzer.capacity_estimates.insert(
2398            "total".to_string(),
2399            self.reservoir_state.memory_metrics.total_capacity,
2400        );
2401
2402        Ok(())
2403    }
2404
2405    /// Estimate linear memory capacity
2406    fn estimate_linear_memory_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
2407        // Use correlation analysis to estimate linear memory
2408        let mut capacity = 0.0;
2409
2410        for lag in 1..=20 {
2411            if lag < features.len() {
2412                let mut correlation = 0.0;
2413                let mut count = 0;
2414
2415                for i in lag..features.len() {
2416                    for j in 0..features[i].len().min(features[i - lag].len()) {
2417                        correlation += features[i][j] * features[i - lag][j];
2418                        count += 1;
2419                    }
2420                }
2421
2422                if count > 0 {
2423                    correlation /= count as f64;
2424                    capacity += correlation.abs();
2425                }
2426            }
2427        }
2428
2429        Ok(capacity)
2430    }
2431
2432    /// Estimate nonlinear memory capacity
2433    fn estimate_nonlinear_memory_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
2434        let mut nonlinear_capacity = 0.0;
2435
2436        // Test various nonlinear functions
2437        for order in &self.config.memory_config.nonlinearity_orders {
2438            let capacity_order = self.test_nonlinear_order(*order, features)?;
2439            nonlinear_capacity += capacity_order;
2440        }
2441
2442        Ok(nonlinear_capacity)
2443    }
2444
2445    /// Test specific nonlinear order
2446    fn test_nonlinear_order(&self, order: usize, features: &[Array1<f64>]) -> Result<f64> {
2447        let mut capacity = 0.0;
2448
2449        // Generate nonlinear target function
2450        for lag in 1..=10 {
2451            if lag < features.len() {
2452                let mut correlation = 0.0;
2453                let mut count = 0;
2454
2455                for i in lag..features.len() {
2456                    for j in 0..features[i].len().min(features[i - lag].len()) {
2457                        // Nonlinear transformation
2458                        let current = features[i][j];
2459                        let past = features[i - lag][j];
2460                        let nonlinear_target = past.powi(order as i32);
2461
2462                        correlation += current * nonlinear_target;
2463                        count += 1;
2464                    }
2465                }
2466
2467                if count > 0 {
2468                    correlation /= count as f64;
2469                    capacity += correlation.abs() / order as f64; // Normalize by order
2470                }
2471            }
2472        }
2473
2474        Ok(capacity)
2475    }
2476
2477    /// Estimate information processing capacity
2478    fn estimate_information_processing_capacity(&self, features: &[Array1<f64>]) -> Result<f64> {
2479        let mut ipc = 0.0;
2480
2481        for ipc_function in &self.config.memory_config.ipc_functions {
2482            let capacity_func = self.test_ipc_function(*ipc_function, features)?;
2483            ipc += capacity_func;
2484        }
2485
2486        Ok(ipc)
2487    }
2488
2489    /// Test specific IPC function
2490    fn test_ipc_function(&self, function: IPCFunction, features: &[Array1<f64>]) -> Result<f64> {
2491        let mut capacity = 0.0;
2492
2493        for lag in 1..=10 {
2494            if lag < features.len() {
2495                let mut correlation = 0.0;
2496                let mut count = 0;
2497
2498                for i in lag..features.len() {
2499                    for j in 0..features[i].len().min(features[i - lag].len()) {
2500                        let current = features[i][j];
2501                        let past = features[i - lag][j];
2502
2503                        let target = match function {
2504                            IPCFunction::Linear => past,
2505                            IPCFunction::Quadratic => past * past,
2506                            IPCFunction::Cubic => past * past * past,
2507                            IPCFunction::Sine => past.sin(),
2508                            IPCFunction::Product => {
2509                                if j > 0 && j - 1 < features[i - lag].len() {
2510                                    past * features[i - lag][j - 1]
2511                                } else {
2512                                    past
2513                                }
2514                            }
2515                            IPCFunction::XOR => {
2516                                if past > 0.0 {
2517                                    1.0
2518                                } else {
2519                                    -1.0
2520                                }
2521                            }
2522                        };
2523
2524                        correlation += current * target;
2525                        count += 1;
2526                    }
2527                }
2528
2529                if count > 0 {
2530                    correlation /= count as f64;
2531                    capacity += correlation.abs();
2532                }
2533            }
2534        }
2535
2536        Ok(capacity)
2537    }
2538
2539    /// Solve linear system (simplified implementation)
2540    fn solve_linear_system(&mut self, a: &Array2<f64>, b: &Array2<f64>) -> Result<()> {
2541        let min_dim = a.nrows().min(a.ncols()).min(b.nrows());
2542
2543        for i in 0..min_dim.min(self.output_weights.nrows()) {
2544            for j in 0..b.ncols().min(self.output_weights.ncols()) {
2545                if a[[i, i]].abs() > 1e-15 {
2546                    self.output_weights[[i, j]] = b[[i, j]] / a[[i, i]];
2547                }
2548            }
2549        }
2550
2551        Ok(())
2552    }
2553
2554    /// Evaluate performance on training data
2555    fn evaluate_performance(
2556        &self,
2557        features: &[Array1<f64>],
2558        targets: &[Array1<f64>],
2559    ) -> Result<(f64, f64)> {
2560        if features.is_empty() || targets.is_empty() {
2561            return Ok((0.0, 0.0));
2562        }
2563
2564        let mut total_error = 0.0;
2565        let n_samples = features.len().min(targets.len());
2566
2567        for i in 0..n_samples {
2568            let prediction = self.predict_output(&features[i])?;
2569            let error = self.calculate_prediction_error(&prediction, &targets[i]);
2570            total_error += error;
2571        }
2572
2573        let training_error = total_error / n_samples as f64;
2574
2575        // Use same error for test (in practice, would use separate test set)
2576        let test_error = training_error;
2577
2578        Ok((training_error, test_error))
2579    }
2580
2581    /// Predict output for given features
2582    fn predict_output(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
2583        let feature_size = features.len().min(self.output_weights.ncols());
2584        let output_size = self.output_weights.nrows();
2585
2586        let mut output = Array1::zeros(output_size);
2587
2588        for i in 0..output_size {
2589            for j in 0..feature_size {
2590                output[i] += self.output_weights[[i, j]] * features[j];
2591            }
2592        }
2593
2594        Ok(output)
2595    }
2596
2597    /// Calculate prediction error
2598    fn calculate_prediction_error(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> f64 {
2599        let min_len = prediction.len().min(target.len());
2600        let mut error = 0.0;
2601
2602        for i in 0..min_len {
2603            let diff = prediction[i] - target[i];
2604            error += diff * diff;
2605        }
2606
2607        (error / min_len as f64).sqrt() // RMSE
2608    }
2609
2610    /// Estimate echo state property
2611    fn estimate_echo_state_property(&self) -> Result<f64> {
2612        let coupling = self.config.coupling_strength;
2613        let estimated_spectral_radius = coupling.tanh(); // Heuristic estimate
2614
2615        // Echo state property requires spectral radius < 1
2616        Ok(if estimated_spectral_radius < 1.0 {
2617            1.0
2618        } else {
2619            1.0 / estimated_spectral_radius
2620        })
2621    }
2622
2623    /// Update processing time metrics
2624    fn update_processing_time(&mut self, time_ms: f64) {
2625        let count = self.metrics.training_examples as f64;
2626        self.metrics.avg_processing_time_ms =
2627            (self.metrics.avg_processing_time_ms * count + time_ms) / (count + 1.0);
2628    }
2629
2630    /// Get current metrics
2631    pub fn get_metrics(&self) -> &ReservoirMetrics {
2632        &self.metrics
2633    }
2634
2635    /// Get memory analysis results
2636    pub fn get_memory_analysis(&self) -> &MemoryAnalyzer {
2637        &self.memory_analyzer
2638    }
2639
2640    /// Reset reservoir computer
2641    pub fn reset(&mut self) -> Result<()> {
2642        self.reservoir_state =
2643            QuantumReservoirState::new(self.config.num_qubits, self.config.memory_capacity);
2644        self.metrics = ReservoirMetrics::default();
2645        self.training_history.clear();
2646        Ok(())
2647    }
2648}
2649
2650impl TimeSeriesPredictor {
2651    /// Create new time series predictor
2652    pub fn new(config: &TimeSeriesConfig) -> Self {
2653        Self {
2654            arima_params: ARIMAParams {
2655                ar_coeffs: Array1::zeros(config.ar_order),
2656                ma_coeffs: Array1::zeros(config.ma_order),
2657                diff_order: config.diff_order,
2658                residuals: VecDeque::with_capacity(config.ma_order),
2659                variance: 1.0,
2660            },
2661            nar_state: NARState {
2662                order: config.nar_order,
2663                coeffs: Array2::zeros((config.nar_order, config.nar_order)),
2664                history: VecDeque::with_capacity(config.nar_order),
2665                activation: ActivationFunction::Tanh,
2666            },
2667            kernel_weights: Array1::from_vec(config.kernel_params.clone()),
2668            trend_model: TrendModel {
2669                params: vec![0.0, 0.0], // Linear trend: intercept, slope
2670                strength: 0.0,
2671                direction: 0.0,
2672            },
2673        }
2674    }
2675}
2676
2677impl MemoryAnalyzer {
2678    /// Create new memory analyzer
2679    pub fn new(config: MemoryAnalysisConfig) -> Self {
2680        Self {
2681            config,
2682            capacity_estimates: HashMap::new(),
2683            nonlinearity_measures: HashMap::new(),
2684            temporal_correlations: Array2::zeros((0, 0)),
2685            ipc_metrics: HashMap::new(),
2686        }
2687    }
2688}
2689
2690/// Enhanced training result
2691#[derive(Debug, Clone, Serialize, Deserialize)]
2692pub struct TrainingResult {
2693    /// Training error (RMSE)
2694    pub training_error: f64,
2695    /// Test error (RMSE)
2696    pub test_error: f64,
2697    /// Training time in milliseconds
2698    pub training_time_ms: f64,
2699    /// Number of training examples
2700    pub num_examples: usize,
2701    /// Echo state property measure
2702    pub echo_state_property: f64,
2703    /// Memory capacity estimate
2704    pub memory_capacity: f64,
2705    /// Nonlinear memory capacity
2706    pub nonlinear_capacity: f64,
2707    /// Information processing capacity
2708    pub processing_capacity: f64,
2709}
2710
2711/// Comprehensive benchmark for enhanced quantum reservoir computing
2712pub fn benchmark_enhanced_quantum_reservoir_computing() -> Result<HashMap<String, f64>> {
2713    let mut results = HashMap::new();
2714
2715    // Test different enhanced reservoir configurations
2716    let configs = vec![
2717        QuantumReservoirConfig {
2718            num_qubits: 6,
2719            architecture: QuantumReservoirArchitecture::RandomCircuit,
2720            learning_config: AdvancedLearningConfig {
2721                algorithm: LearningAlgorithm::Ridge,
2722                ..Default::default()
2723            },
2724            ..Default::default()
2725        },
2726        QuantumReservoirConfig {
2727            num_qubits: 8,
2728            architecture: QuantumReservoirArchitecture::ScaleFree,
2729            learning_config: AdvancedLearningConfig {
2730                algorithm: LearningAlgorithm::LASSO,
2731                ..Default::default()
2732            },
2733            ..Default::default()
2734        },
2735        QuantumReservoirConfig {
2736            num_qubits: 6,
2737            architecture: QuantumReservoirArchitecture::HierarchicalModular,
2738            learning_config: AdvancedLearningConfig {
2739                algorithm: LearningAlgorithm::RecursiveLeastSquares,
2740                ..Default::default()
2741            },
2742            memory_config: MemoryAnalysisConfig {
2743                enable_capacity_estimation: true,
2744                enable_nonlinear: true,
2745                ..Default::default()
2746            },
2747            ..Default::default()
2748        },
2749        QuantumReservoirConfig {
2750            num_qubits: 8,
2751            architecture: QuantumReservoirArchitecture::Grid,
2752            dynamics: ReservoirDynamics::Floquet,
2753            input_encoding: InputEncoding::Angle,
2754            output_measurement: OutputMeasurement::TemporalCorrelations,
2755            ..Default::default()
2756        },
2757    ];
2758
2759    for (i, config) in configs.into_iter().enumerate() {
2760        let start = std::time::Instant::now();
2761
2762        let mut qrc = QuantumReservoirComputerEnhanced::new(config)?;
2763
2764        // Generate enhanced test data
2765        let training_data = ReservoirTrainingData::new(
2766            (0..200)
2767                .map(|i| {
2768                    Array1::from_vec(vec![
2769                        (i as f64 * 0.1).sin(),
2770                        (i as f64 * 0.1).cos(),
2771                        (i as f64 * 0.05).sin() * (i as f64 * 0.2).cos(),
2772                    ])
2773                })
2774                .collect(),
2775            (0..200)
2776                .map(|i| Array1::from_vec(vec![(i as f64 * 0.1 + 1.0).sin()]))
2777                .collect(),
2778            (0..200).map(|i| i as f64 * 0.1).collect(),
2779        );
2780
2781        // Train and test
2782        let training_result = qrc.train(&training_data)?;
2783
2784        let time = start.elapsed().as_secs_f64() * 1000.0;
2785        results.insert(format!("enhanced_config_{}", i), time);
2786
2787        // Add enhanced performance metrics
2788        let metrics = qrc.get_metrics();
2789        results.insert(
2790            format!("enhanced_config_{}_accuracy", i),
2791            metrics.prediction_accuracy,
2792        );
2793        results.insert(
2794            format!("enhanced_config_{}_memory_capacity", i),
2795            training_result.memory_capacity,
2796        );
2797        results.insert(
2798            format!("enhanced_config_{}_nonlinear_capacity", i),
2799            training_result.nonlinear_capacity,
2800        );
2801        results.insert(
2802            format!("enhanced_config_{}_processing_capacity", i),
2803            training_result.processing_capacity,
2804        );
2805        results.insert(
2806            format!("enhanced_config_{}_quantum_advantage", i),
2807            metrics.quantum_advantage,
2808        );
2809        results.insert(
2810            format!("enhanced_config_{}_efficiency", i),
2811            metrics.reservoir_efficiency,
2812        );
2813
2814        // Memory analysis results
2815        let memory_analyzer = qrc.get_memory_analysis();
2816        if let Some(&linear_capacity) = memory_analyzer.capacity_estimates.get("linear") {
2817            results.insert(
2818                format!("enhanced_config_{}_linear_memory", i),
2819                linear_capacity,
2820            );
2821        }
2822        if let Some(&total_capacity) = memory_analyzer.capacity_estimates.get("total") {
2823            results.insert(
2824                format!("enhanced_config_{}_total_memory", i),
2825                total_capacity,
2826            );
2827        }
2828    }
2829
2830    Ok(results)
2831}
2832
2833#[cfg(test)]
2834mod tests {
2835    use super::*;
2836    use approx::assert_abs_diff_eq;
2837
2838    #[test]
2839    fn test_enhanced_quantum_reservoir_creation() {
2840        let config = QuantumReservoirConfig::default();
2841        let qrc = QuantumReservoirComputerEnhanced::new(config);
2842        assert!(qrc.is_ok());
2843    }
2844
2845    #[test]
2846    fn test_enhanced_reservoir_state_creation() {
2847        let state = QuantumReservoirState::new(3, 10);
2848        assert_eq!(state.state_vector.len(), 8); // 2^3
2849        assert_eq!(state.state_history.capacity(), 10);
2850        assert_eq!(state.time_index, 0);
2851        assert!(state.memory_metrics.total_capacity >= 0.0);
2852    }
2853
2854    #[test]
2855    fn test_enhanced_input_processing() {
2856        let config = QuantumReservoirConfig {
2857            num_qubits: 3,
2858            evolution_steps: 2,
2859            ..Default::default()
2860        };
2861        let mut qrc = QuantumReservoirComputerEnhanced::new(config).unwrap();
2862
2863        let input = Array1::from_vec(vec![0.5, 0.3, 0.8]);
2864        let result = qrc.process_input(&input);
2865        assert!(result.is_ok());
2866
2867        let features = result.unwrap();
2868        assert!(!features.is_empty());
2869    }
2870
2871    #[test]
2872    fn test_enhanced_architectures() {
2873        let architectures = vec![
2874            QuantumReservoirArchitecture::RandomCircuit,
2875            QuantumReservoirArchitecture::SpinChain,
2876            QuantumReservoirArchitecture::ScaleFree,
2877            QuantumReservoirArchitecture::HierarchicalModular,
2878            QuantumReservoirArchitecture::Ring,
2879            QuantumReservoirArchitecture::Grid,
2880        ];
2881
2882        for arch in architectures {
2883            let config = QuantumReservoirConfig {
2884                num_qubits: 4,
2885                architecture: arch,
2886                evolution_steps: 2,
2887                ..Default::default()
2888            };
2889
2890            let qrc = QuantumReservoirComputerEnhanced::new(config);
2891            assert!(qrc.is_ok(), "Failed for architecture: {:?}", arch);
2892        }
2893    }
2894
2895    #[test]
2896    fn test_advanced_learning_algorithms() {
2897        let algorithms = vec![
2898            LearningAlgorithm::Ridge,
2899            LearningAlgorithm::LASSO,
2900            LearningAlgorithm::ElasticNet,
2901            LearningAlgorithm::RecursiveLeastSquares,
2902        ];
2903
2904        for algorithm in algorithms {
2905            let config = QuantumReservoirConfig {
2906                num_qubits: 3,
2907                learning_config: AdvancedLearningConfig {
2908                    algorithm,
2909                    ..Default::default()
2910                },
2911                ..Default::default()
2912            };
2913
2914            let qrc = QuantumReservoirComputerEnhanced::new(config);
2915            assert!(qrc.is_ok(), "Failed for algorithm: {:?}", algorithm);
2916        }
2917    }
2918
2919    #[test]
2920    fn test_enhanced_encoding_methods() {
2921        let encodings = vec![
2922            InputEncoding::Amplitude,
2923            InputEncoding::Phase,
2924            InputEncoding::BasisState,
2925            InputEncoding::Angle,
2926        ];
2927
2928        for encoding in encodings {
2929            let config = QuantumReservoirConfig {
2930                num_qubits: 3,
2931                input_encoding: encoding,
2932                ..Default::default()
2933            };
2934            let mut qrc = QuantumReservoirComputerEnhanced::new(config).unwrap();
2935
2936            let input = Array1::from_vec(vec![0.5, 0.3]);
2937            let result = qrc.encode_input(&input);
2938            assert!(result.is_ok(), "Failed for encoding: {:?}", encoding);
2939        }
2940    }
2941
2942    #[test]
2943    fn test_enhanced_measurement_strategies() {
2944        let measurements = vec![
2945            OutputMeasurement::PauliExpectation,
2946            OutputMeasurement::Probability,
2947            OutputMeasurement::Correlations,
2948            OutputMeasurement::Entanglement,
2949            OutputMeasurement::QuantumFisherInformation,
2950            OutputMeasurement::Variance,
2951            OutputMeasurement::QuantumCoherence,
2952            OutputMeasurement::Purity,
2953            OutputMeasurement::TemporalCorrelations,
2954        ];
2955
2956        for measurement in measurements {
2957            let config = QuantumReservoirConfig {
2958                num_qubits: 3,
2959                output_measurement: measurement,
2960                ..Default::default()
2961            };
2962
2963            let qrc = QuantumReservoirComputerEnhanced::new(config);
2964            assert!(qrc.is_ok(), "Failed for measurement: {:?}", measurement);
2965        }
2966    }
2967
2968    #[test]
2969    fn test_enhanced_reservoir_dynamics() {
2970        let dynamics = vec![
2971            ReservoirDynamics::Unitary,
2972            ReservoirDynamics::Open,
2973            ReservoirDynamics::NISQ,
2974            ReservoirDynamics::Floquet,
2975        ];
2976
2977        for dynamic in dynamics {
2978            let config = QuantumReservoirConfig {
2979                num_qubits: 3,
2980                dynamics: dynamic,
2981                evolution_steps: 1,
2982                ..Default::default()
2983            };
2984
2985            let mut qrc = QuantumReservoirComputerEnhanced::new(config).unwrap();
2986            let result = qrc.evolve_reservoir();
2987            assert!(result.is_ok(), "Failed for dynamics: {:?}", dynamic);
2988        }
2989    }
2990
2991    #[test]
2992    fn test_memory_analysis() {
2993        let config = QuantumReservoirConfig {
2994            num_qubits: 4,
2995            memory_config: MemoryAnalysisConfig {
2996                enable_capacity_estimation: true,
2997                enable_nonlinear: true,
2998                enable_ipc: true,
2999                ..Default::default()
3000            },
3001            ..Default::default()
3002        };
3003
3004        let qrc = QuantumReservoirComputerEnhanced::new(config).unwrap();
3005        let memory_analyzer = qrc.get_memory_analysis();
3006
3007        assert!(memory_analyzer.config.enable_capacity_estimation);
3008        assert!(memory_analyzer.config.enable_nonlinear);
3009        assert!(memory_analyzer.config.enable_ipc);
3010    }
3011
3012    #[test]
3013    fn test_enhanced_training_data() {
3014        let training_data = ReservoirTrainingData::new(
3015            vec![
3016                Array1::from_vec(vec![0.1, 0.2]),
3017                Array1::from_vec(vec![0.3, 0.4]),
3018            ],
3019            vec![Array1::from_vec(vec![0.5]), Array1::from_vec(vec![0.6])],
3020            vec![0.0, 1.0],
3021        )
3022        .with_features(vec![
3023            Array1::from_vec(vec![0.7, 0.8]),
3024            Array1::from_vec(vec![0.9, 1.0]),
3025        ])
3026        .with_labels(vec![0, 1])
3027        .with_weights(vec![1.0, 1.0]);
3028
3029        assert_eq!(training_data.len(), 2);
3030        assert!(training_data.features.is_some());
3031        assert!(training_data.labels.is_some());
3032        assert!(training_data.sample_weights.is_some());
3033
3034        let (train, test) = training_data.train_test_split(0.5);
3035        assert_eq!(train.len(), 1);
3036        assert_eq!(test.len(), 1);
3037    }
3038
3039    #[test]
3040    fn test_time_series_predictor() {
3041        let config = TimeSeriesConfig::default();
3042        let predictor = TimeSeriesPredictor::new(&config);
3043
3044        assert_eq!(predictor.arima_params.ar_coeffs.len(), config.ar_order);
3045        assert_eq!(predictor.arima_params.ma_coeffs.len(), config.ma_order);
3046        assert_eq!(predictor.nar_state.order, config.nar_order);
3047    }
3048
3049    #[test]
3050    fn test_enhanced_metrics_tracking() {
3051        let config = QuantumReservoirConfig::default();
3052        let qrc = QuantumReservoirComputerEnhanced::new(config).unwrap();
3053
3054        let metrics = qrc.get_metrics();
3055        assert_eq!(metrics.training_examples, 0);
3056        assert_eq!(metrics.prediction_accuracy, 0.0);
3057        assert_eq!(metrics.memory_capacity, 0.0);
3058        assert_eq!(metrics.nonlinear_memory_capacity, 0.0);
3059        assert_eq!(metrics.quantum_advantage, 0.0);
3060    }
3061
3062    #[test]
3063    fn test_enhanced_feature_sizes() {
3064        let measurements = vec![
3065            (OutputMeasurement::PauliExpectation, 24), // 8 qubits * 3 Pauli
3066            (OutputMeasurement::QuantumFisherInformation, 8), // 8 qubits
3067            (OutputMeasurement::Variance, 24),         // 8 qubits * 3 Pauli
3068            (OutputMeasurement::Purity, 1),            // Single value
3069        ];
3070
3071        for (measurement, expected_size) in measurements {
3072            let config = QuantumReservoirConfig {
3073                num_qubits: 8,
3074                output_measurement: measurement,
3075                ..Default::default()
3076            };
3077
3078            let feature_size = QuantumReservoirComputerEnhanced::calculate_feature_size(&config);
3079            assert_eq!(
3080                feature_size, expected_size,
3081                "Feature size mismatch for {:?}",
3082                measurement
3083            );
3084        }
3085    }
3086}