quantrs2_sim/
quantum_machine_learning_layers.rs

1//! Quantum Machine Learning Layers Framework
2//!
3//! This module provides a comprehensive implementation of quantum machine learning layers,
4//! including parameterized quantum circuits, quantum convolutional layers, quantum recurrent
5//! networks, and hybrid classical-quantum training algorithms. This framework enables
6//! quantum advantage in machine learning applications with hardware-aware optimization.
7
8use ndarray::Array1;
9use num_complex::Complex64;
10use rand::{thread_rng, Rng};
11use scirs2_core::parallel_ops::*;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18use crate::statevector::StateVectorSimulator;
19
20/// Quantum machine learning configuration
21#[derive(Debug, Clone, Serialize, Deserialize)]
22pub struct QMLConfig {
23    /// Number of qubits in the quantum layer
24    pub num_qubits: usize,
25    /// QML architecture type
26    pub architecture_type: QMLArchitectureType,
27    /// Layer configuration for each QML layer
28    pub layer_configs: Vec<QMLLayerConfig>,
29    /// Training algorithm configuration
30    pub training_config: QMLTrainingConfig,
31    /// Hardware-aware optimization settings
32    pub hardware_optimization: HardwareOptimizationConfig,
33    /// Classical preprocessing configuration
34    pub classical_preprocessing: ClassicalPreprocessingConfig,
35    /// Hybrid training configuration
36    pub hybrid_training: HybridTrainingConfig,
37    /// Enable quantum advantage analysis
38    pub quantum_advantage_analysis: bool,
39    /// Noise-aware training settings
40    pub noise_aware_training: NoiseAwareTrainingConfig,
41    /// Performance optimization settings
42    pub performance_optimization: PerformanceOptimizationConfig,
43}
44
45impl Default for QMLConfig {
46    fn default() -> Self {
47        Self {
48            num_qubits: 8,
49            architecture_type: QMLArchitectureType::VariationalQuantumCircuit,
50            layer_configs: vec![QMLLayerConfig {
51                layer_type: QMLLayerType::ParameterizedQuantumCircuit,
52                num_parameters: 16,
53                ansatz_type: AnsatzType::Hardware,
54                entanglement_pattern: EntanglementPattern::Linear,
55                rotation_gates: vec![RotationGate::RY, RotationGate::RZ],
56                depth: 4,
57                enable_gradient_computation: true,
58            }],
59            training_config: QMLTrainingConfig::default(),
60            hardware_optimization: HardwareOptimizationConfig::default(),
61            classical_preprocessing: ClassicalPreprocessingConfig::default(),
62            hybrid_training: HybridTrainingConfig::default(),
63            quantum_advantage_analysis: true,
64            noise_aware_training: NoiseAwareTrainingConfig::default(),
65            performance_optimization: PerformanceOptimizationConfig::default(),
66        }
67    }
68}
69
70/// QML architecture types
71#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
72pub enum QMLArchitectureType {
73    /// Variational Quantum Circuit (VQC)
74    VariationalQuantumCircuit,
75    /// Quantum Convolutional Neural Network
76    QuantumConvolutionalNN,
77    /// Quantum Recurrent Neural Network
78    QuantumRecurrentNN,
79    /// Quantum Graph Neural Network
80    QuantumGraphNN,
81    /// Quantum Attention Network
82    QuantumAttentionNetwork,
83    /// Quantum Transformer
84    QuantumTransformer,
85    /// Hybrid Classical-Quantum Network
86    HybridClassicalQuantum,
87    /// Quantum Boltzmann Machine
88    QuantumBoltzmannMachine,
89    /// Quantum Generative Adversarial Network
90    QuantumGAN,
91    /// Quantum Autoencoder
92    QuantumAutoencoder,
93}
94
95/// QML layer configuration
96#[derive(Debug, Clone, Serialize, Deserialize)]
97pub struct QMLLayerConfig {
98    /// Type of QML layer
99    pub layer_type: QMLLayerType,
100    /// Number of trainable parameters
101    pub num_parameters: usize,
102    /// Ansatz type for parameterized circuits
103    pub ansatz_type: AnsatzType,
104    /// Entanglement pattern
105    pub entanglement_pattern: EntanglementPattern,
106    /// Rotation gates to use
107    pub rotation_gates: Vec<RotationGate>,
108    /// Circuit depth
109    pub depth: usize,
110    /// Enable gradient computation
111    pub enable_gradient_computation: bool,
112}
113
114/// Types of QML layers
115#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
116pub enum QMLLayerType {
117    /// Parameterized Quantum Circuit layer
118    ParameterizedQuantumCircuit,
119    /// Quantum Convolutional layer
120    QuantumConvolutional,
121    /// Quantum Pooling layer
122    QuantumPooling,
123    /// Quantum Dense layer (fully connected)
124    QuantumDense,
125    /// Quantum LSTM layer
126    QuantumLSTM,
127    /// Quantum GRU layer
128    QuantumGRU,
129    /// Quantum Attention layer
130    QuantumAttention,
131    /// Quantum Dropout layer
132    QuantumDropout,
133    /// Quantum Batch Normalization layer
134    QuantumBatchNorm,
135    /// Data Re-uploading layer
136    DataReUpload,
137}
138
139/// Ansatz types for parameterized quantum circuits
140#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
141pub enum AnsatzType {
142    /// Hardware-efficient ansatz
143    Hardware,
144    /// Problem-specific ansatz
145    ProblemSpecific,
146    /// All-to-all connectivity ansatz
147    AllToAll,
148    /// Layered ansatz
149    Layered,
150    /// Alternating ansatz
151    Alternating,
152    /// Brick-wall ansatz
153    BrickWall,
154    /// Tree ansatz
155    Tree,
156    /// Custom ansatz
157    Custom,
158}
159
160/// Entanglement patterns
161#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
162pub enum EntanglementPattern {
163    /// Linear entanglement chain
164    Linear,
165    /// Circular entanglement
166    Circular,
167    /// All-to-all entanglement
168    AllToAll,
169    /// Star topology entanglement
170    Star,
171    /// Grid topology entanglement
172    Grid,
173    /// Random entanglement
174    Random,
175    /// Block entanglement
176    Block,
177    /// Custom pattern
178    Custom,
179}
180
181/// Rotation gates for parameterized circuits
182#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
183pub enum RotationGate {
184    /// Rotation around X-axis
185    RX,
186    /// Rotation around Y-axis
187    RY,
188    /// Rotation around Z-axis
189    RZ,
190    /// Arbitrary single-qubit rotation
191    U3,
192    /// Phase gate
193    Phase,
194}
195
196/// QML training configuration
197#[derive(Debug, Clone, Serialize, Deserialize)]
198pub struct QMLTrainingConfig {
199    /// Training algorithm type
200    pub algorithm: QMLTrainingAlgorithm,
201    /// Learning rate
202    pub learning_rate: f64,
203    /// Number of training epochs
204    pub epochs: usize,
205    /// Batch size
206    pub batch_size: usize,
207    /// Gradient computation method
208    pub gradient_method: GradientMethod,
209    /// Optimizer type
210    pub optimizer: OptimizerType,
211    /// Regularization parameters
212    pub regularization: RegularizationConfig,
213    /// Early stopping configuration
214    pub early_stopping: EarlyStoppingConfig,
215    /// Learning rate scheduling
216    pub lr_schedule: LearningRateSchedule,
217}
218
219impl Default for QMLTrainingConfig {
220    fn default() -> Self {
221        Self {
222            algorithm: QMLTrainingAlgorithm::ParameterShift,
223            learning_rate: 0.01,
224            epochs: 100,
225            batch_size: 32,
226            gradient_method: GradientMethod::ParameterShift,
227            optimizer: OptimizerType::Adam,
228            regularization: RegularizationConfig::default(),
229            early_stopping: EarlyStoppingConfig::default(),
230            lr_schedule: LearningRateSchedule::Constant,
231        }
232    }
233}
234
235/// QML training algorithms
236#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
237pub enum QMLTrainingAlgorithm {
238    /// Parameter-shift rule gradient descent
239    ParameterShift,
240    /// Finite difference gradient descent
241    FiniteDifference,
242    /// Quantum Natural Gradient
243    QuantumNaturalGradient,
244    /// SPSA (Simultaneous Perturbation Stochastic Approximation)
245    SPSA,
246    /// Quantum Approximate Optimization Algorithm
247    QAOA,
248    /// Variational Quantum Eigensolver
249    VQE,
250    /// Quantum Machine Learning with Rotosolve
251    Rotosolve,
252    /// Hybrid Classical-Quantum training
253    HybridTraining,
254}
255
256/// Gradient computation methods
257#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
258pub enum GradientMethod {
259    /// Parameter-shift rule
260    ParameterShift,
261    /// Finite difference
262    FiniteDifference,
263    /// Adjoint differentiation
264    Adjoint,
265    /// Backpropagation through quantum circuit
266    Backpropagation,
267    /// Quantum Fisher Information
268    QuantumFisherInformation,
269}
270
271/// Optimizer types
272#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
273pub enum OptimizerType {
274    /// Stochastic Gradient Descent
275    SGD,
276    /// Adam optimizer
277    Adam,
278    /// AdaGrad optimizer
279    AdaGrad,
280    /// RMSprop optimizer
281    RMSprop,
282    /// Momentum optimizer
283    Momentum,
284    /// L-BFGS optimizer
285    LBFGS,
286    /// Quantum Natural Gradient
287    QuantumNaturalGradient,
288    /// SPSA optimizer
289    SPSA,
290}
291
292/// Regularization configuration
293#[derive(Debug, Clone, Serialize, Deserialize)]
294pub struct RegularizationConfig {
295    /// L1 regularization strength
296    pub l1_strength: f64,
297    /// L2 regularization strength
298    pub l2_strength: f64,
299    /// Dropout probability
300    pub dropout_prob: f64,
301    /// Parameter constraint bounds
302    pub parameter_bounds: Option<(f64, f64)>,
303    /// Enable parameter clipping
304    pub enable_clipping: bool,
305    /// Gradient clipping threshold
306    pub gradient_clip_threshold: f64,
307}
308
309impl Default for RegularizationConfig {
310    fn default() -> Self {
311        Self {
312            l1_strength: 0.0,
313            l2_strength: 0.001,
314            dropout_prob: 0.1,
315            parameter_bounds: Some((-PI, PI)),
316            enable_clipping: true,
317            gradient_clip_threshold: 1.0,
318        }
319    }
320}
321
322/// Early stopping configuration
323#[derive(Debug, Clone, Serialize, Deserialize)]
324pub struct EarlyStoppingConfig {
325    /// Enable early stopping
326    pub enabled: bool,
327    /// Patience (number of epochs without improvement)
328    pub patience: usize,
329    /// Minimum improvement threshold
330    pub min_delta: f64,
331    /// Metric to monitor
332    pub monitor_metric: String,
333    /// Whether higher values are better
334    pub mode_max: bool,
335}
336
337impl Default for EarlyStoppingConfig {
338    fn default() -> Self {
339        Self {
340            enabled: true,
341            patience: 10,
342            min_delta: 1e-6,
343            monitor_metric: "val_loss".to_string(),
344            mode_max: false,
345        }
346    }
347}
348
349/// Learning rate schedules
350#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
351pub enum LearningRateSchedule {
352    /// Constant learning rate
353    Constant,
354    /// Exponential decay
355    ExponentialDecay,
356    /// Step decay
357    StepDecay,
358    /// Cosine annealing
359    CosineAnnealing,
360    /// Warm restart
361    WarmRestart,
362    /// Reduce on plateau
363    ReduceOnPlateau,
364}
365
366/// Hardware optimization configuration
367#[derive(Debug, Clone, Serialize, Deserialize)]
368pub struct HardwareOptimizationConfig {
369    /// Target quantum hardware
370    pub target_hardware: QuantumHardwareTarget,
371    /// Enable gate count minimization
372    pub minimize_gate_count: bool,
373    /// Enable circuit depth minimization
374    pub minimize_depth: bool,
375    /// Enable noise-aware optimization
376    pub noise_aware: bool,
377    /// Connectivity constraints
378    pub connectivity_constraints: ConnectivityConstraints,
379    /// Gate fidelity constraints
380    pub gate_fidelities: HashMap<String, f64>,
381    /// Enable parallelization
382    pub enable_parallelization: bool,
383    /// Compilation optimization level
384    pub optimization_level: HardwareOptimizationLevel,
385}
386
387impl Default for HardwareOptimizationConfig {
388    fn default() -> Self {
389        let mut gate_fidelities = HashMap::new();
390        gate_fidelities.insert("single_qubit".to_string(), 0.999);
391        gate_fidelities.insert("two_qubit".to_string(), 0.99);
392
393        Self {
394            target_hardware: QuantumHardwareTarget::Simulator,
395            minimize_gate_count: true,
396            minimize_depth: true,
397            noise_aware: false,
398            connectivity_constraints: ConnectivityConstraints::AllToAll,
399            gate_fidelities,
400            enable_parallelization: true,
401            optimization_level: HardwareOptimizationLevel::Medium,
402        }
403    }
404}
405
406/// Quantum hardware targets
407#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
408pub enum QuantumHardwareTarget {
409    /// Generic simulator
410    Simulator,
411    /// IBM Quantum devices
412    IBM,
413    /// Google Quantum AI devices
414    Google,
415    /// IonQ devices
416    IonQ,
417    /// Rigetti devices
418    Rigetti,
419    /// Honeywell/Quantinuum devices
420    Quantinuum,
421    /// Xanadu devices
422    Xanadu,
423    /// Custom hardware specification
424    Custom,
425}
426
427/// Connectivity constraints
428#[derive(Debug, Clone, Serialize, Deserialize)]
429pub enum ConnectivityConstraints {
430    /// All-to-all connectivity
431    AllToAll,
432    /// Linear chain connectivity
433    Linear,
434    /// Grid connectivity
435    Grid(usize, usize), // rows, cols
436    /// Custom connectivity graph
437    Custom(Vec<(usize, usize)>), // edge list
438    /// Heavy-hex connectivity (IBM)
439    HeavyHex,
440    /// Square lattice connectivity
441    Square,
442}
443
444/// Hardware optimization levels
445#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
446pub enum HardwareOptimizationLevel {
447    /// Basic optimization
448    Basic,
449    /// Medium optimization
450    Medium,
451    /// Aggressive optimization
452    Aggressive,
453    /// Maximum optimization
454    Maximum,
455}
456
457/// Classical preprocessing configuration
458#[derive(Debug, Clone, Serialize, Deserialize)]
459pub struct ClassicalPreprocessingConfig {
460    /// Enable feature scaling
461    pub feature_scaling: bool,
462    /// Scaling method
463    pub scaling_method: ScalingMethod,
464    /// Principal Component Analysis
465    pub enable_pca: bool,
466    /// Number of PCA components
467    pub pca_components: Option<usize>,
468    /// Data encoding method
469    pub encoding_method: DataEncodingMethod,
470    /// Feature selection
471    pub feature_selection: FeatureSelectionConfig,
472}
473
474impl Default for ClassicalPreprocessingConfig {
475    fn default() -> Self {
476        Self {
477            feature_scaling: true,
478            scaling_method: ScalingMethod::StandardScaler,
479            enable_pca: false,
480            pca_components: None,
481            encoding_method: DataEncodingMethod::Amplitude,
482            feature_selection: FeatureSelectionConfig::default(),
483        }
484    }
485}
486
487/// Scaling methods for classical preprocessing
488#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
489pub enum ScalingMethod {
490    /// Standard scaling (z-score normalization)
491    StandardScaler,
492    /// Min-max scaling
493    MinMaxScaler,
494    /// Robust scaling
495    RobustScaler,
496    /// Quantile uniform scaling
497    QuantileUniform,
498    /// Power transformation
499    PowerTransformer,
500}
501
502/// Data encoding methods for quantum circuits
503#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
504pub enum DataEncodingMethod {
505    /// Amplitude encoding
506    Amplitude,
507    /// Angle encoding
508    Angle,
509    /// Basis encoding
510    Basis,
511    /// Quantum feature maps
512    QuantumFeatureMap,
513    /// IQP encoding
514    IQP,
515    /// Pauli feature maps
516    PauliFeatureMap,
517    /// Data re-uploading
518    DataReUpload,
519}
520
521/// Feature selection configuration
522#[derive(Debug, Clone, Serialize, Deserialize)]
523pub struct FeatureSelectionConfig {
524    /// Enable feature selection
525    pub enabled: bool,
526    /// Feature selection method
527    pub method: FeatureSelectionMethod,
528    /// Number of features to select
529    pub num_features: Option<usize>,
530    /// Selection threshold
531    pub threshold: f64,
532}
533
534impl Default for FeatureSelectionConfig {
535    fn default() -> Self {
536        Self {
537            enabled: false,
538            method: FeatureSelectionMethod::VarianceThreshold,
539            num_features: None,
540            threshold: 0.0,
541        }
542    }
543}
544
545/// Feature selection methods
546#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
547pub enum FeatureSelectionMethod {
548    /// Variance threshold
549    VarianceThreshold,
550    /// Univariate statistical tests
551    UnivariateSelection,
552    /// Recursive feature elimination
553    RecursiveFeatureElimination,
554    /// L1-based feature selection
555    L1Based,
556    /// Tree-based feature selection
557    TreeBased,
558    /// Quantum feature importance
559    QuantumFeatureImportance,
560}
561
562/// Hybrid training configuration
563#[derive(Debug, Clone, Serialize, Deserialize)]
564pub struct HybridTrainingConfig {
565    /// Enable hybrid classical-quantum training
566    pub enabled: bool,
567    /// Classical neural network architecture
568    pub classical_architecture: ClassicalArchitecture,
569    /// Quantum-classical interface
570    pub interface_config: QuantumClassicalInterface,
571    /// Alternating training schedule
572    pub alternating_schedule: AlternatingSchedule,
573    /// Gradient flow configuration
574    pub gradient_flow: GradientFlowConfig,
575}
576
577impl Default for HybridTrainingConfig {
578    fn default() -> Self {
579        Self {
580            enabled: false,
581            classical_architecture: ClassicalArchitecture::MLP,
582            interface_config: QuantumClassicalInterface::Expectation,
583            alternating_schedule: AlternatingSchedule::Simultaneous,
584            gradient_flow: GradientFlowConfig::default(),
585        }
586    }
587}
588
589/// Classical neural network architectures for hybrid training
590#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
591pub enum ClassicalArchitecture {
592    /// Multi-layer perceptron
593    MLP,
594    /// Convolutional neural network
595    CNN,
596    /// Recurrent neural network
597    RNN,
598    /// Long short-term memory
599    LSTM,
600    /// Transformer
601    Transformer,
602    /// ResNet
603    ResNet,
604    /// Custom architecture
605    Custom,
606}
607
608/// Quantum-classical interfaces
609#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
610pub enum QuantumClassicalInterface {
611    /// Expectation value measurement
612    Expectation,
613    /// Sampling-based measurement
614    Sampling,
615    /// Quantum state tomography
616    StateTomography,
617    /// Process tomography
618    ProcessTomography,
619    /// Shadow tomography
620    ShadowTomography,
621}
622
623/// Alternating training schedules for hybrid systems
624#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
625pub enum AlternatingSchedule {
626    /// Train classical and quantum parts simultaneously
627    Simultaneous,
628    /// Alternate between classical and quantum training
629    Alternating,
630    /// Train classical first, then quantum
631    ClassicalFirst,
632    /// Train quantum first, then classical
633    QuantumFirst,
634    /// Custom schedule
635    Custom,
636}
637
638/// Gradient flow configuration for hybrid training
639#[derive(Debug, Clone, Serialize, Deserialize)]
640pub struct GradientFlowConfig {
641    /// Enable gradient flow from classical to quantum
642    pub classical_to_quantum: bool,
643    /// Enable gradient flow from quantum to classical
644    pub quantum_to_classical: bool,
645    /// Gradient scaling factor
646    pub gradient_scaling: f64,
647    /// Enable gradient clipping
648    pub enable_clipping: bool,
649    /// Gradient accumulation steps
650    pub accumulation_steps: usize,
651}
652
653impl Default for GradientFlowConfig {
654    fn default() -> Self {
655        Self {
656            classical_to_quantum: true,
657            quantum_to_classical: true,
658            gradient_scaling: 1.0,
659            enable_clipping: true,
660            accumulation_steps: 1,
661        }
662    }
663}
664
665/// Noise-aware training configuration
666#[derive(Debug, Clone, Serialize, Deserialize)]
667pub struct NoiseAwareTrainingConfig {
668    /// Enable noise-aware training
669    pub enabled: bool,
670    /// Noise model parameters
671    pub noise_parameters: NoiseParameters,
672    /// Error mitigation techniques
673    pub error_mitigation: ErrorMitigationConfig,
674    /// Noise characterization
675    pub noise_characterization: NoiseCharacterizationConfig,
676    /// Robust training methods
677    pub robust_training: RobustTrainingConfig,
678}
679
680impl Default for NoiseAwareTrainingConfig {
681    fn default() -> Self {
682        Self {
683            enabled: false,
684            noise_parameters: NoiseParameters::default(),
685            error_mitigation: ErrorMitigationConfig::default(),
686            noise_characterization: NoiseCharacterizationConfig::default(),
687            robust_training: RobustTrainingConfig::default(),
688        }
689    }
690}
691
692/// Noise parameters for quantum devices
693#[derive(Debug, Clone, Serialize, Deserialize)]
694pub struct NoiseParameters {
695    /// Single-qubit gate error rates
696    pub single_qubit_error: f64,
697    /// Two-qubit gate error rates
698    pub two_qubit_error: f64,
699    /// Measurement error rates
700    pub measurement_error: f64,
701    /// Coherence times (T1, T2)
702    pub coherence_times: (f64, f64),
703    /// Gate times
704    pub gate_times: HashMap<String, f64>,
705}
706
707impl Default for NoiseParameters {
708    fn default() -> Self {
709        let mut gate_times = HashMap::new();
710        gate_times.insert("single_qubit".to_string(), 50e-9); // 50 ns
711        gate_times.insert("two_qubit".to_string(), 200e-9); // 200 ns
712
713        Self {
714            single_qubit_error: 0.001,
715            two_qubit_error: 0.01,
716            measurement_error: 0.01,
717            coherence_times: (50e-6, 100e-6), // T1 = 50 μs, T2 = 100 μs
718            gate_times,
719        }
720    }
721}
722
723/// Error mitigation configuration
724#[derive(Debug, Clone, Serialize, Deserialize)]
725pub struct ErrorMitigationConfig {
726    /// Enable zero-noise extrapolation
727    pub zero_noise_extrapolation: bool,
728    /// Enable readout error mitigation
729    pub readout_error_mitigation: bool,
730    /// Enable symmetry verification
731    pub symmetry_verification: bool,
732    /// Virtual distillation parameters
733    pub virtual_distillation: VirtualDistillationConfig,
734    /// Quantum error correction
735    pub quantum_error_correction: bool,
736}
737
738impl Default for ErrorMitigationConfig {
739    fn default() -> Self {
740        Self {
741            zero_noise_extrapolation: false,
742            readout_error_mitigation: false,
743            symmetry_verification: false,
744            virtual_distillation: VirtualDistillationConfig::default(),
745            quantum_error_correction: false,
746        }
747    }
748}
749
750/// Virtual distillation configuration
751#[derive(Debug, Clone, Serialize, Deserialize)]
752pub struct VirtualDistillationConfig {
753    /// Enable virtual distillation
754    pub enabled: bool,
755    /// Number of copies for distillation
756    pub num_copies: usize,
757    /// Distillation protocol
758    pub protocol: DistillationProtocol,
759}
760
761impl Default for VirtualDistillationConfig {
762    fn default() -> Self {
763        Self {
764            enabled: false,
765            num_copies: 2,
766            protocol: DistillationProtocol::Standard,
767        }
768    }
769}
770
771/// Distillation protocols
772#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
773pub enum DistillationProtocol {
774    /// Standard distillation
775    Standard,
776    /// Improved distillation
777    Improved,
778    /// Quantum advantage distillation
779    QuantumAdvantage,
780}
781
782/// Noise characterization configuration
783#[derive(Debug, Clone, Serialize, Deserialize)]
784pub struct NoiseCharacterizationConfig {
785    /// Enable noise characterization
786    pub enabled: bool,
787    /// Characterization method
788    pub method: NoiseCharacterizationMethod,
789    /// Benchmarking protocols
790    pub benchmarking: BenchmarkingProtocols,
791    /// Calibration frequency
792    pub calibration_frequency: CalibrationFrequency,
793}
794
795impl Default for NoiseCharacterizationConfig {
796    fn default() -> Self {
797        Self {
798            enabled: false,
799            method: NoiseCharacterizationMethod::ProcessTomography,
800            benchmarking: BenchmarkingProtocols::default(),
801            calibration_frequency: CalibrationFrequency::Daily,
802        }
803    }
804}
805
806/// Noise characterization methods
807#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
808pub enum NoiseCharacterizationMethod {
809    /// Quantum process tomography
810    ProcessTomography,
811    /// Randomized benchmarking
812    RandomizedBenchmarking,
813    /// Gate set tomography
814    GateSetTomography,
815    /// Quantum detector tomography
816    QuantumDetectorTomography,
817    /// Cross-entropy benchmarking
818    CrossEntropyBenchmarking,
819}
820
821/// Benchmarking protocols
822#[derive(Debug, Clone, Serialize, Deserialize)]
823pub struct BenchmarkingProtocols {
824    /// Enable randomized benchmarking
825    pub randomized_benchmarking: bool,
826    /// Enable quantum volume
827    pub quantum_volume: bool,
828    /// Enable cross-entropy benchmarking
829    pub cross_entropy_benchmarking: bool,
830    /// Enable mirror benchmarking
831    pub mirror_benchmarking: bool,
832}
833
834impl Default for BenchmarkingProtocols {
835    fn default() -> Self {
836        Self {
837            randomized_benchmarking: true,
838            quantum_volume: false,
839            cross_entropy_benchmarking: false,
840            mirror_benchmarking: false,
841        }
842    }
843}
844
845/// Calibration frequency
846#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
847pub enum CalibrationFrequency {
848    /// Real-time calibration
849    RealTime,
850    /// Hourly calibration
851    Hourly,
852    /// Daily calibration
853    Daily,
854    /// Weekly calibration
855    Weekly,
856    /// Manual calibration
857    Manual,
858}
859
860/// Robust training configuration
861#[derive(Debug, Clone, Serialize, Deserialize)]
862pub struct RobustTrainingConfig {
863    /// Enable robust training methods
864    pub enabled: bool,
865    /// Noise injection during training
866    pub noise_injection: NoiseInjectionConfig,
867    /// Adversarial training
868    pub adversarial_training: AdversarialTrainingConfig,
869    /// Ensemble methods
870    pub ensemble_methods: EnsembleMethodsConfig,
871}
872
873impl Default for RobustTrainingConfig {
874    fn default() -> Self {
875        Self {
876            enabled: false,
877            noise_injection: NoiseInjectionConfig::default(),
878            adversarial_training: AdversarialTrainingConfig::default(),
879            ensemble_methods: EnsembleMethodsConfig::default(),
880        }
881    }
882}
883
884/// Noise injection configuration
885#[derive(Debug, Clone, Serialize, Deserialize)]
886pub struct NoiseInjectionConfig {
887    /// Enable noise injection
888    pub enabled: bool,
889    /// Noise injection probability
890    pub injection_probability: f64,
891    /// Noise strength
892    pub noise_strength: f64,
893    /// Noise type
894    pub noise_type: NoiseType,
895}
896
897impl Default for NoiseInjectionConfig {
898    fn default() -> Self {
899        Self {
900            enabled: false,
901            injection_probability: 0.1,
902            noise_strength: 0.01,
903            noise_type: NoiseType::Depolarizing,
904        }
905    }
906}
907
908/// Noise types for training
909#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
910pub enum NoiseType {
911    /// Depolarizing noise
912    Depolarizing,
913    /// Amplitude damping
914    AmplitudeDamping,
915    /// Phase damping
916    PhaseDamping,
917    /// Bit flip
918    BitFlip,
919    /// Phase flip
920    PhaseFlip,
921    /// Pauli noise
922    Pauli,
923}
924
925/// Adversarial training configuration
926#[derive(Debug, Clone, Serialize, Deserialize)]
927pub struct AdversarialTrainingConfig {
928    /// Enable adversarial training
929    pub enabled: bool,
930    /// Adversarial attack strength
931    pub attack_strength: f64,
932    /// Attack method
933    pub attack_method: AdversarialAttackMethod,
934    /// Defense method
935    pub defense_method: AdversarialDefenseMethod,
936}
937
938impl Default for AdversarialTrainingConfig {
939    fn default() -> Self {
940        Self {
941            enabled: false,
942            attack_strength: 0.01,
943            attack_method: AdversarialAttackMethod::FGSM,
944            defense_method: AdversarialDefenseMethod::AdversarialTraining,
945        }
946    }
947}
948
949/// Adversarial attack methods
950#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
951pub enum AdversarialAttackMethod {
952    /// Fast Gradient Sign Method
953    FGSM,
954    /// Projected Gradient Descent
955    PGD,
956    /// C&W attack
957    CarliniWagner,
958    /// Quantum adversarial attacks
959    QuantumAdversarial,
960}
961
962/// Adversarial defense methods
963#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
964pub enum AdversarialDefenseMethod {
965    /// Adversarial training
966    AdversarialTraining,
967    /// Defensive distillation
968    DefensiveDistillation,
969    /// Certified defenses
970    CertifiedDefenses,
971    /// Quantum error correction defenses
972    QuantumErrorCorrection,
973}
974
975/// Ensemble methods configuration
976#[derive(Debug, Clone, Serialize, Deserialize)]
977pub struct EnsembleMethodsConfig {
978    /// Enable ensemble methods
979    pub enabled: bool,
980    /// Number of ensemble members
981    pub num_ensemble: usize,
982    /// Ensemble method
983    pub ensemble_method: EnsembleMethod,
984    /// Voting strategy
985    pub voting_strategy: VotingStrategy,
986}
987
988impl Default for EnsembleMethodsConfig {
989    fn default() -> Self {
990        Self {
991            enabled: false,
992            num_ensemble: 5,
993            ensemble_method: EnsembleMethod::Bagging,
994            voting_strategy: VotingStrategy::MajorityVoting,
995        }
996    }
997}
998
999/// Ensemble methods
1000#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1001pub enum EnsembleMethod {
1002    /// Bootstrap aggregating (bagging)
1003    Bagging,
1004    /// Boosting
1005    Boosting,
1006    /// Random forests
1007    RandomForest,
1008    /// Quantum ensemble methods
1009    QuantumEnsemble,
1010}
1011
1012/// Voting strategies for ensembles
1013#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
1014pub enum VotingStrategy {
1015    /// Majority voting
1016    MajorityVoting,
1017    /// Weighted voting
1018    WeightedVoting,
1019    /// Soft voting (probability averaging)
1020    SoftVoting,
1021    /// Quantum voting
1022    QuantumVoting,
1023}
1024
1025/// Performance optimization configuration
1026#[derive(Debug, Clone, Serialize, Deserialize)]
1027pub struct PerformanceOptimizationConfig {
1028    /// Enable performance optimization
1029    pub enabled: bool,
1030    /// Memory optimization
1031    pub memory_optimization: MemoryOptimizationConfig,
1032    /// Computation optimization
1033    pub computation_optimization: ComputationOptimizationConfig,
1034    /// Parallelization configuration
1035    pub parallelization: ParallelizationConfig,
1036    /// Caching configuration
1037    pub caching: CachingConfig,
1038}
1039
1040impl Default for PerformanceOptimizationConfig {
1041    fn default() -> Self {
1042        Self {
1043            enabled: true,
1044            memory_optimization: MemoryOptimizationConfig::default(),
1045            computation_optimization: ComputationOptimizationConfig::default(),
1046            parallelization: ParallelizationConfig::default(),
1047            caching: CachingConfig::default(),
1048        }
1049    }
1050}
1051
1052/// Memory optimization configuration
1053#[derive(Debug, Clone, Serialize, Deserialize)]
1054pub struct MemoryOptimizationConfig {
1055    /// Enable memory optimization
1056    pub enabled: bool,
1057    /// Use memory mapping
1058    pub memory_mapping: bool,
1059    /// Gradient checkpointing
1060    pub gradient_checkpointing: bool,
1061    /// Memory pool size
1062    pub memory_pool_size: Option<usize>,
1063}
1064
1065impl Default for MemoryOptimizationConfig {
1066    fn default() -> Self {
1067        Self {
1068            enabled: true,
1069            memory_mapping: false,
1070            gradient_checkpointing: false,
1071            memory_pool_size: None,
1072        }
1073    }
1074}
1075
1076/// Computation optimization configuration
1077#[derive(Debug, Clone, Serialize, Deserialize)]
1078pub struct ComputationOptimizationConfig {
1079    /// Enable computation optimization
1080    pub enabled: bool,
1081    /// Use mixed precision
1082    pub mixed_precision: bool,
1083    /// SIMD optimization
1084    pub simd_optimization: bool,
1085    /// Just-in-time compilation
1086    pub jit_compilation: bool,
1087}
1088
1089impl Default for ComputationOptimizationConfig {
1090    fn default() -> Self {
1091        Self {
1092            enabled: true,
1093            mixed_precision: false,
1094            simd_optimization: true,
1095            jit_compilation: false,
1096        }
1097    }
1098}
1099
1100/// Parallelization configuration
1101#[derive(Debug, Clone, Serialize, Deserialize)]
1102pub struct ParallelizationConfig {
1103    /// Enable parallelization
1104    pub enabled: bool,
1105    /// Number of threads
1106    pub num_threads: Option<usize>,
1107    /// Data parallelism
1108    pub data_parallelism: bool,
1109    /// Model parallelism
1110    pub model_parallelism: bool,
1111    /// Pipeline parallelism
1112    pub pipeline_parallelism: bool,
1113}
1114
1115impl Default for ParallelizationConfig {
1116    fn default() -> Self {
1117        Self {
1118            enabled: true,
1119            num_threads: None,
1120            data_parallelism: true,
1121            model_parallelism: false,
1122            pipeline_parallelism: false,
1123        }
1124    }
1125}
1126
1127/// Caching configuration
1128#[derive(Debug, Clone, Serialize, Deserialize)]
1129pub struct CachingConfig {
1130    /// Enable caching
1131    pub enabled: bool,
1132    /// Cache size
1133    pub cache_size: usize,
1134    /// Cache gradients
1135    pub cache_gradients: bool,
1136    /// Cache intermediate results
1137    pub cache_intermediate: bool,
1138}
1139
1140impl Default for CachingConfig {
1141    fn default() -> Self {
1142        Self {
1143            enabled: true,
1144            cache_size: 1000,
1145            cache_gradients: true,
1146            cache_intermediate: false,
1147        }
1148    }
1149}
1150
1151/// Main quantum machine learning layers framework
1152#[derive(Debug)]
1153pub struct QuantumMLFramework {
1154    /// Configuration
1155    config: QMLConfig,
1156    /// QML layers
1157    layers: Vec<Box<dyn QMLLayer>>,
1158    /// Current training state
1159    training_state: QMLTrainingState,
1160    /// SciRS2 backend for numerical operations
1161    backend: Option<SciRS2Backend>,
1162    /// Performance statistics
1163    stats: QMLStats,
1164    /// Training history
1165    training_history: Vec<QMLTrainingResult>,
1166}
1167
1168impl QuantumMLFramework {
1169    /// Create new quantum ML framework
1170    pub fn new(config: QMLConfig) -> Result<Self> {
1171        let mut framework = Self {
1172            config: config.clone(),
1173            layers: Vec::new(),
1174            training_state: QMLTrainingState::new(),
1175            backend: None,
1176            stats: QMLStats::new(),
1177            training_history: Vec::new(),
1178        };
1179
1180        // Initialize layers based on configuration
1181        framework.initialize_layers()?;
1182
1183        // Initialize SciRS2 backend if available
1184        let backend = SciRS2Backend::new();
1185        if backend.is_available() {
1186            framework.backend = Some(backend);
1187        }
1188
1189        Ok(framework)
1190    }
1191
1192    /// Initialize QML layers
1193    fn initialize_layers(&mut self) -> Result<()> {
1194        for layer_config in &self.config.layer_configs {
1195            let layer = self.create_layer(layer_config)?;
1196            self.layers.push(layer);
1197        }
1198        Ok(())
1199    }
1200
1201    /// Create a QML layer based on configuration
1202    fn create_layer(&self, config: &QMLLayerConfig) -> Result<Box<dyn QMLLayer>> {
1203        match config.layer_type {
1204            QMLLayerType::ParameterizedQuantumCircuit => Ok(Box::new(
1205                ParameterizedQuantumCircuitLayer::new(self.config.num_qubits, config.clone())?,
1206            )),
1207            QMLLayerType::QuantumConvolutional => Ok(Box::new(QuantumConvolutionalLayer::new(
1208                self.config.num_qubits,
1209                config.clone(),
1210            )?)),
1211            QMLLayerType::QuantumDense => Ok(Box::new(QuantumDenseLayer::new(
1212                self.config.num_qubits,
1213                config.clone(),
1214            )?)),
1215            QMLLayerType::QuantumLSTM => Ok(Box::new(QuantumLSTMLayer::new(
1216                self.config.num_qubits,
1217                config.clone(),
1218            )?)),
1219            QMLLayerType::QuantumAttention => Ok(Box::new(QuantumAttentionLayer::new(
1220                self.config.num_qubits,
1221                config.clone(),
1222            )?)),
1223            _ => Err(SimulatorError::InvalidConfiguration(format!(
1224                "Layer type {:?} not yet implemented",
1225                config.layer_type
1226            ))),
1227        }
1228    }
1229
1230    /// Forward pass through the quantum ML model
1231    pub fn forward(&mut self, input: &Array1<f64>) -> Result<Array1<f64>> {
1232        let mut current_state = self.encode_input(input)?;
1233
1234        // Pass through each layer
1235        for layer in &mut self.layers {
1236            current_state = layer.forward(&current_state)?;
1237        }
1238
1239        // Decode output
1240        let output = self.decode_output(&current_state)?;
1241
1242        // Update statistics
1243        self.stats.forward_passes += 1;
1244
1245        Ok(output)
1246    }
1247
1248    /// Backward pass for gradient computation
1249    pub fn backward(&mut self, loss_gradient: &Array1<f64>) -> Result<Array1<f64>> {
1250        let mut grad = loss_gradient.clone();
1251
1252        // Backpropagate through layers in reverse order
1253        for layer in self.layers.iter_mut().rev() {
1254            grad = layer.backward(&grad)?;
1255        }
1256
1257        // Update statistics
1258        self.stats.backward_passes += 1;
1259
1260        Ok(grad)
1261    }
1262
1263    /// Train the quantum ML model
1264    pub fn train(
1265        &mut self,
1266        training_data: &[(Array1<f64>, Array1<f64>)],
1267        validation_data: Option<&[(Array1<f64>, Array1<f64>)]>,
1268    ) -> Result<QMLTrainingResult> {
1269        let mut best_validation_loss = f64::INFINITY;
1270        let mut patience_counter = 0;
1271        let mut training_metrics = Vec::new();
1272
1273        let training_start = std::time::Instant::now();
1274
1275        for epoch in 0..self.config.training_config.epochs {
1276            let epoch_start = std::time::Instant::now();
1277
1278            // Training phase
1279            let mut epoch_loss = 0.0;
1280            let mut num_batches = 0;
1281
1282            for batch in training_data.chunks(self.config.training_config.batch_size) {
1283                let batch_loss = self.train_batch(batch)?;
1284                epoch_loss += batch_loss;
1285                num_batches += 1;
1286            }
1287
1288            epoch_loss /= num_batches as f64;
1289
1290            // Validation phase
1291            let validation_loss = if let Some(val_data) = validation_data {
1292                self.evaluate(val_data)?
1293            } else {
1294                epoch_loss
1295            };
1296
1297            let epoch_time = epoch_start.elapsed();
1298
1299            let metrics = QMLEpochMetrics {
1300                epoch,
1301                training_loss: epoch_loss,
1302                validation_loss,
1303                epoch_time,
1304                learning_rate: self.get_current_learning_rate(epoch),
1305            };
1306
1307            training_metrics.push(metrics.clone());
1308
1309            // Early stopping check
1310            if self.config.training_config.early_stopping.enabled {
1311                if validation_loss
1312                    < best_validation_loss - self.config.training_config.early_stopping.min_delta
1313                {
1314                    best_validation_loss = validation_loss;
1315                    patience_counter = 0;
1316                } else {
1317                    patience_counter += 1;
1318                    if patience_counter >= self.config.training_config.early_stopping.patience {
1319                        println!("Early stopping triggered at epoch {}", epoch);
1320                        break;
1321                    }
1322                }
1323            }
1324
1325            // Update learning rate
1326            self.update_learning_rate(epoch, validation_loss);
1327
1328            // Print progress
1329            if epoch % 10 == 0 {
1330                println!(
1331                    "Epoch {}: train_loss={:.6}, val_loss={:.6}, time={:.2}s",
1332                    epoch,
1333                    epoch_loss,
1334                    validation_loss,
1335                    epoch_time.as_secs_f64()
1336                );
1337            }
1338        }
1339
1340        let total_training_time = training_start.elapsed();
1341
1342        let result = QMLTrainingResult {
1343            final_training_loss: training_metrics
1344                .last()
1345                .map(|m| m.training_loss)
1346                .unwrap_or(0.0),
1347            final_validation_loss: training_metrics
1348                .last()
1349                .map(|m| m.validation_loss)
1350                .unwrap_or(0.0),
1351            best_validation_loss,
1352            epochs_trained: training_metrics.len(),
1353            total_training_time,
1354            training_metrics,
1355            quantum_advantage_metrics: self.compute_quantum_advantage_metrics()?,
1356        };
1357
1358        self.training_history.push(result.clone());
1359
1360        Ok(result)
1361    }
1362
1363    /// Train a single batch
1364    fn train_batch(&mut self, batch: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
1365        let mut total_loss = 0.0;
1366        let mut total_gradients: Vec<Array1<f64>> =
1367            (0..self.layers.len()).map(|_| Array1::zeros(0)).collect();
1368
1369        for (input, target) in batch {
1370            // Forward pass
1371            let prediction = self.forward(input)?;
1372
1373            // Compute loss
1374            let loss = self.compute_loss(&prediction, target)?;
1375            total_loss += loss;
1376
1377            // Compute loss gradient
1378            let loss_gradient = self.compute_loss_gradient(&prediction, target)?;
1379
1380            // Backward pass
1381            let gradients = self.compute_gradients(&loss_gradient)?;
1382
1383            // Accumulate gradients
1384            for (i, grad) in gradients.iter().enumerate() {
1385                if total_gradients[i].len() == 0 {
1386                    total_gradients[i] = grad.clone();
1387                } else {
1388                    total_gradients[i] += grad;
1389                }
1390            }
1391        }
1392
1393        // Average gradients
1394        let batch_size = batch.len() as f64;
1395        for grad in &mut total_gradients {
1396            *grad /= batch_size;
1397        }
1398
1399        // Apply gradients
1400        self.apply_gradients(&total_gradients)?;
1401
1402        Ok(total_loss / batch_size)
1403    }
1404
1405    /// Evaluate the model on validation data
1406    pub fn evaluate(&mut self, data: &[(Array1<f64>, Array1<f64>)]) -> Result<f64> {
1407        let mut total_loss = 0.0;
1408
1409        for (input, target) in data {
1410            let prediction = self.forward(input)?;
1411            let loss = self.compute_loss(&prediction, target)?;
1412            total_loss += loss;
1413        }
1414
1415        Ok(total_loss / data.len() as f64)
1416    }
1417
1418    /// Encode classical input into quantum state
1419    fn encode_input(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1420        match self.config.classical_preprocessing.encoding_method {
1421            DataEncodingMethod::Amplitude => self.encode_amplitude(input),
1422            DataEncodingMethod::Angle => self.encode_angle(input),
1423            DataEncodingMethod::Basis => self.encode_basis(input),
1424            DataEncodingMethod::QuantumFeatureMap => self.encode_quantum_feature_map(input),
1425            _ => Err(SimulatorError::InvalidConfiguration(
1426                "Encoding method not implemented".to_string(),
1427            )),
1428        }
1429    }
1430
1431    /// Amplitude encoding
1432    fn encode_amplitude(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1433        let n_qubits = self.config.num_qubits;
1434        let state_size = 1 << n_qubits;
1435        let mut state = Array1::zeros(state_size);
1436
1437        // Normalize input
1438        let norm = input.iter().map(|x| x * x).sum::<f64>().sqrt();
1439        if norm == 0.0 {
1440            return Err(SimulatorError::InvalidState("Zero input norm".to_string()));
1441        }
1442
1443        // Encode input as amplitudes
1444        for (i, &val) in input.iter().enumerate() {
1445            if i < state_size {
1446                state[i] = Complex64::new(val / norm, 0.0);
1447            }
1448        }
1449
1450        Ok(state)
1451    }
1452
1453    /// Angle encoding
1454    fn encode_angle(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1455        let n_qubits = self.config.num_qubits;
1456        let state_size = 1 << n_qubits;
1457        let mut state = Array1::zeros(state_size);
1458
1459        // Initialize |0...0⟩ state
1460        state[0] = Complex64::new(1.0, 0.0);
1461
1462        // Apply rotation gates based on input values
1463        for (i, &angle) in input.iter().enumerate() {
1464            if i < n_qubits {
1465                // Apply RY rotation to qubit i
1466                state = self.apply_ry_rotation(&state, i, angle)?;
1467            }
1468        }
1469
1470        Ok(state)
1471    }
1472
1473    /// Basis encoding
1474    fn encode_basis(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1475        let n_qubits = self.config.num_qubits;
1476        let state_size = 1 << n_qubits;
1477        let mut state = Array1::zeros(state_size);
1478
1479        // Convert input to binary representation
1480        let mut binary_index = 0;
1481        for (i, &val) in input.iter().enumerate() {
1482            if i < n_qubits && val > 0.5 {
1483                binary_index |= 1 << i;
1484            }
1485        }
1486
1487        state[binary_index] = Complex64::new(1.0, 0.0);
1488
1489        Ok(state)
1490    }
1491
1492    /// Quantum feature map encoding
1493    fn encode_quantum_feature_map(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1494        let n_qubits = self.config.num_qubits;
1495        let state_size = 1 << n_qubits;
1496        let mut state = Array1::zeros(state_size);
1497
1498        // Initialize |+⟩^⊗n state (all qubits in superposition)
1499        let hadamard_coeff = 1.0 / (2.0_f64.powf(n_qubits as f64 / 2.0));
1500        for i in 0..state_size {
1501            state[i] = Complex64::new(hadamard_coeff, 0.0);
1502        }
1503
1504        // Apply feature map rotations
1505        for (i, &feature) in input.iter().enumerate() {
1506            if i < n_qubits {
1507                // Apply Z rotation based on feature value
1508                state = self.apply_rz_rotation(&state, i, feature * PI)?;
1509            }
1510        }
1511
1512        // Apply entangling gates for feature interactions
1513        for i in 0..(n_qubits - 1) {
1514            if i + 1 < input.len() {
1515                let interaction = input[i] * input[i + 1];
1516                state = self.apply_cnot_interaction(&state, i, i + 1, interaction * PI)?;
1517            }
1518        }
1519
1520        Ok(state)
1521    }
1522
1523    /// Apply RY rotation to a specific qubit
1524    fn apply_ry_rotation(
1525        &self,
1526        state: &Array1<Complex64>,
1527        qubit: usize,
1528        angle: f64,
1529    ) -> Result<Array1<Complex64>> {
1530        let n_qubits = self.config.num_qubits;
1531        let state_size = 1 << n_qubits;
1532        let mut new_state = state.clone();
1533
1534        let cos_half = (angle / 2.0).cos();
1535        let sin_half = (angle / 2.0).sin();
1536
1537        for i in 0..state_size {
1538            if i & (1 << qubit) == 0 {
1539                // |0⟩ component
1540                let j = i | (1 << qubit); // corresponding |1⟩ state
1541                if j < state_size {
1542                    let state_0 = state[i];
1543                    let state_1 = state[j];
1544
1545                    new_state[i] = Complex64::new(cos_half, 0.0) * state_0
1546                        - Complex64::new(sin_half, 0.0) * state_1;
1547                    new_state[j] = Complex64::new(sin_half, 0.0) * state_0
1548                        + Complex64::new(cos_half, 0.0) * state_1;
1549                }
1550            }
1551        }
1552
1553        Ok(new_state)
1554    }
1555
1556    /// Apply RZ rotation to a specific qubit
1557    fn apply_rz_rotation(
1558        &self,
1559        state: &Array1<Complex64>,
1560        qubit: usize,
1561        angle: f64,
1562    ) -> Result<Array1<Complex64>> {
1563        let n_qubits = self.config.num_qubits;
1564        let state_size = 1 << n_qubits;
1565        let mut new_state = state.clone();
1566
1567        let phase_0 = Complex64::from_polar(1.0, -angle / 2.0);
1568        let phase_1 = Complex64::from_polar(1.0, angle / 2.0);
1569
1570        for i in 0..state_size {
1571            if i & (1 << qubit) == 0 {
1572                new_state[i] *= phase_0;
1573            } else {
1574                new_state[i] *= phase_1;
1575            }
1576        }
1577
1578        Ok(new_state)
1579    }
1580
1581    /// Apply CNOT with interaction term
1582    fn apply_cnot_interaction(
1583        &self,
1584        state: &Array1<Complex64>,
1585        control: usize,
1586        target: usize,
1587        interaction: f64,
1588    ) -> Result<Array1<Complex64>> {
1589        let n_qubits = self.config.num_qubits;
1590        let state_size = 1 << n_qubits;
1591        let mut new_state = state.clone();
1592
1593        // Apply interaction-dependent phase
1594        let phase = Complex64::from_polar(1.0, interaction);
1595
1596        for i in 0..state_size {
1597            if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
1598                // Both control and target are |1⟩
1599                new_state[i] *= phase;
1600            }
1601        }
1602
1603        Ok(new_state)
1604    }
1605
1606    /// Decode quantum state to classical output
1607    fn decode_output(&self, state: &Array1<Complex64>) -> Result<Array1<f64>> {
1608        // For now, use expectation values of Pauli-Z measurements
1609        let n_qubits = self.config.num_qubits;
1610        let mut output = Array1::zeros(n_qubits);
1611
1612        for qubit in 0..n_qubits {
1613            let expectation = self.measure_pauli_z_expectation(state, qubit)?;
1614            output[qubit] = expectation;
1615        }
1616
1617        Ok(output)
1618    }
1619
1620    /// Measure Pauli-Z expectation value for a specific qubit
1621    fn measure_pauli_z_expectation(&self, state: &Array1<Complex64>, qubit: usize) -> Result<f64> {
1622        let state_size = state.len();
1623        let mut expectation = 0.0;
1624
1625        for i in 0..state_size {
1626            let probability = state[i].norm_sqr();
1627            if i & (1 << qubit) == 0 {
1628                expectation += probability; // |0⟩ contributes +1
1629            } else {
1630                expectation -= probability; // |1⟩ contributes -1
1631            }
1632        }
1633
1634        Ok(expectation)
1635    }
1636
1637    /// Compute loss function
1638    fn compute_loss(&self, prediction: &Array1<f64>, target: &Array1<f64>) -> Result<f64> {
1639        // Check shape compatibility
1640        if prediction.shape() != target.shape() {
1641            return Err(SimulatorError::InvalidInput(format!(
1642                "Shape mismatch: prediction shape {:?} != target shape {:?}",
1643                prediction.shape(),
1644                target.shape()
1645            )));
1646        }
1647
1648        // Mean squared error
1649        let diff = prediction - target;
1650        let mse = diff.iter().map(|x| x * x).sum::<f64>() / diff.len() as f64;
1651        Ok(mse)
1652    }
1653
1654    /// Compute loss gradient
1655    fn compute_loss_gradient(
1656        &self,
1657        prediction: &Array1<f64>,
1658        target: &Array1<f64>,
1659    ) -> Result<Array1<f64>> {
1660        // Gradient of MSE
1661        let diff = prediction - target;
1662        let grad = 2.0 * &diff / diff.len() as f64;
1663        Ok(grad)
1664    }
1665
1666    /// Compute gradients using parameter-shift rule
1667    fn compute_gradients(&mut self, loss_gradient: &Array1<f64>) -> Result<Vec<Array1<f64>>> {
1668        let mut gradients = Vec::new();
1669
1670        for layer_idx in 0..self.layers.len() {
1671            let layer_gradient = match self.config.training_config.gradient_method {
1672                GradientMethod::ParameterShift => {
1673                    self.compute_parameter_shift_gradient(layer_idx, loss_gradient)?
1674                }
1675                GradientMethod::FiniteDifference => {
1676                    self.compute_finite_difference_gradient(layer_idx, loss_gradient)?
1677                }
1678                _ => {
1679                    return Err(SimulatorError::InvalidConfiguration(
1680                        "Gradient method not implemented".to_string(),
1681                    ))
1682                }
1683            };
1684            gradients.push(layer_gradient);
1685        }
1686
1687        Ok(gradients)
1688    }
1689
1690    /// Compute gradients using parameter-shift rule
1691    fn compute_parameter_shift_gradient(
1692        &mut self,
1693        layer_idx: usize,
1694        loss_gradient: &Array1<f64>,
1695    ) -> Result<Array1<f64>> {
1696        let layer = &self.layers[layer_idx];
1697        let parameters = layer.get_parameters();
1698        let mut gradient = Array1::zeros(parameters.len());
1699
1700        let shift = PI / 2.0; // Parameter shift amount
1701
1702        for (param_idx, &param_val) in parameters.iter().enumerate() {
1703            // Forward shift
1704            let mut params_plus = parameters.clone();
1705            params_plus[param_idx] = param_val + shift;
1706            self.layers[layer_idx].set_parameters(&params_plus);
1707            let output_plus = self.forward_layer(layer_idx, loss_gradient)?;
1708
1709            // Backward shift
1710            let mut params_minus = parameters.clone();
1711            params_minus[param_idx] = param_val - shift;
1712            self.layers[layer_idx].set_parameters(&params_minus);
1713            let output_minus = self.forward_layer(layer_idx, loss_gradient)?;
1714
1715            // Compute gradient
1716            gradient[param_idx] = (output_plus.sum() - output_minus.sum()) / 2.0;
1717
1718            // Restore original parameters
1719            self.layers[layer_idx].set_parameters(&parameters);
1720        }
1721
1722        Ok(gradient)
1723    }
1724
1725    /// Compute gradients using finite differences
1726    fn compute_finite_difference_gradient(
1727        &mut self,
1728        layer_idx: usize,
1729        loss_gradient: &Array1<f64>,
1730    ) -> Result<Array1<f64>> {
1731        let layer = &self.layers[layer_idx];
1732        let parameters = layer.get_parameters();
1733        let mut gradient = Array1::zeros(parameters.len());
1734
1735        let eps = 1e-6; // Small perturbation
1736
1737        for (param_idx, &param_val) in parameters.iter().enumerate() {
1738            // Forward perturbation
1739            let mut params_plus = parameters.clone();
1740            params_plus[param_idx] = param_val + eps;
1741            self.layers[layer_idx].set_parameters(&params_plus);
1742            let output_plus = self.forward_layer(layer_idx, loss_gradient)?;
1743
1744            // Backward perturbation
1745            let mut params_minus = parameters.clone();
1746            params_minus[param_idx] = param_val - eps;
1747            self.layers[layer_idx].set_parameters(&params_minus);
1748            let output_minus = self.forward_layer(layer_idx, loss_gradient)?;
1749
1750            // Compute gradient
1751            gradient[param_idx] = (output_plus.sum() - output_minus.sum()) / (2.0 * eps);
1752
1753            // Restore original parameters
1754            self.layers[layer_idx].set_parameters(&parameters);
1755        }
1756
1757        Ok(gradient)
1758    }
1759
1760    /// Forward pass through a specific layer
1761    fn forward_layer(&mut self, layer_idx: usize, input: &Array1<f64>) -> Result<Array1<f64>> {
1762        // This is a simplified version - in practice, we'd need to track intermediate states
1763        self.forward(input)
1764    }
1765
1766    /// Apply gradients to update parameters
1767    fn apply_gradients(&mut self, gradients: &[Array1<f64>]) -> Result<()> {
1768        for (layer_idx, gradient) in gradients.iter().enumerate() {
1769            let layer = &mut self.layers[layer_idx];
1770            let mut parameters = layer.get_parameters();
1771
1772            // Apply gradient update based on optimizer
1773            match self.config.training_config.optimizer {
1774                OptimizerType::SGD => {
1775                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1776                        *param -= self.config.training_config.learning_rate * grad;
1777                    }
1778                }
1779                OptimizerType::Adam => {
1780                    // Simplified Adam update (would need to track momentum terms)
1781                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1782                        *param -= self.config.training_config.learning_rate * grad;
1783                    }
1784                }
1785                _ => {
1786                    // Default to SGD
1787                    for (param, grad) in parameters.iter_mut().zip(gradient.iter()) {
1788                        *param -= self.config.training_config.learning_rate * grad;
1789                    }
1790                }
1791            }
1792
1793            // Apply parameter constraints
1794            if let Some((min_val, max_val)) =
1795                self.config.training_config.regularization.parameter_bounds
1796            {
1797                for param in parameters.iter_mut() {
1798                    *param = param.clamp(min_val, max_val);
1799                }
1800            }
1801
1802            layer.set_parameters(&parameters);
1803        }
1804
1805        Ok(())
1806    }
1807
1808    /// Get current learning rate (with scheduling)
1809    fn get_current_learning_rate(&self, epoch: usize) -> f64 {
1810        let base_lr = self.config.training_config.learning_rate;
1811
1812        match self.config.training_config.lr_schedule {
1813            LearningRateSchedule::Constant => base_lr,
1814            LearningRateSchedule::ExponentialDecay => base_lr * 0.95_f64.powi(epoch as i32),
1815            LearningRateSchedule::StepDecay => {
1816                if epoch % 50 == 0 && epoch > 0 {
1817                    base_lr * 0.5_f64.powi((epoch / 50) as i32)
1818                } else {
1819                    base_lr
1820                }
1821            }
1822            LearningRateSchedule::CosineAnnealing => {
1823                let progress = epoch as f64 / self.config.training_config.epochs as f64;
1824                base_lr * 0.5 * (1.0 + (PI * progress).cos())
1825            }
1826            _ => base_lr,
1827        }
1828    }
1829
1830    /// Update learning rate
1831    fn update_learning_rate(&mut self, epoch: usize, validation_loss: f64) {
1832        // This would update internal optimizer state for learning rate scheduling
1833        // For now, just track the current learning rate
1834        let current_lr = self.get_current_learning_rate(epoch);
1835        self.training_state.current_learning_rate = current_lr;
1836    }
1837
1838    /// Compute quantum advantage metrics
1839    fn compute_quantum_advantage_metrics(&self) -> Result<QuantumAdvantageMetrics> {
1840        // Placeholder for quantum advantage analysis
1841        Ok(QuantumAdvantageMetrics {
1842            quantum_volume: 0.0,
1843            classical_simulation_cost: 0.0,
1844            quantum_speedup_factor: 1.0,
1845            circuit_depth: self.layers.iter().map(|l| l.get_depth()).sum(),
1846            gate_count: self.layers.iter().map(|l| l.get_gate_count()).sum(),
1847            entanglement_measure: 0.0,
1848        })
1849    }
1850
1851    /// Get training statistics
1852    pub fn get_stats(&self) -> &QMLStats {
1853        &self.stats
1854    }
1855
1856    /// Get training history
1857    pub fn get_training_history(&self) -> &[QMLTrainingResult] {
1858        &self.training_history
1859    }
1860
1861    /// Get layers reference
1862    pub fn get_layers(&self) -> &[Box<dyn QMLLayer>] {
1863        &self.layers
1864    }
1865
1866    /// Get config reference
1867    pub fn get_config(&self) -> &QMLConfig {
1868        &self.config
1869    }
1870
1871    /// Encode amplitude (public version)
1872    pub fn encode_amplitude_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1873        self.encode_amplitude(input)
1874    }
1875
1876    /// Encode angle (public version)
1877    pub fn encode_angle_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1878        self.encode_angle(input)
1879    }
1880
1881    /// Encode basis (public version)
1882    pub fn encode_basis_public(&self, input: &Array1<f64>) -> Result<Array1<Complex64>> {
1883        self.encode_basis(input)
1884    }
1885
1886    /// Encode quantum feature map (public version)
1887    pub fn encode_quantum_feature_map_public(
1888        &self,
1889        input: &Array1<f64>,
1890    ) -> Result<Array1<Complex64>> {
1891        self.encode_quantum_feature_map(input)
1892    }
1893
1894    /// Measure Pauli Z expectation (public version)
1895    pub fn measure_pauli_z_expectation_public(
1896        &self,
1897        state: &Array1<Complex64>,
1898        qubit: usize,
1899    ) -> Result<f64> {
1900        self.measure_pauli_z_expectation(state, qubit)
1901    }
1902
1903    /// Get current learning rate (public version)
1904    pub fn get_current_learning_rate_public(&self, epoch: usize) -> f64 {
1905        self.get_current_learning_rate(epoch)
1906    }
1907
1908    /// Compute loss (public version)
1909    pub fn compute_loss_public(
1910        &self,
1911        prediction: &Array1<f64>,
1912        target: &Array1<f64>,
1913    ) -> Result<f64> {
1914        self.compute_loss(prediction, target)
1915    }
1916
1917    /// Compute loss gradient (public version)
1918    pub fn compute_loss_gradient_public(
1919        &self,
1920        prediction: &Array1<f64>,
1921        target: &Array1<f64>,
1922    ) -> Result<Array1<f64>> {
1923        self.compute_loss_gradient(prediction, target)
1924    }
1925}
1926
1927/// Trait for QML layers
1928pub trait QMLLayer: std::fmt::Debug + Send + Sync {
1929    /// Forward pass through the layer
1930    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>>;
1931
1932    /// Backward pass through the layer
1933    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>>;
1934
1935    /// Get layer parameters
1936    fn get_parameters(&self) -> Array1<f64>;
1937
1938    /// Set layer parameters
1939    fn set_parameters(&mut self, parameters: &Array1<f64>);
1940
1941    /// Get circuit depth
1942    fn get_depth(&self) -> usize;
1943
1944    /// Get gate count
1945    fn get_gate_count(&self) -> usize;
1946
1947    /// Get number of parameters
1948    fn get_num_parameters(&self) -> usize;
1949}
1950
1951/// Parameterized Quantum Circuit Layer
1952#[derive(Debug)]
1953pub struct ParameterizedQuantumCircuitLayer {
1954    /// Number of qubits
1955    num_qubits: usize,
1956    /// Layer configuration
1957    config: QMLLayerConfig,
1958    /// Parameters (rotation angles)
1959    parameters: Array1<f64>,
1960    /// Circuit structure
1961    circuit_structure: Vec<PQCGate>,
1962    /// Internal state vector simulator
1963    simulator: StateVectorSimulator,
1964}
1965
1966impl ParameterizedQuantumCircuitLayer {
1967    /// Create new PQC layer
1968    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
1969        let mut layer = Self {
1970            num_qubits,
1971            config: config.clone(),
1972            parameters: Array1::zeros(config.num_parameters),
1973            circuit_structure: Vec::new(),
1974            simulator: StateVectorSimulator::new(),
1975        };
1976
1977        // Initialize parameters randomly
1978        layer.initialize_parameters();
1979
1980        // Build circuit structure
1981        layer.build_circuit_structure()?;
1982
1983        Ok(layer)
1984    }
1985
1986    /// Initialize parameters randomly
1987    fn initialize_parameters(&mut self) {
1988        let mut rng = thread_rng();
1989        for param in self.parameters.iter_mut() {
1990            *param = rng.gen_range(-PI..PI);
1991        }
1992    }
1993
1994    /// Build circuit structure based on ansatz
1995    fn build_circuit_structure(&mut self) -> Result<()> {
1996        match self.config.ansatz_type {
1997            AnsatzType::Hardware => self.build_hardware_efficient_ansatz(),
1998            AnsatzType::Layered => self.build_layered_ansatz(),
1999            AnsatzType::BrickWall => self.build_brick_wall_ansatz(),
2000            _ => Err(SimulatorError::InvalidConfiguration(
2001                "Ansatz type not implemented".to_string(),
2002            )),
2003        }
2004    }
2005
2006    /// Build hardware-efficient ansatz
2007    fn build_hardware_efficient_ansatz(&mut self) -> Result<()> {
2008        let mut param_idx = 0;
2009
2010        for layer in 0..self.config.depth {
2011            // Single-qubit rotations
2012            for qubit in 0..self.num_qubits {
2013                for &gate_type in &self.config.rotation_gates {
2014                    if param_idx < self.parameters.len() {
2015                        self.circuit_structure.push(PQCGate {
2016                            gate_type: PQCGateType::SingleQubit(gate_type),
2017                            qubits: vec![qubit],
2018                            parameter_index: Some(param_idx),
2019                        });
2020                        param_idx += 1;
2021                    }
2022                }
2023            }
2024
2025            // Entangling gates
2026            self.add_entangling_gates(&mut param_idx);
2027        }
2028
2029        Ok(())
2030    }
2031
2032    /// Build layered ansatz
2033    fn build_layered_ansatz(&mut self) -> Result<()> {
2034        // Similar to hardware-efficient but with different structure
2035        self.build_hardware_efficient_ansatz()
2036    }
2037
2038    /// Build brick-wall ansatz
2039    fn build_brick_wall_ansatz(&mut self) -> Result<()> {
2040        let mut param_idx = 0;
2041
2042        for layer in 0..self.config.depth {
2043            // Alternating CNOT pattern (brick-wall)
2044            let offset = layer % 2;
2045            for i in (offset..self.num_qubits - 1).step_by(2) {
2046                self.circuit_structure.push(PQCGate {
2047                    gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2048                    qubits: vec![i, i + 1],
2049                    parameter_index: None,
2050                });
2051            }
2052
2053            // Single-qubit rotations
2054            for qubit in 0..self.num_qubits {
2055                if param_idx < self.parameters.len() {
2056                    self.circuit_structure.push(PQCGate {
2057                        gate_type: PQCGateType::SingleQubit(RotationGate::RY),
2058                        qubits: vec![qubit],
2059                        parameter_index: Some(param_idx),
2060                    });
2061                    param_idx += 1;
2062                }
2063            }
2064        }
2065
2066        Ok(())
2067    }
2068
2069    /// Add entangling gates based on entanglement pattern
2070    fn add_entangling_gates(&mut self, param_idx: &mut usize) {
2071        match self.config.entanglement_pattern {
2072            EntanglementPattern::Linear => {
2073                for i in 0..(self.num_qubits - 1) {
2074                    self.circuit_structure.push(PQCGate {
2075                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2076                        qubits: vec![i, i + 1],
2077                        parameter_index: None,
2078                    });
2079                }
2080            }
2081            EntanglementPattern::Circular => {
2082                for i in 0..self.num_qubits {
2083                    let next = (i + 1) % self.num_qubits;
2084                    self.circuit_structure.push(PQCGate {
2085                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2086                        qubits: vec![i, next],
2087                        parameter_index: None,
2088                    });
2089                }
2090            }
2091            EntanglementPattern::AllToAll => {
2092                for i in 0..self.num_qubits {
2093                    for j in (i + 1)..self.num_qubits {
2094                        self.circuit_structure.push(PQCGate {
2095                            gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2096                            qubits: vec![i, j],
2097                            parameter_index: None,
2098                        });
2099                    }
2100                }
2101            }
2102            _ => {
2103                // Default to linear
2104                for i in 0..(self.num_qubits - 1) {
2105                    self.circuit_structure.push(PQCGate {
2106                        gate_type: PQCGateType::TwoQubit(TwoQubitGate::CNOT),
2107                        qubits: vec![i, i + 1],
2108                        parameter_index: None,
2109                    });
2110                }
2111            }
2112        }
2113    }
2114}
2115
2116impl QMLLayer for ParameterizedQuantumCircuitLayer {
2117    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2118        let mut state = input.clone();
2119
2120        // Apply each gate in the circuit
2121        for gate in &self.circuit_structure {
2122            state = self.apply_gate(&state, gate)?;
2123        }
2124
2125        Ok(state)
2126    }
2127
2128    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2129        // Simplified backward pass - in practice would use automatic differentiation
2130        Ok(gradient.clone())
2131    }
2132
2133    fn get_parameters(&self) -> Array1<f64> {
2134        self.parameters.clone()
2135    }
2136
2137    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2138        self.parameters = parameters.clone();
2139    }
2140
2141    fn get_depth(&self) -> usize {
2142        self.config.depth
2143    }
2144
2145    fn get_gate_count(&self) -> usize {
2146        self.circuit_structure.len()
2147    }
2148
2149    fn get_num_parameters(&self) -> usize {
2150        self.parameters.len()
2151    }
2152}
2153
2154impl ParameterizedQuantumCircuitLayer {
2155    /// Apply a single gate to the quantum state
2156    fn apply_gate(&self, state: &Array1<Complex64>, gate: &PQCGate) -> Result<Array1<Complex64>> {
2157        match &gate.gate_type {
2158            PQCGateType::SingleQubit(rotation_gate) => {
2159                let angle = if let Some(param_idx) = gate.parameter_index {
2160                    self.parameters[param_idx]
2161                } else {
2162                    0.0
2163                };
2164                self.apply_single_qubit_gate(state, gate.qubits[0], *rotation_gate, angle)
2165            }
2166            PQCGateType::TwoQubit(two_qubit_gate) => {
2167                self.apply_two_qubit_gate(state, gate.qubits[0], gate.qubits[1], *two_qubit_gate)
2168            }
2169        }
2170    }
2171
2172    /// Apply single-qubit rotation gate
2173    fn apply_single_qubit_gate(
2174        &self,
2175        state: &Array1<Complex64>,
2176        qubit: usize,
2177        gate_type: RotationGate,
2178        angle: f64,
2179    ) -> Result<Array1<Complex64>> {
2180        let state_size = state.len();
2181        let mut new_state = Array1::zeros(state_size);
2182
2183        match gate_type {
2184            RotationGate::RX => {
2185                let cos_half = (angle / 2.0).cos();
2186                let sin_half = (angle / 2.0).sin();
2187
2188                for i in 0..state_size {
2189                    if i & (1 << qubit) == 0 {
2190                        let j = i | (1 << qubit);
2191                        if j < state_size {
2192                            new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2193                                + Complex64::new(0.0, -sin_half) * state[j];
2194                            new_state[j] = Complex64::new(0.0, -sin_half) * state[i]
2195                                + Complex64::new(cos_half, 0.0) * state[j];
2196                        }
2197                    }
2198                }
2199            }
2200            RotationGate::RY => {
2201                let cos_half = (angle / 2.0).cos();
2202                let sin_half = (angle / 2.0).sin();
2203
2204                for i in 0..state_size {
2205                    if i & (1 << qubit) == 0 {
2206                        let j = i | (1 << qubit);
2207                        if j < state_size {
2208                            new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2209                                - Complex64::new(sin_half, 0.0) * state[j];
2210                            new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2211                                + Complex64::new(cos_half, 0.0) * state[j];
2212                        }
2213                    }
2214                }
2215            }
2216            RotationGate::RZ => {
2217                let phase_0 = Complex64::from_polar(1.0, -angle / 2.0);
2218                let phase_1 = Complex64::from_polar(1.0, angle / 2.0);
2219
2220                for i in 0..state_size {
2221                    if i & (1 << qubit) == 0 {
2222                        new_state[i] = phase_0 * state[i];
2223                    } else {
2224                        new_state[i] = phase_1 * state[i];
2225                    }
2226                }
2227            }
2228            _ => {
2229                return Err(SimulatorError::InvalidGate(
2230                    "Gate type not implemented".to_string(),
2231                ))
2232            }
2233        }
2234
2235        Ok(new_state)
2236    }
2237
2238    /// Apply two-qubit gate
2239    fn apply_two_qubit_gate(
2240        &self,
2241        state: &Array1<Complex64>,
2242        control: usize,
2243        target: usize,
2244        gate_type: TwoQubitGate,
2245    ) -> Result<Array1<Complex64>> {
2246        let state_size = state.len();
2247        let mut new_state = state.clone();
2248
2249        match gate_type {
2250            TwoQubitGate::CNOT => {
2251                for i in 0..state_size {
2252                    if (i & (1 << control)) != 0 {
2253                        // Control qubit is |1⟩, flip target
2254                        let j = i ^ (1 << target);
2255                        new_state[i] = state[j];
2256                    }
2257                }
2258            }
2259            TwoQubitGate::CZ => {
2260                for i in 0..state_size {
2261                    if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
2262                        // Both qubits are |1⟩, apply phase
2263                        new_state[i] = -state[i];
2264                    }
2265                }
2266            }
2267            TwoQubitGate::SWAP => {
2268                for i in 0..state_size {
2269                    let ctrl_bit = (i & (1 << control)) != 0;
2270                    let targ_bit = (i & (1 << target)) != 0;
2271                    if ctrl_bit != targ_bit {
2272                        // Swap the qubits
2273                        let j = i ^ (1 << control) ^ (1 << target);
2274                        new_state[i] = state[j];
2275                    }
2276                }
2277            }
2278            TwoQubitGate::CPhase => {
2279                for i in 0..state_size {
2280                    if (i & (1 << control)) != 0 && (i & (1 << target)) != 0 {
2281                        // Both qubits are |1⟩, apply phase (similar to CZ)
2282                        new_state[i] = -state[i];
2283                    }
2284                }
2285            }
2286        }
2287
2288        Ok(new_state)
2289    }
2290}
2291
2292/// Quantum Convolutional Layer
2293#[derive(Debug)]
2294pub struct QuantumConvolutionalLayer {
2295    /// Number of qubits
2296    num_qubits: usize,
2297    /// Layer configuration
2298    config: QMLLayerConfig,
2299    /// Parameters
2300    parameters: Array1<f64>,
2301    /// Convolutional structure
2302    conv_structure: Vec<ConvolutionalFilter>,
2303}
2304
2305impl QuantumConvolutionalLayer {
2306    /// Create new quantum convolutional layer
2307    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2308        let mut layer = Self {
2309            num_qubits,
2310            config: config.clone(),
2311            parameters: Array1::zeros(config.num_parameters),
2312            conv_structure: Vec::new(),
2313        };
2314
2315        layer.initialize_parameters();
2316        layer.build_convolutional_structure()?;
2317
2318        Ok(layer)
2319    }
2320
2321    /// Initialize parameters
2322    fn initialize_parameters(&mut self) {
2323        let mut rng = thread_rng();
2324        for param in self.parameters.iter_mut() {
2325            *param = rng.gen_range(-PI..PI);
2326        }
2327    }
2328
2329    /// Build convolutional structure
2330    fn build_convolutional_structure(&mut self) -> Result<()> {
2331        // Create sliding window filters
2332        let filter_size = 2; // 2-qubit filters
2333        let stride = 1;
2334
2335        let mut param_idx = 0;
2336        for start in (0..self.num_qubits - filter_size + 1).step_by(stride) {
2337            if param_idx + 2 <= self.parameters.len() {
2338                self.conv_structure.push(ConvolutionalFilter {
2339                    qubits: vec![start, start + 1],
2340                    parameter_indices: vec![param_idx, param_idx + 1],
2341                });
2342                param_idx += 2;
2343            }
2344        }
2345
2346        Ok(())
2347    }
2348}
2349
2350impl QMLLayer for QuantumConvolutionalLayer {
2351    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2352        let mut state = input.clone();
2353
2354        // Apply convolutional filters
2355        for filter in &self.conv_structure {
2356            state = self.apply_convolutional_filter(&state, filter)?;
2357        }
2358
2359        Ok(state)
2360    }
2361
2362    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2363        Ok(gradient.clone())
2364    }
2365
2366    fn get_parameters(&self) -> Array1<f64> {
2367        self.parameters.clone()
2368    }
2369
2370    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2371        self.parameters = parameters.clone();
2372    }
2373
2374    fn get_depth(&self) -> usize {
2375        self.conv_structure.len()
2376    }
2377
2378    fn get_gate_count(&self) -> usize {
2379        self.conv_structure.len() * 4 // Approximate gates per filter
2380    }
2381
2382    fn get_num_parameters(&self) -> usize {
2383        self.parameters.len()
2384    }
2385}
2386
2387impl QuantumConvolutionalLayer {
2388    /// Apply convolutional filter
2389    fn apply_convolutional_filter(
2390        &self,
2391        state: &Array1<Complex64>,
2392        filter: &ConvolutionalFilter,
2393    ) -> Result<Array1<Complex64>> {
2394        let mut new_state = state.clone();
2395
2396        // Apply parameterized two-qubit unitaries
2397        let param1 = self.parameters[filter.parameter_indices[0]];
2398        let param2 = self.parameters[filter.parameter_indices[1]];
2399
2400        // Apply RY rotations followed by CNOT
2401        new_state = self.apply_ry_to_state(&new_state, filter.qubits[0], param1)?;
2402        new_state = self.apply_ry_to_state(&new_state, filter.qubits[1], param2)?;
2403        new_state = self.apply_cnot_to_state(&new_state, filter.qubits[0], filter.qubits[1])?;
2404
2405        Ok(new_state)
2406    }
2407
2408    /// Apply RY rotation to state
2409    fn apply_ry_to_state(
2410        &self,
2411        state: &Array1<Complex64>,
2412        qubit: usize,
2413        angle: f64,
2414    ) -> Result<Array1<Complex64>> {
2415        let state_size = state.len();
2416        let mut new_state = Array1::zeros(state_size);
2417
2418        let cos_half = (angle / 2.0).cos();
2419        let sin_half = (angle / 2.0).sin();
2420
2421        for i in 0..state_size {
2422            if i & (1 << qubit) == 0 {
2423                let j = i | (1 << qubit);
2424                if j < state_size {
2425                    new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2426                        - Complex64::new(sin_half, 0.0) * state[j];
2427                    new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2428                        + Complex64::new(cos_half, 0.0) * state[j];
2429                }
2430            }
2431        }
2432
2433        Ok(new_state)
2434    }
2435
2436    /// Apply CNOT to state
2437    fn apply_cnot_to_state(
2438        &self,
2439        state: &Array1<Complex64>,
2440        control: usize,
2441        target: usize,
2442    ) -> Result<Array1<Complex64>> {
2443        let state_size = state.len();
2444        let mut new_state = state.clone();
2445
2446        for i in 0..state_size {
2447            if (i & (1 << control)) != 0 {
2448                let j = i ^ (1 << target);
2449                new_state[i] = state[j];
2450            }
2451        }
2452
2453        Ok(new_state)
2454    }
2455}
2456
2457/// Quantum Dense Layer (fully connected)
2458#[derive(Debug)]
2459pub struct QuantumDenseLayer {
2460    /// Number of qubits
2461    num_qubits: usize,
2462    /// Layer configuration
2463    config: QMLLayerConfig,
2464    /// Parameters
2465    parameters: Array1<f64>,
2466    /// Dense layer structure
2467    dense_structure: Vec<DenseConnection>,
2468}
2469
2470impl QuantumDenseLayer {
2471    /// Create new quantum dense layer
2472    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2473        let mut layer = Self {
2474            num_qubits,
2475            config: config.clone(),
2476            parameters: Array1::zeros(config.num_parameters),
2477            dense_structure: Vec::new(),
2478        };
2479
2480        layer.initialize_parameters();
2481        layer.build_dense_structure()?;
2482
2483        Ok(layer)
2484    }
2485
2486    /// Initialize parameters
2487    fn initialize_parameters(&mut self) {
2488        let mut rng = thread_rng();
2489        for param in self.parameters.iter_mut() {
2490            *param = rng.gen_range(-PI..PI);
2491        }
2492    }
2493
2494    /// Build dense layer structure (all-to-all connectivity)
2495    fn build_dense_structure(&mut self) -> Result<()> {
2496        let mut param_idx = 0;
2497
2498        // Create all-to-all connections
2499        for i in 0..self.num_qubits {
2500            for j in (i + 1)..self.num_qubits {
2501                if param_idx < self.parameters.len() {
2502                    self.dense_structure.push(DenseConnection {
2503                        qubit1: i,
2504                        qubit2: j,
2505                        parameter_index: param_idx,
2506                    });
2507                    param_idx += 1;
2508                }
2509            }
2510        }
2511
2512        Ok(())
2513    }
2514}
2515
2516impl QMLLayer for QuantumDenseLayer {
2517    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2518        let mut state = input.clone();
2519
2520        // Apply dense connections
2521        for connection in &self.dense_structure {
2522            state = self.apply_dense_connection(&state, connection)?;
2523        }
2524
2525        Ok(state)
2526    }
2527
2528    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2529        Ok(gradient.clone())
2530    }
2531
2532    fn get_parameters(&self) -> Array1<f64> {
2533        self.parameters.clone()
2534    }
2535
2536    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2537        self.parameters = parameters.clone();
2538    }
2539
2540    fn get_depth(&self) -> usize {
2541        1 // Dense layer is typically single depth
2542    }
2543
2544    fn get_gate_count(&self) -> usize {
2545        self.dense_structure.len() * 2 // Approximate gates per connection
2546    }
2547
2548    fn get_num_parameters(&self) -> usize {
2549        self.parameters.len()
2550    }
2551}
2552
2553impl QuantumDenseLayer {
2554    /// Apply dense connection (parameterized two-qubit gate)
2555    fn apply_dense_connection(
2556        &self,
2557        state: &Array1<Complex64>,
2558        connection: &DenseConnection,
2559    ) -> Result<Array1<Complex64>> {
2560        let angle = self.parameters[connection.parameter_index];
2561
2562        // Apply parameterized two-qubit rotation
2563        self.apply_parameterized_two_qubit_gate(state, connection.qubit1, connection.qubit2, angle)
2564    }
2565
2566    /// Apply parameterized two-qubit gate
2567    fn apply_parameterized_two_qubit_gate(
2568        &self,
2569        state: &Array1<Complex64>,
2570        qubit1: usize,
2571        qubit2: usize,
2572        angle: f64,
2573    ) -> Result<Array1<Complex64>> {
2574        let state_size = state.len();
2575        let mut new_state = state.clone();
2576
2577        // Apply controlled rotation
2578        let cos_val = angle.cos();
2579        let sin_val = angle.sin();
2580
2581        for i in 0..state_size {
2582            if (i & (1 << qubit1)) != 0 && (i & (1 << qubit2)) != 0 {
2583                // Both qubits are |1⟩
2584                let phase = Complex64::new(cos_val, sin_val);
2585                new_state[i] *= phase;
2586            }
2587        }
2588
2589        Ok(new_state)
2590    }
2591}
2592
2593/// Quantum LSTM Layer
2594#[derive(Debug)]
2595pub struct QuantumLSTMLayer {
2596    /// Number of qubits
2597    num_qubits: usize,
2598    /// Layer configuration
2599    config: QMLLayerConfig,
2600    /// Parameters
2601    parameters: Array1<f64>,
2602    /// LSTM gates
2603    lstm_gates: Vec<LSTMGate>,
2604    /// Hidden state
2605    hidden_state: Option<Array1<Complex64>>,
2606    /// Cell state
2607    cell_state: Option<Array1<Complex64>>,
2608}
2609
2610impl QuantumLSTMLayer {
2611    /// Create new quantum LSTM layer
2612    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2613        let mut layer = Self {
2614            num_qubits,
2615            config: config.clone(),
2616            parameters: Array1::zeros(config.num_parameters),
2617            lstm_gates: Vec::new(),
2618            hidden_state: None,
2619            cell_state: None,
2620        };
2621
2622        layer.initialize_parameters();
2623        layer.build_lstm_structure()?;
2624
2625        Ok(layer)
2626    }
2627
2628    /// Initialize parameters
2629    fn initialize_parameters(&mut self) {
2630        let mut rng = thread_rng();
2631        for param in self.parameters.iter_mut() {
2632            *param = rng.gen_range(-PI..PI);
2633        }
2634    }
2635
2636    /// Build LSTM structure
2637    fn build_lstm_structure(&mut self) -> Result<()> {
2638        let params_per_gate = self.parameters.len() / 4; // Forget, input, output, candidate gates
2639
2640        self.lstm_gates = vec![
2641            LSTMGate {
2642                gate_type: LSTMGateType::Forget,
2643                parameter_start: 0,
2644                parameter_count: params_per_gate,
2645            },
2646            LSTMGate {
2647                gate_type: LSTMGateType::Input,
2648                parameter_start: params_per_gate,
2649                parameter_count: params_per_gate,
2650            },
2651            LSTMGate {
2652                gate_type: LSTMGateType::Output,
2653                parameter_start: 2 * params_per_gate,
2654                parameter_count: params_per_gate,
2655            },
2656            LSTMGate {
2657                gate_type: LSTMGateType::Candidate,
2658                parameter_start: 3 * params_per_gate,
2659                parameter_count: params_per_gate,
2660            },
2661        ];
2662
2663        Ok(())
2664    }
2665}
2666
2667impl QMLLayer for QuantumLSTMLayer {
2668    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2669        // Initialize states if first time
2670        if self.hidden_state.is_none() {
2671            let state_size = 1 << self.num_qubits;
2672            self.hidden_state = Some(Array1::zeros(state_size));
2673            self.cell_state = Some(Array1::zeros(state_size));
2674            // Initialize with |0...0⟩ state
2675            self.hidden_state.as_mut().unwrap()[0] = Complex64::new(1.0, 0.0);
2676            self.cell_state.as_mut().unwrap()[0] = Complex64::new(1.0, 0.0);
2677        }
2678
2679        let mut current_state = input.clone();
2680
2681        // Apply LSTM gates
2682        for gate in &self.lstm_gates {
2683            current_state = self.apply_lstm_gate(&current_state, gate)?;
2684        }
2685
2686        // Update internal states
2687        self.hidden_state = Some(current_state.clone());
2688
2689        Ok(current_state)
2690    }
2691
2692    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2693        Ok(gradient.clone())
2694    }
2695
2696    fn get_parameters(&self) -> Array1<f64> {
2697        self.parameters.clone()
2698    }
2699
2700    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2701        self.parameters = parameters.clone();
2702    }
2703
2704    fn get_depth(&self) -> usize {
2705        self.lstm_gates.len()
2706    }
2707
2708    fn get_gate_count(&self) -> usize {
2709        self.parameters.len() // Each parameter corresponds roughly to one gate
2710    }
2711
2712    fn get_num_parameters(&self) -> usize {
2713        self.parameters.len()
2714    }
2715}
2716
2717impl QuantumLSTMLayer {
2718    /// Apply LSTM gate
2719    fn apply_lstm_gate(
2720        &self,
2721        state: &Array1<Complex64>,
2722        gate: &LSTMGate,
2723    ) -> Result<Array1<Complex64>> {
2724        let mut new_state = state.clone();
2725
2726        // Apply parameterized unitaries based on gate parameters
2727        for i in 0..gate.parameter_count {
2728            let param_idx = gate.parameter_start + i;
2729            if param_idx < self.parameters.len() {
2730                let angle = self.parameters[param_idx];
2731                let qubit = i % self.num_qubits;
2732
2733                // Apply rotation gate
2734                new_state = self.apply_rotation(&new_state, qubit, angle)?;
2735            }
2736        }
2737
2738        Ok(new_state)
2739    }
2740
2741    /// Apply rotation gate
2742    fn apply_rotation(
2743        &self,
2744        state: &Array1<Complex64>,
2745        qubit: usize,
2746        angle: f64,
2747    ) -> Result<Array1<Complex64>> {
2748        let state_size = state.len();
2749        let mut new_state = Array1::zeros(state_size);
2750
2751        let cos_half = (angle / 2.0).cos();
2752        let sin_half = (angle / 2.0).sin();
2753
2754        for i in 0..state_size {
2755            if i & (1 << qubit) == 0 {
2756                let j = i | (1 << qubit);
2757                if j < state_size {
2758                    new_state[i] = Complex64::new(cos_half, 0.0) * state[i]
2759                        - Complex64::new(sin_half, 0.0) * state[j];
2760                    new_state[j] = Complex64::new(sin_half, 0.0) * state[i]
2761                        + Complex64::new(cos_half, 0.0) * state[j];
2762                }
2763            }
2764        }
2765
2766        Ok(new_state)
2767    }
2768
2769    /// Get LSTM gates reference
2770    pub fn get_lstm_gates(&self) -> &[LSTMGate] {
2771        &self.lstm_gates
2772    }
2773}
2774
2775/// Quantum Attention Layer
2776#[derive(Debug)]
2777pub struct QuantumAttentionLayer {
2778    /// Number of qubits
2779    num_qubits: usize,
2780    /// Layer configuration
2781    config: QMLLayerConfig,
2782    /// Parameters
2783    parameters: Array1<f64>,
2784    /// Attention structure
2785    attention_structure: Vec<AttentionHead>,
2786}
2787
2788impl QuantumAttentionLayer {
2789    /// Create new quantum attention layer
2790    pub fn new(num_qubits: usize, config: QMLLayerConfig) -> Result<Self> {
2791        let mut layer = Self {
2792            num_qubits,
2793            config: config.clone(),
2794            parameters: Array1::zeros(config.num_parameters),
2795            attention_structure: Vec::new(),
2796        };
2797
2798        layer.initialize_parameters();
2799        layer.build_attention_structure()?;
2800
2801        Ok(layer)
2802    }
2803
2804    /// Initialize parameters
2805    fn initialize_parameters(&mut self) {
2806        let mut rng = thread_rng();
2807        for param in self.parameters.iter_mut() {
2808            *param = rng.gen_range(-PI..PI);
2809        }
2810    }
2811
2812    /// Build attention structure
2813    fn build_attention_structure(&mut self) -> Result<()> {
2814        let num_heads = 2; // Multi-head attention
2815        let params_per_head = self.parameters.len() / num_heads;
2816
2817        for head in 0..num_heads {
2818            self.attention_structure.push(AttentionHead {
2819                head_id: head,
2820                parameter_start: head * params_per_head,
2821                parameter_count: params_per_head,
2822                query_qubits: (0..self.num_qubits / 2).collect(),
2823                key_qubits: (self.num_qubits / 2..self.num_qubits).collect(),
2824            });
2825        }
2826
2827        Ok(())
2828    }
2829}
2830
2831impl QMLLayer for QuantumAttentionLayer {
2832    fn forward(&mut self, input: &Array1<Complex64>) -> Result<Array1<Complex64>> {
2833        let mut state = input.clone();
2834
2835        // Apply attention heads
2836        for head in &self.attention_structure {
2837            state = self.apply_attention_head(&state, head)?;
2838        }
2839
2840        Ok(state)
2841    }
2842
2843    fn backward(&mut self, gradient: &Array1<f64>) -> Result<Array1<f64>> {
2844        Ok(gradient.clone())
2845    }
2846
2847    fn get_parameters(&self) -> Array1<f64> {
2848        self.parameters.clone()
2849    }
2850
2851    fn set_parameters(&mut self, parameters: &Array1<f64>) {
2852        self.parameters = parameters.clone();
2853    }
2854
2855    fn get_depth(&self) -> usize {
2856        self.attention_structure.len()
2857    }
2858
2859    fn get_gate_count(&self) -> usize {
2860        self.parameters.len()
2861    }
2862
2863    fn get_num_parameters(&self) -> usize {
2864        self.parameters.len()
2865    }
2866}
2867
2868impl QuantumAttentionLayer {
2869    /// Apply attention head
2870    fn apply_attention_head(
2871        &self,
2872        state: &Array1<Complex64>,
2873        head: &AttentionHead,
2874    ) -> Result<Array1<Complex64>> {
2875        let mut new_state = state.clone();
2876
2877        // Simplified quantum attention mechanism
2878        for i in 0..head.parameter_count {
2879            let param_idx = head.parameter_start + i;
2880            if param_idx < self.parameters.len() {
2881                let angle = self.parameters[param_idx];
2882
2883                // Apply cross-attention between query and key qubits
2884                if i < head.query_qubits.len() && i < head.key_qubits.len() {
2885                    let query_qubit = head.query_qubits[i];
2886                    let key_qubit = head.key_qubits[i];
2887
2888                    new_state =
2889                        self.apply_attention_gate(&new_state, query_qubit, key_qubit, angle)?;
2890                }
2891            }
2892        }
2893
2894        Ok(new_state)
2895    }
2896
2897    /// Apply attention gate (parameterized two-qubit interaction)
2898    fn apply_attention_gate(
2899        &self,
2900        state: &Array1<Complex64>,
2901        query_qubit: usize,
2902        key_qubit: usize,
2903        angle: f64,
2904    ) -> Result<Array1<Complex64>> {
2905        let state_size = state.len();
2906        let mut new_state = state.clone();
2907
2908        // Apply controlled rotation based on attention score
2909        let cos_val = angle.cos();
2910        let sin_val = angle.sin();
2911
2912        for i in 0..state_size {
2913            if (i & (1 << query_qubit)) != 0 {
2914                // Query qubit is |1⟩, apply attention
2915                let key_state = (i & (1 << key_qubit)) != 0;
2916                let attention_phase = if key_state {
2917                    Complex64::new(cos_val, sin_val)
2918                } else {
2919                    Complex64::new(cos_val, -sin_val)
2920                };
2921                new_state[i] *= attention_phase;
2922            }
2923        }
2924
2925        Ok(new_state)
2926    }
2927
2928    /// Get attention structure reference
2929    pub fn get_attention_structure(&self) -> &[AttentionHead] {
2930        &self.attention_structure
2931    }
2932}
2933
2934/// Training state for QML framework
2935#[derive(Debug, Clone)]
2936pub struct QMLTrainingState {
2937    /// Current epoch
2938    pub current_epoch: usize,
2939    /// Current learning rate
2940    pub current_learning_rate: f64,
2941    /// Best validation loss achieved
2942    pub best_validation_loss: f64,
2943    /// Patience counter for early stopping
2944    pub patience_counter: usize,
2945    /// Training loss history
2946    pub training_loss_history: Vec<f64>,
2947    /// Validation loss history
2948    pub validation_loss_history: Vec<f64>,
2949}
2950
2951impl QMLTrainingState {
2952    /// Create new training state
2953    pub fn new() -> Self {
2954        Self {
2955            current_epoch: 0,
2956            current_learning_rate: 0.01,
2957            best_validation_loss: f64::INFINITY,
2958            patience_counter: 0,
2959            training_loss_history: Vec::new(),
2960            validation_loss_history: Vec::new(),
2961        }
2962    }
2963}
2964
2965/// Training result for QML framework
2966#[derive(Debug, Clone)]
2967pub struct QMLTrainingResult {
2968    /// Final training loss
2969    pub final_training_loss: f64,
2970    /// Final validation loss
2971    pub final_validation_loss: f64,
2972    /// Best validation loss achieved
2973    pub best_validation_loss: f64,
2974    /// Number of epochs trained
2975    pub epochs_trained: usize,
2976    /// Total training time
2977    pub total_training_time: std::time::Duration,
2978    /// Training metrics per epoch
2979    pub training_metrics: Vec<QMLEpochMetrics>,
2980    /// Quantum advantage metrics
2981    pub quantum_advantage_metrics: QuantumAdvantageMetrics,
2982}
2983
2984/// Training metrics for a single epoch
2985#[derive(Debug, Clone)]
2986pub struct QMLEpochMetrics {
2987    /// Epoch number
2988    pub epoch: usize,
2989    /// Training loss
2990    pub training_loss: f64,
2991    /// Validation loss
2992    pub validation_loss: f64,
2993    /// Time taken for epoch
2994    pub epoch_time: std::time::Duration,
2995    /// Learning rate used
2996    pub learning_rate: f64,
2997}
2998
2999/// Quantum advantage metrics
3000#[derive(Debug, Clone, Serialize, Deserialize)]
3001pub struct QuantumAdvantageMetrics {
3002    /// Quantum volume achieved
3003    pub quantum_volume: f64,
3004    /// Classical simulation cost estimate
3005    pub classical_simulation_cost: f64,
3006    /// Quantum speedup factor
3007    pub quantum_speedup_factor: f64,
3008    /// Circuit depth
3009    pub circuit_depth: usize,
3010    /// Total gate count
3011    pub gate_count: usize,
3012    /// Entanglement measure
3013    pub entanglement_measure: f64,
3014}
3015
3016/// QML framework statistics
3017#[derive(Debug, Clone)]
3018pub struct QMLStats {
3019    /// Number of forward passes
3020    pub forward_passes: usize,
3021    /// Number of backward passes
3022    pub backward_passes: usize,
3023    /// Total training time
3024    pub total_training_time: std::time::Duration,
3025    /// Average epoch time
3026    pub average_epoch_time: std::time::Duration,
3027    /// Peak memory usage
3028    pub peak_memory_usage: usize,
3029    /// Number of parameters
3030    pub num_parameters: usize,
3031}
3032
3033impl QMLStats {
3034    /// Create new statistics
3035    pub fn new() -> Self {
3036        Self {
3037            forward_passes: 0,
3038            backward_passes: 0,
3039            total_training_time: std::time::Duration::from_secs(0),
3040            average_epoch_time: std::time::Duration::from_secs(0),
3041            peak_memory_usage: 0,
3042            num_parameters: 0,
3043        }
3044    }
3045}
3046
3047/// Parameterized quantum circuit gate
3048#[derive(Debug, Clone)]
3049pub struct PQCGate {
3050    /// Gate type
3051    pub gate_type: PQCGateType,
3052    /// Qubits involved
3053    pub qubits: Vec<usize>,
3054    /// Parameter index (if parameterized)
3055    pub parameter_index: Option<usize>,
3056}
3057
3058/// Types of PQC gates
3059#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3060pub enum PQCGateType {
3061    /// Single-qubit rotation gate
3062    SingleQubit(RotationGate),
3063    /// Two-qubit gate
3064    TwoQubit(TwoQubitGate),
3065}
3066
3067/// Two-qubit gates
3068#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3069pub enum TwoQubitGate {
3070    /// CNOT gate
3071    CNOT,
3072    /// Controlled-Z gate
3073    CZ,
3074    /// Swap gate
3075    SWAP,
3076    /// Controlled-Phase gate
3077    CPhase,
3078}
3079
3080/// Convolutional filter structure
3081#[derive(Debug, Clone)]
3082pub struct ConvolutionalFilter {
3083    /// Qubits in the filter
3084    pub qubits: Vec<usize>,
3085    /// Parameter indices
3086    pub parameter_indices: Vec<usize>,
3087}
3088
3089/// Dense layer connection
3090#[derive(Debug, Clone)]
3091pub struct DenseConnection {
3092    /// First qubit
3093    pub qubit1: usize,
3094    /// Second qubit
3095    pub qubit2: usize,
3096    /// Parameter index
3097    pub parameter_index: usize,
3098}
3099
3100/// LSTM gate structure
3101#[derive(Debug, Clone)]
3102pub struct LSTMGate {
3103    /// LSTM gate type
3104    pub gate_type: LSTMGateType,
3105    /// Starting parameter index
3106    pub parameter_start: usize,
3107    /// Number of parameters
3108    pub parameter_count: usize,
3109}
3110
3111/// LSTM gate types
3112#[derive(Debug, Clone, Copy, PartialEq, Eq)]
3113pub enum LSTMGateType {
3114    /// Forget gate
3115    Forget,
3116    /// Input gate
3117    Input,
3118    /// Output gate
3119    Output,
3120    /// Candidate values
3121    Candidate,
3122}
3123
3124/// Attention head structure
3125#[derive(Debug, Clone)]
3126pub struct AttentionHead {
3127    /// Head identifier
3128    pub head_id: usize,
3129    /// Starting parameter index
3130    pub parameter_start: usize,
3131    /// Number of parameters
3132    pub parameter_count: usize,
3133    /// Query qubits
3134    pub query_qubits: Vec<usize>,
3135    /// Key qubits
3136    pub key_qubits: Vec<usize>,
3137}
3138
3139/// QML benchmark results
3140#[derive(Debug, Clone, Serialize, Deserialize)]
3141pub struct QMLBenchmarkResults {
3142    /// Training time per method
3143    pub training_times: HashMap<String, std::time::Duration>,
3144    /// Final accuracies
3145    pub final_accuracies: HashMap<String, f64>,
3146    /// Convergence rates
3147    pub convergence_rates: HashMap<String, f64>,
3148    /// Memory usage
3149    pub memory_usage: HashMap<String, usize>,
3150    /// Quantum advantage metrics
3151    pub quantum_advantage: HashMap<String, QuantumAdvantageMetrics>,
3152    /// Parameter counts
3153    pub parameter_counts: HashMap<String, usize>,
3154    /// Circuit depths
3155    pub circuit_depths: HashMap<String, usize>,
3156    /// Gate counts
3157    pub gate_counts: HashMap<String, usize>,
3158}
3159
3160/// Utility functions for QML
3161pub struct QMLUtils;
3162
3163impl QMLUtils {
3164    /// Generate synthetic training data for testing
3165    pub fn generate_synthetic_data(
3166        num_samples: usize,
3167        input_dim: usize,
3168        output_dim: usize,
3169    ) -> (Vec<Array1<f64>>, Vec<Array1<f64>>) {
3170        let mut rng = thread_rng();
3171        let mut inputs = Vec::new();
3172        let mut outputs = Vec::new();
3173
3174        for _ in 0..num_samples {
3175            let input =
3176                Array1::from_vec((0..input_dim).map(|_| rng.gen_range(-1.0..1.0)).collect());
3177
3178            // Generate output based on some function of input
3179            let output = Array1::from_vec(
3180                (0..output_dim)
3181                    .map(|i| {
3182                        if i < input_dim {
3183                            (input[i] as f64).sin() // Simple nonlinear transformation
3184                        } else {
3185                            rng.gen_range(-1.0..1.0)
3186                        }
3187                    })
3188                    .collect(),
3189            );
3190
3191            inputs.push(input);
3192            outputs.push(output);
3193        }
3194
3195        (inputs, outputs)
3196    }
3197
3198    /// Split data into training and validation sets
3199    pub fn train_test_split(
3200        inputs: Vec<Array1<f64>>,
3201        outputs: Vec<Array1<f64>>,
3202        test_ratio: f64,
3203    ) -> (
3204        Vec<(Array1<f64>, Array1<f64>)>,
3205        Vec<(Array1<f64>, Array1<f64>)>,
3206    ) {
3207        let total_samples = inputs.len();
3208        let test_samples = ((total_samples as f64) * test_ratio) as usize;
3209        let train_samples = total_samples - test_samples;
3210
3211        let mut combined: Vec<(Array1<f64>, Array1<f64>)> =
3212            inputs.into_iter().zip(outputs).collect();
3213
3214        // Shuffle data
3215        let mut rng = thread_rng();
3216        for i in (1..combined.len()).rev() {
3217            let j = rng.gen_range(0..=i);
3218            combined.swap(i, j);
3219        }
3220
3221        let (train_data, test_data) = combined.split_at(train_samples);
3222        (train_data.to_vec(), test_data.to_vec())
3223    }
3224
3225    /// Evaluate model accuracy
3226    pub fn evaluate_accuracy(
3227        predictions: &[Array1<f64>],
3228        targets: &[Array1<f64>],
3229        threshold: f64,
3230    ) -> f64 {
3231        let mut correct = 0;
3232        let total = predictions.len();
3233
3234        for (pred, target) in predictions.iter().zip(targets.iter()) {
3235            let diff = pred - target;
3236            let mse = diff.iter().map(|x| x * x).sum::<f64>() / diff.len() as f64;
3237            if mse < threshold {
3238                correct += 1;
3239            }
3240        }
3241
3242        correct as f64 / total as f64
3243    }
3244
3245    /// Compute quantum circuit complexity metrics
3246    pub fn compute_circuit_complexity(
3247        num_qubits: usize,
3248        depth: usize,
3249        gate_count: usize,
3250    ) -> HashMap<String, f64> {
3251        let mut metrics = HashMap::new();
3252
3253        // State space size
3254        let state_space_size = 2.0_f64.powi(num_qubits as i32);
3255        metrics.insert("state_space_size".to_string(), state_space_size);
3256
3257        // Circuit complexity (depth * gates)
3258        let circuit_complexity = (depth * gate_count) as f64;
3259        metrics.insert("circuit_complexity".to_string(), circuit_complexity);
3260
3261        // Classical simulation cost estimate
3262        let classical_cost = state_space_size * gate_count as f64;
3263        metrics.insert("classical_simulation_cost".to_string(), classical_cost);
3264
3265        // Quantum advantage estimate (log scale)
3266        let quantum_advantage = classical_cost.log2() / circuit_complexity.log2();
3267        metrics.insert("quantum_advantage_estimate".to_string(), quantum_advantage);
3268
3269        metrics
3270    }
3271}
3272
3273/// Benchmark quantum machine learning implementations
3274pub fn benchmark_quantum_ml_layers(config: &QMLConfig) -> Result<QMLBenchmarkResults> {
3275    let mut results = QMLBenchmarkResults {
3276        training_times: HashMap::new(),
3277        final_accuracies: HashMap::new(),
3278        convergence_rates: HashMap::new(),
3279        memory_usage: HashMap::new(),
3280        quantum_advantage: HashMap::new(),
3281        parameter_counts: HashMap::new(),
3282        circuit_depths: HashMap::new(),
3283        gate_counts: HashMap::new(),
3284    };
3285
3286    // Generate test data
3287    let (inputs, outputs) =
3288        QMLUtils::generate_synthetic_data(100, config.num_qubits, config.num_qubits);
3289    let (train_data, val_data) = QMLUtils::train_test_split(inputs, outputs, 0.2);
3290
3291    // Benchmark different QML architectures
3292    let architectures = vec![
3293        QMLArchitectureType::VariationalQuantumCircuit,
3294        QMLArchitectureType::QuantumConvolutionalNN,
3295        // Add more architectures as needed
3296    ];
3297
3298    for architecture in architectures {
3299        let arch_name = format!("{:?}", architecture);
3300
3301        // Create configuration for this architecture
3302        let mut arch_config = config.clone();
3303        arch_config.architecture_type = architecture;
3304
3305        // Create and train model
3306        let start_time = std::time::Instant::now();
3307        let mut framework = QuantumMLFramework::new(arch_config)?;
3308
3309        let training_result = framework.train(&train_data, Some(&val_data))?;
3310        let training_time = start_time.elapsed();
3311
3312        // Evaluate final accuracy
3313        let final_accuracy = framework.evaluate(&val_data)?;
3314
3315        // Store results
3316        results
3317            .training_times
3318            .insert(arch_name.clone(), training_time);
3319        results
3320            .final_accuracies
3321            .insert(arch_name.clone(), 1.0 / (1.0 + final_accuracy)); // Convert loss to accuracy
3322        results.convergence_rates.insert(
3323            arch_name.clone(),
3324            training_result.epochs_trained as f64 / config.training_config.epochs as f64,
3325        );
3326        results
3327            .memory_usage
3328            .insert(arch_name.clone(), framework.get_stats().peak_memory_usage);
3329        results
3330            .quantum_advantage
3331            .insert(arch_name.clone(), training_result.quantum_advantage_metrics);
3332        results.parameter_counts.insert(
3333            arch_name.clone(),
3334            framework
3335                .layers
3336                .iter()
3337                .map(|l| l.get_num_parameters())
3338                .sum(),
3339        );
3340        results.circuit_depths.insert(
3341            arch_name.clone(),
3342            framework.layers.iter().map(|l| l.get_depth()).sum(),
3343        );
3344        results.gate_counts.insert(
3345            arch_name.clone(),
3346            framework.layers.iter().map(|l| l.get_gate_count()).sum(),
3347        );
3348    }
3349
3350    Ok(results)
3351}