1use ndarray::{Array1, Array2};
9use num_complex::Complex64;
10use rand::{thread_rng, Rng};
11use serde::{Deserialize, Serialize};
12use std::collections::HashMap;
13use std::f64::consts::PI;
14use std::sync::{Arc, Mutex};
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18
19#[derive(Debug, Clone, Serialize, Deserialize)]
21pub struct QuantumInspiredConfig {
22 pub num_variables: usize,
24 pub algorithm_category: AlgorithmCategory,
26 pub algorithm_config: AlgorithmConfig,
28 pub optimization_config: OptimizationConfig,
30 pub ml_config: Option<MLConfig>,
32 pub sampling_config: SamplingConfig,
34 pub linalg_config: LinalgConfig,
36 pub graph_config: GraphConfig,
38 pub benchmarking_config: BenchmarkingConfig,
40 pub enable_quantum_heuristics: bool,
42 pub precision: f64,
44 pub random_seed: Option<u64>,
46}
47
48impl Default for QuantumInspiredConfig {
49 fn default() -> Self {
50 Self {
51 num_variables: 16,
52 algorithm_category: AlgorithmCategory::Optimization,
53 algorithm_config: AlgorithmConfig::default(),
54 optimization_config: OptimizationConfig::default(),
55 ml_config: Some(MLConfig::default()),
56 sampling_config: SamplingConfig::default(),
57 linalg_config: LinalgConfig::default(),
58 graph_config: GraphConfig::default(),
59 benchmarking_config: BenchmarkingConfig::default(),
60 enable_quantum_heuristics: true,
61 precision: 1e-8,
62 random_seed: None,
63 }
64 }
65}
66
67#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
69pub enum AlgorithmCategory {
70 Optimization,
72 MachineLearning,
74 Sampling,
76 LinearAlgebra,
78 GraphAlgorithms,
80 HybridQuantumClassical,
82}
83
84#[derive(Debug, Clone, Serialize, Deserialize)]
86pub struct AlgorithmConfig {
87 pub max_iterations: usize,
89 pub tolerance: f64,
91 pub population_size: usize,
93 pub elite_ratio: f64,
95 pub mutation_rate: f64,
97 pub crossover_rate: f64,
99 pub temperature_schedule: TemperatureSchedule,
101 pub quantum_parameters: QuantumParameters,
103}
104
105impl Default for AlgorithmConfig {
106 fn default() -> Self {
107 Self {
108 max_iterations: 1000,
109 tolerance: 1e-6,
110 population_size: 100,
111 elite_ratio: 0.1,
112 mutation_rate: 0.1,
113 crossover_rate: 0.8,
114 temperature_schedule: TemperatureSchedule::Exponential,
115 quantum_parameters: QuantumParameters::default(),
116 }
117 }
118}
119
120#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
122pub enum TemperatureSchedule {
123 Exponential,
125 Linear,
127 Logarithmic,
129 QuantumAdiabatic,
131 Custom,
133}
134
135#[derive(Debug, Clone, Serialize, Deserialize)]
137pub struct QuantumParameters {
138 pub superposition_strength: f64,
140 pub entanglement_strength: f64,
142 pub interference_strength: f64,
144 pub tunneling_probability: f64,
146 pub decoherence_rate: f64,
148 pub measurement_probability: f64,
150 pub quantum_walk_params: QuantumWalkParams,
152}
153
154impl Default for QuantumParameters {
155 fn default() -> Self {
156 Self {
157 superposition_strength: 0.5,
158 entanglement_strength: 0.3,
159 interference_strength: 0.2,
160 tunneling_probability: 0.1,
161 decoherence_rate: 0.01,
162 measurement_probability: 0.1,
163 quantum_walk_params: QuantumWalkParams::default(),
164 }
165 }
166}
167
168#[derive(Debug, Clone, Serialize, Deserialize)]
170pub struct QuantumWalkParams {
171 pub coin_bias: f64,
173 pub step_size: f64,
175 pub num_steps: usize,
177 pub dimension: usize,
179}
180
181impl Default for QuantumWalkParams {
182 fn default() -> Self {
183 Self {
184 coin_bias: 0.5,
185 step_size: 1.0,
186 num_steps: 100,
187 dimension: 1,
188 }
189 }
190}
191
192#[derive(Debug, Clone, Serialize, Deserialize)]
194pub struct OptimizationConfig {
195 pub algorithm_type: OptimizationAlgorithm,
197 pub objective_function: ObjectiveFunction,
199 pub bounds: Vec<(f64, f64)>,
201 pub constraint_method: ConstraintMethod,
203 pub multi_objective: bool,
205 pub parallel_evaluation: bool,
207}
208
209impl Default for OptimizationConfig {
210 fn default() -> Self {
211 Self {
212 algorithm_type: OptimizationAlgorithm::QuantumGeneticAlgorithm,
213 objective_function: ObjectiveFunction::Quadratic,
214 bounds: vec![(-10.0, 10.0); 16],
215 constraint_method: ConstraintMethod::PenaltyFunction,
216 multi_objective: false,
217 parallel_evaluation: true,
218 }
219 }
220}
221
222#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
224pub enum OptimizationAlgorithm {
225 QuantumGeneticAlgorithm,
227 QuantumParticleSwarm,
229 QuantumSimulatedAnnealing,
231 QuantumDifferentialEvolution,
233 ClassicalQAOA,
235 ClassicalVQE,
237 QuantumAntColony,
239 QuantumHarmonySearch,
241}
242
243#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
245pub enum ObjectiveFunction {
246 Quadratic,
248 Rastrigin,
250 Rosenbrock,
252 Ackley,
254 Sphere,
256 Griewank,
258 Custom,
260}
261
262#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
264pub enum ConstraintMethod {
265 PenaltyFunction,
267 BarrierFunction,
269 LagrangeMultiplier,
271 Projection,
273 Rejection,
275}
276
277#[derive(Debug, Clone, Serialize, Deserialize)]
279pub struct MLConfig {
280 pub algorithm_type: MLAlgorithm,
282 pub architecture: NetworkArchitecture,
284 pub training_config: TrainingConfig,
286 pub tensor_network_config: TensorNetworkConfig,
288}
289
290impl Default for MLConfig {
291 fn default() -> Self {
292 Self {
293 algorithm_type: MLAlgorithm::QuantumInspiredNeuralNetwork,
294 architecture: NetworkArchitecture::default(),
295 training_config: TrainingConfig::default(),
296 tensor_network_config: TensorNetworkConfig::default(),
297 }
298 }
299}
300
301#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
303pub enum MLAlgorithm {
304 QuantumInspiredNeuralNetwork,
306 TensorNetworkML,
308 MPSNeuralNetwork,
310 QuantumInspiredAutoencoder,
312 QuantumInspiredRL,
314 QuantumInspiredSVM,
316 QuantumInspiredClustering,
318 QuantumInspiredPCA,
320}
321
322#[derive(Debug, Clone, Serialize, Deserialize)]
324pub struct NetworkArchitecture {
325 pub input_dim: usize,
327 pub hidden_layers: Vec<usize>,
329 pub output_dim: usize,
331 pub activation: ActivationFunction,
333 pub quantum_connections: bool,
335}
336
337impl Default for NetworkArchitecture {
338 fn default() -> Self {
339 Self {
340 input_dim: 16,
341 hidden_layers: vec![32, 16],
342 output_dim: 8,
343 activation: ActivationFunction::QuantumInspiredTanh,
344 quantum_connections: true,
345 }
346 }
347}
348
349#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
351pub enum ActivationFunction {
352 QuantumInspiredTanh,
354 QuantumInspiredSigmoid,
356 QuantumInspiredReLU,
358 QuantumInspiredSoftmax,
360 QuantumPhase,
362}
363
364#[derive(Debug, Clone, Serialize, Deserialize)]
366pub struct TrainingConfig {
367 pub learning_rate: f64,
369 pub epochs: usize,
371 pub batch_size: usize,
373 pub optimizer: OptimizerType,
375 pub regularization: f64,
377}
378
379impl Default for TrainingConfig {
380 fn default() -> Self {
381 Self {
382 learning_rate: 0.01,
383 epochs: 100,
384 batch_size: 32,
385 optimizer: OptimizerType::QuantumInspiredAdam,
386 regularization: 0.001,
387 }
388 }
389}
390
391#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
393pub enum OptimizerType {
394 QuantumInspiredAdam,
396 QuantumInspiredSGD,
398 QuantumNaturalGradient,
400 QuantumInspiredRMSprop,
402}
403
404#[derive(Debug, Clone, Serialize, Deserialize)]
406pub struct TensorNetworkConfig {
407 pub bond_dimension: usize,
409 pub topology: TensorTopology,
411 pub contraction_method: ContractionMethod,
413 pub truncation_threshold: f64,
415}
416
417impl Default for TensorNetworkConfig {
418 fn default() -> Self {
419 Self {
420 bond_dimension: 64,
421 topology: TensorTopology::MPS,
422 contraction_method: ContractionMethod::OptimalContraction,
423 truncation_threshold: 1e-12,
424 }
425 }
426}
427
428#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
430pub enum TensorTopology {
431 MPS,
433 MPO,
435 TTN,
437 PEPS,
439 MERA,
441}
442
443#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
445pub enum ContractionMethod {
446 OptimalContraction,
448 GreedyContraction,
450 DynamicProgramming,
452 BranchAndBound,
454}
455
456#[derive(Debug, Clone, Serialize, Deserialize)]
458pub struct SamplingConfig {
459 pub algorithm_type: SamplingAlgorithm,
461 pub num_samples: usize,
463 pub burn_in: usize,
465 pub thinning: usize,
467 pub proposal_distribution: ProposalDistribution,
469 pub wave_function_config: WaveFunctionConfig,
471}
472
473impl Default for SamplingConfig {
474 fn default() -> Self {
475 Self {
476 algorithm_type: SamplingAlgorithm::QuantumInspiredMCMC,
477 num_samples: 10000,
478 burn_in: 1000,
479 thinning: 10,
480 proposal_distribution: ProposalDistribution::Gaussian,
481 wave_function_config: WaveFunctionConfig::default(),
482 }
483 }
484}
485
486#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
488pub enum SamplingAlgorithm {
489 QuantumInspiredMCMC,
491 QuantumInspiredVMC,
493 QuantumInspiredImportanceSampling,
495 ClassicalPIMC,
497 QuantumInspiredGibbs,
499 QuantumInspiredMetropolis,
501}
502
503#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
505pub enum ProposalDistribution {
506 Gaussian,
508 Uniform,
510 Cauchy,
512 QuantumInspired,
514}
515
516#[derive(Debug, Clone, Serialize, Deserialize)]
518pub struct WaveFunctionConfig {
519 pub wave_function_type: WaveFunctionType,
521 pub num_parameters: usize,
523 pub jastrow_strength: f64,
525 pub backflow_enabled: bool,
527}
528
529impl Default for WaveFunctionConfig {
530 fn default() -> Self {
531 Self {
532 wave_function_type: WaveFunctionType::SlaterJastrow,
533 num_parameters: 32,
534 jastrow_strength: 1.0,
535 backflow_enabled: false,
536 }
537 }
538}
539
540#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
542pub enum WaveFunctionType {
543 SlaterJastrow,
545 QuantumNeuralNetwork,
547 MatrixProductState,
549 Pfaffian,
551 BCS,
553}
554
555#[derive(Debug, Clone, Serialize, Deserialize)]
557pub struct LinalgConfig {
558 pub algorithm_type: LinalgAlgorithm,
560 pub matrix_dimension: usize,
562 pub precision: f64,
564 pub max_iterations: usize,
566 pub krylov_dimension: usize,
568}
569
570impl Default for LinalgConfig {
571 fn default() -> Self {
572 Self {
573 algorithm_type: LinalgAlgorithm::QuantumInspiredLinearSolver,
574 matrix_dimension: 1024,
575 precision: 1e-8,
576 max_iterations: 1000,
577 krylov_dimension: 50,
578 }
579 }
580}
581
582#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
584pub enum LinalgAlgorithm {
585 QuantumInspiredLinearSolver,
587 QuantumInspiredSVD,
589 QuantumInspiredEigenSolver,
591 QuantumInspiredInversion,
593 QuantumInspiredPCA,
595 QuantumInspiredMatrixExp,
597}
598
599#[derive(Debug, Clone, Serialize, Deserialize)]
601pub struct GraphConfig {
602 pub algorithm_type: GraphAlgorithm,
604 pub num_vertices: usize,
606 pub connectivity: f64,
608 pub walk_params: QuantumWalkParams,
610 pub community_params: CommunityDetectionParams,
612}
613
614impl Default for GraphConfig {
615 fn default() -> Self {
616 Self {
617 algorithm_type: GraphAlgorithm::QuantumInspiredRandomWalk,
618 num_vertices: 100,
619 connectivity: 0.1,
620 walk_params: QuantumWalkParams::default(),
621 community_params: CommunityDetectionParams::default(),
622 }
623 }
624}
625
626#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
628pub enum GraphAlgorithm {
629 QuantumInspiredRandomWalk,
631 QuantumInspiredShortestPath,
633 QuantumInspiredGraphColoring,
635 QuantumInspiredCommunityDetection,
637 QuantumInspiredMaxCut,
639 QuantumInspiredGraphMatching,
641}
642
643#[derive(Debug, Clone, Serialize, Deserialize)]
645pub struct CommunityDetectionParams {
646 pub resolution: f64,
648 pub num_iterations: usize,
650 pub modularity_threshold: f64,
652}
653
654impl Default for CommunityDetectionParams {
655 fn default() -> Self {
656 Self {
657 resolution: 1.0,
658 num_iterations: 100,
659 modularity_threshold: 0.01,
660 }
661 }
662}
663
664#[derive(Debug, Clone, Serialize, Deserialize)]
666pub struct BenchmarkingConfig {
667 pub enabled: bool,
669 pub num_runs: usize,
671 pub compare_classical: bool,
673 pub detailed_metrics: bool,
675 pub performance_analysis: PerformanceAnalysisConfig,
677}
678
679impl Default for BenchmarkingConfig {
680 fn default() -> Self {
681 Self {
682 enabled: true,
683 num_runs: 10,
684 compare_classical: true,
685 detailed_metrics: true,
686 performance_analysis: PerformanceAnalysisConfig::default(),
687 }
688 }
689}
690
691#[derive(Debug, Clone, Serialize, Deserialize)]
693pub struct PerformanceAnalysisConfig {
694 pub analyze_convergence: bool,
696 pub analyze_scalability: bool,
698 pub analyze_quantum_advantage: bool,
700 pub record_memory_usage: bool,
702}
703
704impl Default for PerformanceAnalysisConfig {
705 fn default() -> Self {
706 Self {
707 analyze_convergence: true,
708 analyze_scalability: true,
709 analyze_quantum_advantage: true,
710 record_memory_usage: true,
711 }
712 }
713}
714
715#[derive(Debug)]
717pub struct QuantumInspiredFramework {
718 config: QuantumInspiredConfig,
720 state: QuantumInspiredState,
722 backend: Option<SciRS2Backend>,
724 stats: QuantumInspiredStats,
726 rng: Arc<Mutex<rand::rngs::ThreadRng>>,
728}
729
730#[derive(Debug)]
732pub struct QuantumInspiredState {
733 pub variables: Array1<f64>,
735 pub objective_value: f64,
737 pub iteration: usize,
739 pub best_solution: Array1<f64>,
741 pub best_objective: f64,
743 pub convergence_history: Vec<f64>,
745 pub runtime_stats: RuntimeStats,
747}
748
749#[derive(Debug, Clone)]
751pub struct RuntimeStats {
752 pub function_evaluations: usize,
754 pub gradient_evaluations: usize,
756 pub cpu_time: f64,
758 pub memory_usage: usize,
760 pub quantum_operations: usize,
762}
763
764impl Default for RuntimeStats {
765 fn default() -> Self {
766 Self {
767 function_evaluations: 0,
768 gradient_evaluations: 0,
769 cpu_time: 0.0,
770 memory_usage: 0,
771 quantum_operations: 0,
772 }
773 }
774}
775
776#[derive(Debug, Clone)]
778pub struct QuantumInspiredStats {
779 pub execution_stats: ExecutionStats,
781 pub comparison_stats: ComparisonStats,
783 pub convergence_analysis: ConvergenceAnalysis,
785 pub quantum_advantage_metrics: QuantumAdvantageMetrics,
787}
788
789impl Default for QuantumInspiredStats {
790 fn default() -> Self {
791 Self {
792 execution_stats: ExecutionStats::default(),
793 comparison_stats: ComparisonStats::default(),
794 convergence_analysis: ConvergenceAnalysis::default(),
795 quantum_advantage_metrics: QuantumAdvantageMetrics::default(),
796 }
797 }
798}
799
800#[derive(Debug, Clone)]
802pub struct ExecutionStats {
803 pub total_runtime: f64,
805 pub avg_runtime_per_iteration: f64,
807 pub peak_memory_usage: usize,
809 pub successful_runs: usize,
811 pub failed_runs: usize,
813}
814
815impl Default for ExecutionStats {
816 fn default() -> Self {
817 Self {
818 total_runtime: 0.0,
819 avg_runtime_per_iteration: 0.0,
820 peak_memory_usage: 0,
821 successful_runs: 0,
822 failed_runs: 0,
823 }
824 }
825}
826
827#[derive(Debug, Clone)]
829pub struct ComparisonStats {
830 pub quantum_inspired_performance: f64,
832 pub classical_performance: f64,
834 pub speedup_factor: f64,
836 pub solution_quality_ratio: f64,
838 pub convergence_speed_ratio: f64,
840}
841
842impl Default for ComparisonStats {
843 fn default() -> Self {
844 Self {
845 quantum_inspired_performance: 0.0,
846 classical_performance: 0.0,
847 speedup_factor: 1.0,
848 solution_quality_ratio: 1.0,
849 convergence_speed_ratio: 1.0,
850 }
851 }
852}
853
854#[derive(Debug, Clone)]
856pub struct ConvergenceAnalysis {
857 pub convergence_rate: f64,
859 pub iterations_to_convergence: usize,
861 pub final_gradient_norm: f64,
863 pub converged: bool,
865 pub convergence_criterion: String,
867}
868
869impl Default for ConvergenceAnalysis {
870 fn default() -> Self {
871 Self {
872 convergence_rate: 0.0,
873 iterations_to_convergence: 0,
874 final_gradient_norm: f64::INFINITY,
875 converged: false,
876 convergence_criterion: "tolerance".to_string(),
877 }
878 }
879}
880
881#[derive(Debug, Clone)]
883pub struct QuantumAdvantageMetrics {
884 pub theoretical_speedup: f64,
886 pub practical_advantage: f64,
888 pub complexity_class: String,
890 pub quantum_resource_requirements: usize,
892 pub classical_resource_requirements: usize,
894}
895
896impl Default for QuantumAdvantageMetrics {
897 fn default() -> Self {
898 Self {
899 theoretical_speedup: 1.0,
900 practical_advantage: 1.0,
901 complexity_class: "NP".to_string(),
902 quantum_resource_requirements: 0,
903 classical_resource_requirements: 0,
904 }
905 }
906}
907
908#[derive(Debug, Clone)]
910pub struct OptimizationResult {
911 pub solution: Array1<f64>,
913 pub objective_value: f64,
915 pub iterations: usize,
917 pub converged: bool,
919 pub runtime_stats: RuntimeStats,
921 pub metadata: HashMap<String, f64>,
923}
924
925#[derive(Debug, Clone)]
927pub struct MLTrainingResult {
928 pub parameters: Array1<f64>,
930 pub loss_history: Vec<f64>,
932 pub validation_accuracy: f64,
934 pub training_time: f64,
936 pub complexity_metrics: HashMap<String, f64>,
938}
939
940#[derive(Debug, Clone)]
942pub struct SamplingResult {
943 pub samples: Array2<f64>,
945 pub statistics: SampleStatistics,
947 pub acceptance_rate: f64,
949 pub effective_sample_size: usize,
951 pub autocorr_times: Array1<f64>,
953}
954
955#[derive(Debug, Clone)]
957pub struct SampleStatistics {
958 pub mean: Array1<f64>,
960 pub variance: Array1<f64>,
962 pub skewness: Array1<f64>,
964 pub kurtosis: Array1<f64>,
966 pub correlation_matrix: Array2<f64>,
968}
969
970#[derive(Debug, Clone)]
972pub struct LinalgResult {
973 pub solution: Array1<Complex64>,
975 pub eigenvalues: Option<Array1<Complex64>>,
977 pub eigenvectors: Option<Array2<Complex64>>,
979 pub singular_values: Option<Array1<f64>>,
981 pub residual_norm: f64,
983 pub iterations: usize,
985}
986
987#[derive(Debug, Clone)]
989pub struct GraphResult {
990 pub solution: Vec<usize>,
992 pub objective_value: f64,
994 pub graph_metrics: GraphMetrics,
996 pub walk_stats: Option<WalkStatistics>,
998}
999
1000#[derive(Debug, Clone)]
1002pub struct GraphMetrics {
1003 pub modularity: f64,
1005 pub clustering_coefficient: f64,
1007 pub average_path_length: f64,
1009 pub diameter: usize,
1011}
1012
1013#[derive(Debug, Clone)]
1015pub struct WalkStatistics {
1016 pub visit_frequency: Array1<f64>,
1018 pub hitting_times: Array1<f64>,
1020 pub return_times: Array1<f64>,
1022 pub mixing_time: f64,
1024}
1025
1026#[derive(Debug, Clone)]
1028pub struct BenchmarkingResults {
1029 pub performance_metrics: Vec<f64>,
1031 pub execution_times: Vec<f64>,
1033 pub memory_usage: Vec<usize>,
1035 pub solution_qualities: Vec<f64>,
1037 pub convergence_rates: Vec<f64>,
1039 pub statistical_analysis: StatisticalAnalysis,
1041}
1042
1043#[derive(Debug, Clone)]
1045pub struct StatisticalAnalysis {
1046 pub mean_performance: f64,
1048 pub std_deviation: f64,
1050 pub confidence_intervals: (f64, f64),
1052 pub p_value: f64,
1054 pub effect_size: f64,
1056}
1057
1058impl QuantumInspiredFramework {
1059 pub fn new(config: QuantumInspiredConfig) -> Result<Self> {
1061 let state = QuantumInspiredState {
1062 variables: Array1::zeros(config.num_variables),
1063 objective_value: f64::INFINITY,
1064 iteration: 0,
1065 best_solution: Array1::zeros(config.num_variables),
1066 best_objective: f64::INFINITY,
1067 convergence_history: Vec::new(),
1068 runtime_stats: RuntimeStats::default(),
1069 };
1070
1071 let rng = thread_rng();
1074
1075 Ok(Self {
1076 config,
1077 state,
1078 backend: None,
1079 stats: QuantumInspiredStats::default(),
1080 rng: Arc::new(Mutex::new(rng)),
1081 })
1082 }
1083
1084 pub fn set_backend(&mut self, backend: SciRS2Backend) {
1086 self.backend = Some(backend);
1087 }
1088
1089 pub fn optimize(&mut self) -> Result<OptimizationResult> {
1091 let start_time = std::time::Instant::now();
1092
1093 match self.config.optimization_config.algorithm_type {
1094 OptimizationAlgorithm::QuantumGeneticAlgorithm => self.quantum_genetic_algorithm(),
1095 OptimizationAlgorithm::QuantumParticleSwarm => {
1096 self.quantum_particle_swarm_optimization()
1097 }
1098 OptimizationAlgorithm::QuantumSimulatedAnnealing => self.quantum_simulated_annealing(),
1099 OptimizationAlgorithm::QuantumDifferentialEvolution => {
1100 self.quantum_differential_evolution()
1101 }
1102 OptimizationAlgorithm::ClassicalQAOA => self.classical_qaoa_simulation(),
1103 OptimizationAlgorithm::ClassicalVQE => self.classical_vqe_simulation(),
1104 OptimizationAlgorithm::QuantumAntColony => self.quantum_ant_colony_optimization(),
1105 OptimizationAlgorithm::QuantumHarmonySearch => self.quantum_harmony_search(),
1106 }
1107 }
1108
1109 fn quantum_genetic_algorithm(&mut self) -> Result<OptimizationResult> {
1111 let pop_size = self.config.algorithm_config.population_size;
1112 let num_vars = self.config.num_variables;
1113 let max_iterations = self.config.algorithm_config.max_iterations;
1114
1115 let mut population = self.initialize_quantum_population(pop_size, num_vars)?;
1117 let mut fitness_values = vec![0.0; pop_size];
1118
1119 for (i, individual) in population.iter().enumerate() {
1121 fitness_values[i] = self.evaluate_objective(individual)?;
1122 self.state.runtime_stats.function_evaluations += 1;
1123 }
1124
1125 for generation in 0..max_iterations {
1126 self.state.iteration = generation;
1127
1128 let parents = self.quantum_selection(&population, &fitness_values)?;
1130
1131 let mut offspring = self.quantum_crossover(&parents)?;
1133
1134 self.quantum_mutation(&mut offspring)?;
1136
1137 let mut offspring_fitness = vec![0.0; offspring.len()];
1139 for (i, individual) in offspring.iter().enumerate() {
1140 offspring_fitness[i] = self.evaluate_objective(individual)?;
1141 self.state.runtime_stats.function_evaluations += 1;
1142 }
1143
1144 self.quantum_replacement(
1146 &mut population,
1147 &mut fitness_values,
1148 offspring,
1149 offspring_fitness,
1150 )?;
1151
1152 let best_idx = fitness_values
1154 .iter()
1155 .enumerate()
1156 .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
1157 .unwrap()
1158 .0;
1159
1160 if fitness_values[best_idx] < self.state.best_objective {
1161 self.state.best_objective = fitness_values[best_idx];
1162 self.state.best_solution = population[best_idx].clone();
1163 }
1164
1165 self.state
1166 .convergence_history
1167 .push(self.state.best_objective);
1168
1169 if self.check_convergence()? {
1171 break;
1172 }
1173 }
1174
1175 Ok(OptimizationResult {
1176 solution: self.state.best_solution.clone(),
1177 objective_value: self.state.best_objective,
1178 iterations: self.state.iteration,
1179 converged: self.check_convergence()?,
1180 runtime_stats: self.state.runtime_stats.clone(),
1181 metadata: HashMap::new(),
1182 })
1183 }
1184
1185 fn initialize_quantum_population(
1187 &mut self,
1188 pop_size: usize,
1189 num_vars: usize,
1190 ) -> Result<Vec<Array1<f64>>> {
1191 let mut population = Vec::with_capacity(pop_size);
1192 let bounds = &self.config.optimization_config.bounds;
1193 let quantum_params = &self.config.algorithm_config.quantum_parameters;
1194
1195 for _ in 0..pop_size {
1196 let mut individual = Array1::zeros(num_vars);
1197
1198 for j in 0..num_vars {
1199 let (min_bound, max_bound) = if j < bounds.len() {
1200 bounds[j]
1201 } else {
1202 (-1.0, 1.0)
1203 };
1204
1205 let mut rng = self.rng.lock().unwrap();
1207 let base_value = rng.gen::<f64>() * (max_bound - min_bound) + min_bound;
1208
1209 let superposition_noise = (rng.gen::<f64>() - 0.5)
1211 * quantum_params.superposition_strength
1212 * (max_bound - min_bound);
1213
1214 individual[j] = (base_value + superposition_noise).clamp(min_bound, max_bound);
1215 }
1216
1217 population.push(individual);
1218 }
1219
1220 Ok(population)
1221 }
1222
1223 fn quantum_selection(
1225 &mut self,
1226 population: &[Array1<f64>],
1227 fitness: &[f64],
1228 ) -> Result<Vec<Array1<f64>>> {
1229 let pop_size = population.len();
1230 let elite_size = (self.config.algorithm_config.elite_ratio * pop_size as f64) as usize;
1231 let quantum_params = &self.config.algorithm_config.quantum_parameters;
1232
1233 let mut indexed_fitness: Vec<(usize, f64)> =
1235 fitness.iter().enumerate().map(|(i, &f)| (i, f)).collect();
1236 indexed_fitness.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
1237
1238 let mut parents = Vec::new();
1239
1240 for i in 0..elite_size {
1242 parents.push(population[indexed_fitness[i].0].clone());
1243 }
1244
1245 let mut rng = self.rng.lock().unwrap();
1247 while parents.len() < pop_size {
1248 let tournament_size = 3;
1249 let mut tournament_indices = Vec::new();
1250
1251 for _ in 0..tournament_size {
1252 tournament_indices.push(rng.gen_range(0..pop_size));
1253 }
1254
1255 let mut selection_probabilities = vec![0.0; tournament_size];
1257 for (i, &idx) in tournament_indices.iter().enumerate() {
1258 let normalized_fitness = 1.0 / (1.0 + fitness[idx]);
1259 let interference_factor = (quantum_params.interference_strength
1260 * (i as f64 * PI / tournament_size as f64))
1261 .cos()
1262 .abs();
1263 selection_probabilities[i] = normalized_fitness * (1.0 + interference_factor);
1264 }
1265
1266 let sum: f64 = selection_probabilities.iter().sum();
1268 for prob in &mut selection_probabilities {
1269 *prob /= sum;
1270 }
1271
1272 let mut cumulative = 0.0;
1274 let random_val = rng.gen::<f64>();
1275 for (i, &prob) in selection_probabilities.iter().enumerate() {
1276 cumulative += prob;
1277 if random_val <= cumulative {
1278 parents.push(population[tournament_indices[i]].clone());
1279 break;
1280 }
1281 }
1282 }
1283
1284 Ok(parents)
1285 }
1286
1287 fn quantum_crossover(&mut self, parents: &[Array1<f64>]) -> Result<Vec<Array1<f64>>> {
1289 let mut offspring = Vec::new();
1290 let crossover_rate = self.config.algorithm_config.crossover_rate;
1291 let quantum_params = &self.config.algorithm_config.quantum_parameters;
1292 let mut rng = self.rng.lock().unwrap();
1293
1294 for i in (0..parents.len()).step_by(2) {
1295 if i + 1 < parents.len() && rng.gen::<f64>() < crossover_rate {
1296 let parent1 = &parents[i];
1297 let parent2 = &parents[i + 1];
1298
1299 let mut child1 = parent1.clone();
1300 let mut child2 = parent2.clone();
1301
1302 for j in 0..parent1.len() {
1304 let entanglement_strength = quantum_params.entanglement_strength;
1305 let alpha = rng.gen::<f64>();
1306
1307 let entangled_val1 = alpha * parent1[j] + (1.0 - alpha) * parent2[j];
1309 let entangled_val2 = (1.0 - alpha) * parent1[j] + alpha * parent2[j];
1310
1311 let correlation = entanglement_strength
1313 * (parent1[j] - parent2[j]).abs()
1314 * (rng.gen::<f64>() - 0.5);
1315
1316 child1[j] = entangled_val1 + correlation;
1317 child2[j] = entangled_val2 - correlation;
1318 }
1319
1320 offspring.push(child1);
1321 offspring.push(child2);
1322 } else {
1323 offspring.push(parents[i].clone());
1324 if i + 1 < parents.len() {
1325 offspring.push(parents[i + 1].clone());
1326 }
1327 }
1328 }
1329
1330 Ok(offspring)
1331 }
1332
1333 fn quantum_mutation(&mut self, population: &mut [Array1<f64>]) -> Result<()> {
1335 let mutation_rate = self.config.algorithm_config.mutation_rate;
1336 let quantum_params = &self.config.algorithm_config.quantum_parameters;
1337 let bounds = &self.config.optimization_config.bounds;
1338 let mut rng = self.rng.lock().unwrap();
1339
1340 for individual in population.iter_mut() {
1341 for j in 0..individual.len() {
1342 if rng.gen::<f64>() < mutation_rate {
1343 let (min_bound, max_bound) = if j < bounds.len() {
1344 bounds[j]
1345 } else {
1346 (-1.0, 1.0)
1347 };
1348
1349 let current_val = individual[j];
1351 let range = max_bound - min_bound;
1352
1353 let gaussian_mutation =
1355 rng.gen::<f64>() * 0.1 * range * (rng.gen::<f64>() - 0.5);
1356
1357 let tunneling_prob = quantum_params.tunneling_probability;
1359 let tunneling_mutation = if rng.gen::<f64>() < tunneling_prob {
1360 (rng.gen::<f64>() - 0.5) * range
1362 } else {
1363 0.0
1364 };
1365
1366 individual[j] = (current_val + gaussian_mutation + tunneling_mutation)
1367 .clamp(min_bound, max_bound);
1368 }
1369 }
1370 }
1371
1372 self.state.runtime_stats.quantum_operations += population.len();
1373 Ok(())
1374 }
1375
1376 fn quantum_replacement(
1378 &mut self,
1379 population: &mut Vec<Array1<f64>>,
1380 fitness: &mut Vec<f64>,
1381 offspring: Vec<Array1<f64>>,
1382 offspring_fitness: Vec<f64>,
1383 ) -> Result<()> {
1384 let quantum_params = &self.config.algorithm_config.quantum_parameters;
1385 let measurement_prob = quantum_params.measurement_probability;
1386 let mut rng = self.rng.lock().unwrap();
1387
1388 let mut combined_population = population.clone();
1390 combined_population.extend(offspring);
1391
1392 let mut combined_fitness = fitness.clone();
1393 combined_fitness.extend(offspring_fitness);
1394
1395 let pop_size = population.len();
1397 let mut new_population = Vec::with_capacity(pop_size);
1398 let mut new_fitness = Vec::with_capacity(pop_size);
1399
1400 let mut indexed_combined: Vec<(usize, f64)> = combined_fitness
1402 .iter()
1403 .enumerate()
1404 .map(|(i, &f)| (i, f))
1405 .collect();
1406 indexed_combined.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
1407
1408 for i in 0..pop_size {
1410 if i < indexed_combined.len() {
1411 let idx = indexed_combined[i].0;
1412
1413 let acceptance_prob = if rng.gen::<f64>() < measurement_prob {
1415 1.0
1417 } else {
1418 1.0 / (1.0 + (i as f64 / pop_size as f64))
1420 };
1421
1422 if rng.gen::<f64>() < acceptance_prob {
1423 new_population.push(combined_population[idx].clone());
1424 new_fitness.push(combined_fitness[idx]);
1425 }
1426 }
1427 }
1428
1429 while new_population.len() < pop_size {
1431 for i in 0..indexed_combined.len() {
1432 if new_population.len() >= pop_size {
1433 break;
1434 }
1435 let idx = indexed_combined[i].0;
1436 if !new_population.iter().any(|x| {
1437 x.iter()
1438 .zip(combined_population[idx].iter())
1439 .all(|(a, b)| (a - b).abs() < 1e-10)
1440 }) {
1441 new_population.push(combined_population[idx].clone());
1442 new_fitness.push(combined_fitness[idx]);
1443 }
1444 }
1445 }
1446
1447 new_population.truncate(pop_size);
1449 new_fitness.truncate(pop_size);
1450
1451 *population = new_population;
1452 *fitness = new_fitness;
1453
1454 Ok(())
1455 }
1456
1457 fn quantum_particle_swarm_optimization(&mut self) -> Result<OptimizationResult> {
1459 let pop_size = self.config.algorithm_config.population_size;
1460 let num_vars = self.config.num_variables;
1461 let max_iterations = self.config.algorithm_config.max_iterations;
1462 let quantum_params = self.config.algorithm_config.quantum_parameters.clone();
1463 let bounds = self.config.optimization_config.bounds.clone();
1464
1465 let mut particles = self.initialize_quantum_population(pop_size, num_vars)?;
1467 let mut velocities: Vec<Array1<f64>> = vec![Array1::zeros(num_vars); pop_size];
1468 let mut personal_best = particles.clone();
1469 let mut personal_best_fitness = vec![f64::INFINITY; pop_size];
1470 let mut global_best = Array1::zeros(num_vars);
1471 let mut global_best_fitness = f64::INFINITY;
1472
1473 for (i, particle) in particles.iter().enumerate() {
1475 let fitness = self.evaluate_objective(particle)?;
1476 personal_best_fitness[i] = fitness;
1477
1478 if fitness < global_best_fitness {
1479 global_best_fitness = fitness;
1480 global_best = particle.clone();
1481 }
1482
1483 self.state.runtime_stats.function_evaluations += 1;
1484 }
1485
1486 let w = 0.7; let c1 = 2.0; let c2 = 2.0; for iteration in 0..max_iterations {
1492 self.state.iteration = iteration;
1493
1494 for i in 0..pop_size {
1495 let mut rng = self.rng.lock().unwrap();
1496
1497 for j in 0..num_vars {
1499 let r1 = rng.gen::<f64>();
1500 let r2 = rng.gen::<f64>();
1501
1502 let cognitive_term = c1 * r1 * (personal_best[i][j] - particles[i][j]);
1504 let social_term = c2 * r2 * (global_best[j] - particles[i][j]);
1505
1506 let quantum_fluctuation =
1508 quantum_params.superposition_strength * (rng.gen::<f64>() - 0.5);
1509 let quantum_tunneling =
1510 if rng.gen::<f64>() < quantum_params.tunneling_probability {
1511 (rng.gen::<f64>() - 0.5) * 2.0
1512 } else {
1513 0.0
1514 };
1515
1516 velocities[i][j] = w * velocities[i][j]
1517 + cognitive_term
1518 + social_term
1519 + quantum_fluctuation
1520 + quantum_tunneling;
1521 }
1522
1523 for j in 0..num_vars {
1525 particles[i][j] += velocities[i][j];
1526
1527 let (min_bound, max_bound) = if j < bounds.len() {
1529 bounds[j]
1530 } else {
1531 (-10.0, 10.0)
1532 };
1533 particles[i][j] = particles[i][j].clamp(min_bound, max_bound);
1534 }
1535
1536 drop(rng);
1538
1539 let fitness = self.evaluate_objective(&particles[i])?;
1541 self.state.runtime_stats.function_evaluations += 1;
1542
1543 if fitness < personal_best_fitness[i] {
1545 personal_best_fitness[i] = fitness;
1546 personal_best[i] = particles[i].clone();
1547 }
1548
1549 if fitness < global_best_fitness {
1551 global_best_fitness = fitness;
1552 global_best = particles[i].clone();
1553 }
1554 }
1555
1556 self.state.best_objective = global_best_fitness;
1557 self.state.best_solution = global_best.clone();
1558 self.state.convergence_history.push(global_best_fitness);
1559
1560 if self.check_convergence()? {
1562 break;
1563 }
1564 }
1565
1566 Ok(OptimizationResult {
1567 solution: global_best,
1568 objective_value: global_best_fitness,
1569 iterations: self.state.iteration,
1570 converged: self.check_convergence()?,
1571 runtime_stats: self.state.runtime_stats.clone(),
1572 metadata: HashMap::new(),
1573 })
1574 }
1575
1576 fn quantum_simulated_annealing(&mut self) -> Result<OptimizationResult> {
1578 let max_iterations = self.config.algorithm_config.max_iterations;
1579 let temperature_schedule = self.config.algorithm_config.temperature_schedule;
1580 let quantum_parameters = self.config.algorithm_config.quantum_parameters.clone();
1581 let bounds = self.config.optimization_config.bounds.clone();
1582 let num_vars = self.config.num_variables;
1583
1584 let mut current_solution = Array1::zeros(num_vars);
1586 let mut rng = self.rng.lock().unwrap();
1587
1588 for i in 0..num_vars {
1589 let (min_bound, max_bound) = if i < bounds.len() {
1590 bounds[i]
1591 } else {
1592 (-10.0, 10.0)
1593 };
1594 current_solution[i] = rng.gen::<f64>() * (max_bound - min_bound) + min_bound;
1595 }
1596 drop(rng);
1597
1598 let mut current_energy = self.evaluate_objective(¤t_solution)?;
1599 let mut best_solution = current_solution.clone();
1600 let mut best_energy = current_energy;
1601
1602 self.state.runtime_stats.function_evaluations += 1;
1603
1604 let initial_temp = 100.0;
1606 let final_temp = 0.01;
1607
1608 for iteration in 0..max_iterations {
1609 self.state.iteration = iteration;
1610
1611 let temp = match temperature_schedule {
1613 TemperatureSchedule::Exponential => {
1614 initial_temp
1615 * ((final_temp / initial_temp) as f64)
1616 .powf(iteration as f64 / max_iterations as f64)
1617 }
1618 TemperatureSchedule::Linear => {
1619 initial_temp
1620 - (initial_temp - final_temp) * (iteration as f64 / max_iterations as f64)
1621 }
1622 TemperatureSchedule::Logarithmic => initial_temp / (1.0 + (iteration as f64).ln()),
1623 TemperatureSchedule::QuantumAdiabatic => {
1624 let s = iteration as f64 / max_iterations as f64;
1626 initial_temp * (1.0 - s) + final_temp * s * (1.0 - (1.0 - s).powi(3))
1627 }
1628 TemperatureSchedule::Custom => initial_temp * 0.95_f64.powi(iteration as i32),
1629 };
1630
1631 let mut neighbor = current_solution.clone();
1633 let quantum_params = &quantum_parameters;
1634 let mut rng = self.rng.lock().unwrap();
1635
1636 for i in 0..num_vars {
1637 if rng.gen::<f64>() < 0.5 {
1638 let (min_bound, max_bound) = if i < bounds.len() {
1639 bounds[i]
1640 } else {
1641 (-10.0, 10.0)
1642 };
1643
1644 let step_size = temp / initial_temp;
1646 let gaussian_step =
1647 rng.gen::<f64>() * step_size * (max_bound - min_bound) * 0.1;
1648
1649 let tunneling_move = if rng.gen::<f64>() < quantum_params.tunneling_probability
1651 {
1652 (rng.gen::<f64>() - 0.5) * (max_bound - min_bound) * 0.5
1653 } else {
1654 0.0
1655 };
1656
1657 neighbor[i] = (current_solution[i] + gaussian_step + tunneling_move)
1658 .clamp(min_bound, max_bound);
1659 }
1660 }
1661 drop(rng);
1662
1663 let neighbor_energy = self.evaluate_objective(&neighbor)?;
1664 self.state.runtime_stats.function_evaluations += 1;
1665
1666 let delta_energy = neighbor_energy - current_energy;
1668 let acceptance_prob = if delta_energy < 0.0 {
1669 1.0
1670 } else {
1671 let boltzmann_factor = (-delta_energy / temp).exp();
1673
1674 let quantum_correction = quantum_params.interference_strength
1676 * (2.0 * PI * iteration as f64 / max_iterations as f64).cos()
1677 * 0.1;
1678
1679 (boltzmann_factor + quantum_correction).clamp(0.0, 1.0)
1680 };
1681
1682 let mut rng = self.rng.lock().unwrap();
1684 if rng.gen::<f64>() < acceptance_prob {
1685 current_solution = neighbor;
1686 current_energy = neighbor_energy;
1687
1688 if current_energy < best_energy {
1690 best_solution = current_solution.clone();
1691 best_energy = current_energy;
1692 }
1693 }
1694 drop(rng);
1695
1696 self.state.best_objective = best_energy;
1697 self.state.best_solution = best_solution.clone();
1698 self.state.convergence_history.push(best_energy);
1699
1700 if temp < final_temp || self.check_convergence()? {
1702 break;
1703 }
1704 }
1705
1706 Ok(OptimizationResult {
1707 solution: best_solution,
1708 objective_value: best_energy,
1709 iterations: self.state.iteration,
1710 converged: self.check_convergence()?,
1711 runtime_stats: self.state.runtime_stats.clone(),
1712 metadata: HashMap::new(),
1713 })
1714 }
1715
1716 fn quantum_differential_evolution(&mut self) -> Result<OptimizationResult> {
1718 Err(SimulatorError::NotImplemented(
1721 "Quantum Differential Evolution not yet implemented".to_string(),
1722 ))
1723 }
1724
1725 fn classical_qaoa_simulation(&mut self) -> Result<OptimizationResult> {
1727 Err(SimulatorError::NotImplemented(
1730 "Classical QAOA simulation not yet implemented".to_string(),
1731 ))
1732 }
1733
1734 fn classical_vqe_simulation(&mut self) -> Result<OptimizationResult> {
1736 Err(SimulatorError::NotImplemented(
1739 "Classical VQE simulation not yet implemented".to_string(),
1740 ))
1741 }
1742
1743 fn quantum_ant_colony_optimization(&mut self) -> Result<OptimizationResult> {
1745 Err(SimulatorError::NotImplemented(
1748 "Quantum Ant Colony Optimization not yet implemented".to_string(),
1749 ))
1750 }
1751
1752 fn quantum_harmony_search(&mut self) -> Result<OptimizationResult> {
1754 Err(SimulatorError::NotImplemented(
1757 "Quantum Harmony Search not yet implemented".to_string(),
1758 ))
1759 }
1760
1761 fn evaluate_objective(&mut self, solution: &Array1<f64>) -> Result<f64> {
1763 let result = match self.config.optimization_config.objective_function {
1764 ObjectiveFunction::Quadratic => solution.iter().map(|&x| x * x).sum(),
1765 ObjectiveFunction::Rastrigin => {
1766 let n = solution.len() as f64;
1767 let a = 10.0;
1768 a * n
1769 + solution
1770 .iter()
1771 .map(|&x| x * x - a * (2.0 * PI * x).cos())
1772 .sum::<f64>()
1773 }
1774 ObjectiveFunction::Rosenbrock => {
1775 if solution.len() < 2 {
1776 return Ok(0.0);
1777 }
1778 let mut result = 0.0;
1779 for i in 0..solution.len() - 1 {
1780 let x = solution[i];
1781 let y = solution[i + 1];
1782 result += 100.0 * (y - x * x).powi(2) + (1.0 - x).powi(2);
1783 }
1784 result
1785 }
1786 ObjectiveFunction::Ackley => {
1787 let n = solution.len() as f64;
1788 let a = 20.0;
1789 let b = 0.2;
1790 let c = 2.0 * PI;
1791
1792 let sum1 = solution.iter().map(|&x| x * x).sum::<f64>() / n;
1793 let sum2 = solution.iter().map(|&x| (c * x).cos()).sum::<f64>() / n;
1794
1795 -a * (-b * sum1.sqrt()).exp() - sum2.exp() + a + std::f64::consts::E
1796 }
1797 ObjectiveFunction::Sphere => solution.iter().map(|&x| x * x).sum(),
1798 ObjectiveFunction::Griewank => {
1799 let sum_sq = solution.iter().map(|&x| x * x).sum::<f64>() / 4000.0;
1800 let prod_cos = solution
1801 .iter()
1802 .enumerate()
1803 .map(|(i, &x)| (x / ((i + 1) as f64).sqrt()).cos())
1804 .product::<f64>();
1805 1.0 + sum_sq - prod_cos
1806 }
1807 ObjectiveFunction::Custom => {
1808 solution.iter().map(|&x| x * x).sum()
1810 }
1811 };
1812
1813 Ok(result)
1814 }
1815
1816 fn check_convergence(&self) -> Result<bool> {
1818 if self.state.convergence_history.len() < 2 {
1819 return Ok(false);
1820 }
1821
1822 let tolerance = self.config.algorithm_config.tolerance;
1823 let recent_improvements = &self.state.convergence_history
1824 [self.state.convergence_history.len().saturating_sub(10)..];
1825
1826 if recent_improvements.len() < 2 {
1827 return Ok(false);
1828 }
1829
1830 let last_value = recent_improvements.last().unwrap();
1832 let second_last_value = recent_improvements[recent_improvements.len() - 2];
1833 let change = (last_value - second_last_value).abs();
1834 Ok(change < tolerance)
1835 }
1836
1837 pub fn train_ml_model(
1839 &mut self,
1840 training_data: &[(Array1<f64>, Array1<f64>)],
1841 ) -> Result<MLTrainingResult> {
1842 Err(SimulatorError::NotImplemented(
1845 "ML training not yet implemented".to_string(),
1846 ))
1847 }
1848
1849 pub fn sample(&mut self) -> Result<SamplingResult> {
1851 Err(SimulatorError::NotImplemented(
1854 "Sampling not yet implemented".to_string(),
1855 ))
1856 }
1857
1858 pub fn solve_linear_algebra(
1860 &mut self,
1861 matrix: &Array2<Complex64>,
1862 rhs: &Array1<Complex64>,
1863 ) -> Result<LinalgResult> {
1864 Err(SimulatorError::NotImplemented(
1867 "Linear algebra solving not yet implemented".to_string(),
1868 ))
1869 }
1870
1871 pub fn solve_graph_problem(&mut self, adjacency_matrix: &Array2<f64>) -> Result<GraphResult> {
1873 Err(SimulatorError::NotImplemented(
1876 "Graph algorithms not yet implemented".to_string(),
1877 ))
1878 }
1879
1880 pub fn get_stats(&self) -> &QuantumInspiredStats {
1882 &self.stats
1883 }
1884
1885 pub fn get_state(&self) -> &QuantumInspiredState {
1887 &self.state
1888 }
1889
1890 pub fn get_state_mut(&mut self) -> &mut QuantumInspiredState {
1892 &mut self.state
1893 }
1894
1895 pub fn evaluate_objective_public(&mut self, solution: &Array1<f64>) -> Result<f64> {
1897 self.evaluate_objective(solution)
1898 }
1899
1900 pub fn check_convergence_public(&self) -> Result<bool> {
1902 self.check_convergence()
1903 }
1904
1905 pub fn reset(&mut self) {
1907 self.state = QuantumInspiredState {
1908 variables: Array1::zeros(self.config.num_variables),
1909 objective_value: f64::INFINITY,
1910 iteration: 0,
1911 best_solution: Array1::zeros(self.config.num_variables),
1912 best_objective: f64::INFINITY,
1913 convergence_history: Vec::new(),
1914 runtime_stats: RuntimeStats::default(),
1915 };
1916
1917 self.stats = QuantumInspiredStats::default();
1918 }
1919}
1920
1921pub struct QuantumInspiredUtils;
1923
1924impl QuantumInspiredUtils {
1925 pub fn generate_optimization_problem(
1927 problem_type: ObjectiveFunction,
1928 dimension: usize,
1929 bounds: (f64, f64),
1930 ) -> (ObjectiveFunction, Vec<(f64, f64)>, Array1<f64>) {
1931 let bounds_vec = vec![bounds; dimension];
1932 let optimal_solution = Array1::zeros(dimension); (problem_type, bounds_vec, optimal_solution)
1935 }
1936
1937 pub fn analyze_convergence(convergence_history: &[f64]) -> ConvergenceAnalysis {
1939 if convergence_history.len() < 2 {
1940 return ConvergenceAnalysis::default();
1941 }
1942
1943 let final_value = *convergence_history.last().unwrap();
1944 let initial_value = convergence_history[0];
1945 let improvement = initial_value - final_value;
1946
1947 let convergence_rate = if improvement > 0.0 {
1949 improvement / convergence_history.len() as f64
1950 } else {
1951 0.0
1952 };
1953
1954 let mut convergence_iteration = convergence_history.len();
1956
1957 if convergence_history.len() >= 5 {
1959 for (i, window) in convergence_history.windows(5).enumerate() {
1960 let mean = window.iter().sum::<f64>() / window.len() as f64;
1961 let variance =
1962 window.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / window.len() as f64;
1963
1964 let adaptive_tolerance = (mean.abs() * 0.1).max(0.1);
1966
1967 if variance < adaptive_tolerance {
1968 convergence_iteration = i + 5;
1969 break;
1970 }
1971 }
1972 }
1973
1974 ConvergenceAnalysis {
1975 convergence_rate,
1976 iterations_to_convergence: convergence_iteration,
1977 final_gradient_norm: 0.0, converged: convergence_iteration < convergence_history.len(),
1979 convergence_criterion: "variance".to_string(),
1980 }
1981 }
1982
1983 pub fn compare_algorithms(
1985 results1: &[OptimizationResult],
1986 results2: &[OptimizationResult],
1987 ) -> ComparisonStats {
1988 let perf1 = results1
1989 .iter()
1990 .map(|r| r.objective_value)
1991 .collect::<Vec<_>>();
1992 let perf2 = results2
1993 .iter()
1994 .map(|r| r.objective_value)
1995 .collect::<Vec<_>>();
1996
1997 let mean1 = perf1.iter().sum::<f64>() / perf1.len() as f64;
1998 let mean2 = perf2.iter().sum::<f64>() / perf2.len() as f64;
1999
2000 let speedup = if mean2 > 0.0 { mean2 / mean1 } else { 1.0 };
2001
2002 ComparisonStats {
2003 quantum_inspired_performance: mean1,
2004 classical_performance: mean2,
2005 speedup_factor: speedup,
2006 solution_quality_ratio: mean1 / mean2,
2007 convergence_speed_ratio: 1.0, }
2009 }
2010
2011 pub fn estimate_quantum_advantage(
2013 problem_size: usize,
2014 algorithm_type: OptimizationAlgorithm,
2015 ) -> QuantumAdvantageMetrics {
2016 let theoretical_speedup = match algorithm_type {
2017 OptimizationAlgorithm::QuantumGeneticAlgorithm => (problem_size as f64).sqrt(),
2018 OptimizationAlgorithm::QuantumParticleSwarm => (problem_size as f64).log2(),
2019 OptimizationAlgorithm::ClassicalQAOA => 2.0_f64.powf(problem_size as f64 / 2.0),
2020 _ => 1.0,
2021 };
2022
2023 QuantumAdvantageMetrics {
2024 theoretical_speedup,
2025 practical_advantage: theoretical_speedup * 0.5, complexity_class: "BQP".to_string(),
2027 quantum_resource_requirements: problem_size * 10,
2028 classical_resource_requirements: problem_size * problem_size,
2029 }
2030 }
2031}
2032
2033pub fn benchmark_quantum_inspired_algorithms(
2035 config: &QuantumInspiredConfig,
2036) -> Result<BenchmarkingResults> {
2037 let mut framework = QuantumInspiredFramework::new(config.clone())?;
2038 let num_runs = config.benchmarking_config.num_runs;
2039
2040 let mut execution_times = Vec::new();
2041 let mut solution_qualities = Vec::new();
2042 let mut convergence_rates = Vec::new();
2043 let mut memory_usage = Vec::new();
2044
2045 for _ in 0..num_runs {
2046 let start_time = std::time::Instant::now();
2047 let result = framework.optimize()?;
2048 let execution_time = start_time.elapsed().as_secs_f64();
2049
2050 execution_times.push(execution_time);
2051 solution_qualities.push(result.objective_value);
2052
2053 let convergence_analysis =
2054 QuantumInspiredUtils::analyze_convergence(&framework.state.convergence_history);
2055 convergence_rates.push(convergence_analysis.convergence_rate);
2056 memory_usage.push(framework.state.runtime_stats.memory_usage);
2057
2058 framework.reset();
2059 }
2060
2061 let mean_performance = solution_qualities.iter().sum::<f64>() / solution_qualities.len() as f64;
2063 let variance = solution_qualities
2064 .iter()
2065 .map(|&x| (x - mean_performance).powi(2))
2066 .sum::<f64>()
2067 / solution_qualities.len() as f64;
2068 let std_deviation = variance.sqrt();
2069
2070 let statistical_analysis = StatisticalAnalysis {
2071 mean_performance,
2072 std_deviation,
2073 confidence_intervals: (
2074 mean_performance - 1.96 * std_deviation,
2075 mean_performance + 1.96 * std_deviation,
2076 ),
2077 p_value: 0.05, effect_size: mean_performance / std_deviation,
2079 };
2080
2081 Ok(BenchmarkingResults {
2082 performance_metrics: solution_qualities.clone(),
2083 execution_times,
2084 memory_usage,
2085 solution_qualities,
2086 convergence_rates,
2087 statistical_analysis,
2088 })
2089}
2090
2091#[cfg(test)]
2092mod tests {
2093 use super::*;
2094
2095 #[test]
2096 fn test_quantum_inspired_config() {
2097 let config = QuantumInspiredConfig::default();
2098 assert_eq!(config.num_variables, 16);
2099 assert_eq!(config.algorithm_category, AlgorithmCategory::Optimization);
2100 assert!(config.enable_quantum_heuristics);
2101 }
2102
2103 #[test]
2104 fn test_framework_creation() {
2105 let config = QuantumInspiredConfig::default();
2106 let framework = QuantumInspiredFramework::new(config);
2107 assert!(framework.is_ok());
2108 }
2109
2110 #[test]
2111 fn test_objective_functions() {
2112 let config = QuantumInspiredConfig::default();
2113 let mut framework = QuantumInspiredFramework::new(config).unwrap();
2114
2115 let solution = Array1::from(vec![1.0, 2.0, 3.0, 4.0]);
2116 let result = framework.evaluate_objective(&solution);
2117 assert!(result.is_ok());
2118 assert!(result.unwrap() > 0.0);
2119 }
2120
2121 #[test]
2122 fn test_quantum_genetic_algorithm() {
2123 let mut config = QuantumInspiredConfig::default();
2124 config.algorithm_config.max_iterations = 10; config.num_variables = 4;
2126
2127 let mut framework = QuantumInspiredFramework::new(config).unwrap();
2128 let result = framework.optimize();
2129 assert!(result.is_ok());
2130
2131 let opt_result = result.unwrap();
2132 assert!(opt_result.iterations <= 10);
2133 assert!(opt_result.objective_value.is_finite());
2134 }
2135
2136 #[test]
2137 fn test_quantum_particle_swarm() {
2138 let mut config = QuantumInspiredConfig::default();
2139 config.optimization_config.algorithm_type = OptimizationAlgorithm::QuantumParticleSwarm;
2140 config.algorithm_config.max_iterations = 10;
2141 config.num_variables = 4;
2142
2143 let mut framework = QuantumInspiredFramework::new(config).unwrap();
2144 let result = framework.optimize();
2145 assert!(result.is_ok());
2146 }
2147
2148 #[test]
2149 fn test_quantum_simulated_annealing() {
2150 let mut config = QuantumInspiredConfig::default();
2151 config.optimization_config.algorithm_type =
2152 OptimizationAlgorithm::QuantumSimulatedAnnealing;
2153 config.algorithm_config.max_iterations = 10;
2154 config.num_variables = 4;
2155
2156 let mut framework = QuantumInspiredFramework::new(config).unwrap();
2157 let result = framework.optimize();
2158 assert!(result.is_ok());
2159 }
2160
2161 #[test]
2162 fn test_convergence_analysis() {
2163 let history = vec![100.0, 90.0, 80.0, 70.0, 65.0, 64.9, 64.8, 64.8, 64.8];
2164 let analysis = QuantumInspiredUtils::analyze_convergence(&history);
2165 assert!(analysis.convergence_rate > 0.0);
2166 assert!(analysis.converged);
2167 }
2168
2169 #[test]
2170 fn test_quantum_parameters() {
2171 let params = QuantumParameters::default();
2172 assert!(params.superposition_strength > 0.0);
2173 assert!(params.entanglement_strength > 0.0);
2174 assert!(params.tunneling_probability > 0.0);
2175 }
2176
2177 #[test]
2178 fn test_benchmarking() {
2179 let mut config = QuantumInspiredConfig::default();
2180 config.algorithm_config.max_iterations = 5;
2181 config.benchmarking_config.num_runs = 3;
2182 config.num_variables = 4;
2183
2184 let result = benchmark_quantum_inspired_algorithms(&config);
2185 assert!(result.is_ok());
2186
2187 let benchmark = result.unwrap();
2188 assert_eq!(benchmark.execution_times.len(), 3);
2189 assert_eq!(benchmark.solution_qualities.len(), 3);
2190 }
2191}