quantrs2_sim/
quantum_inspired_classical.rs

1//! Quantum-Inspired Classical Algorithms Framework
2//!
3//! This module provides a comprehensive implementation of quantum-inspired classical algorithms
4//! that leverage quantum mechanical principles, quantum physics concepts, and quantum computation
5//! techniques while running on classical computers. These algorithms often provide advantages
6//! over traditional classical algorithms by incorporating quantum-inspired heuristics.
7
8use ndarray::{Array1, Array2};
9use num_complex::Complex64;
10use rand::{thread_rng, Rng};
11use serde::{Deserialize, Serialize};
12use std::collections::HashMap;
13use std::f64::consts::PI;
14use std::sync::{Arc, Mutex};
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18
19/// Quantum-inspired classical algorithms configuration
20#[derive(Debug, Clone, Serialize, Deserialize)]
21pub struct QuantumInspiredConfig {
22    /// Number of classical variables/qubits to simulate
23    pub num_variables: usize,
24    /// Algorithm category to use
25    pub algorithm_category: AlgorithmCategory,
26    /// Specific algorithm configuration
27    pub algorithm_config: AlgorithmConfig,
28    /// Optimization settings
29    pub optimization_config: OptimizationConfig,
30    /// Machine learning settings (when applicable)
31    pub ml_config: Option<MLConfig>,
32    /// Sampling algorithm settings
33    pub sampling_config: SamplingConfig,
34    /// Linear algebra settings
35    pub linalg_config: LinalgConfig,
36    /// Graph algorithm settings
37    pub graph_config: GraphConfig,
38    /// Performance benchmarking settings
39    pub benchmarking_config: BenchmarkingConfig,
40    /// Enable quantum-inspired heuristics
41    pub enable_quantum_heuristics: bool,
42    /// Precision for calculations
43    pub precision: f64,
44    /// Random seed for reproducibility
45    pub random_seed: Option<u64>,
46}
47
48impl Default for QuantumInspiredConfig {
49    fn default() -> Self {
50        Self {
51            num_variables: 16,
52            algorithm_category: AlgorithmCategory::Optimization,
53            algorithm_config: AlgorithmConfig::default(),
54            optimization_config: OptimizationConfig::default(),
55            ml_config: Some(MLConfig::default()),
56            sampling_config: SamplingConfig::default(),
57            linalg_config: LinalgConfig::default(),
58            graph_config: GraphConfig::default(),
59            benchmarking_config: BenchmarkingConfig::default(),
60            enable_quantum_heuristics: true,
61            precision: 1e-8,
62            random_seed: None,
63        }
64    }
65}
66
67/// Categories of quantum-inspired algorithms
68#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
69pub enum AlgorithmCategory {
70    /// Quantum-inspired optimization algorithms
71    Optimization,
72    /// Quantum-inspired machine learning algorithms
73    MachineLearning,
74    /// Quantum-inspired sampling algorithms
75    Sampling,
76    /// Quantum-inspired linear algebra algorithms
77    LinearAlgebra,
78    /// Quantum-inspired graph algorithms
79    GraphAlgorithms,
80    /// Hybrid quantum-classical algorithms
81    HybridQuantumClassical,
82}
83
84/// Algorithm-specific configuration
85#[derive(Debug, Clone, Serialize, Deserialize)]
86pub struct AlgorithmConfig {
87    /// Maximum number of iterations
88    pub max_iterations: usize,
89    /// Convergence tolerance
90    pub tolerance: f64,
91    /// Population size (for evolutionary algorithms)
92    pub population_size: usize,
93    /// Elite ratio (for genetic algorithms)
94    pub elite_ratio: f64,
95    /// Mutation rate
96    pub mutation_rate: f64,
97    /// Crossover rate
98    pub crossover_rate: f64,
99    /// Temperature schedule (for simulated annealing)
100    pub temperature_schedule: TemperatureSchedule,
101    /// Quantum-inspired parameters
102    pub quantum_parameters: QuantumParameters,
103}
104
105impl Default for AlgorithmConfig {
106    fn default() -> Self {
107        Self {
108            max_iterations: 1000,
109            tolerance: 1e-6,
110            population_size: 100,
111            elite_ratio: 0.1,
112            mutation_rate: 0.1,
113            crossover_rate: 0.8,
114            temperature_schedule: TemperatureSchedule::Exponential,
115            quantum_parameters: QuantumParameters::default(),
116        }
117    }
118}
119
120/// Temperature schedule for simulated annealing-like algorithms
121#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
122pub enum TemperatureSchedule {
123    /// Exponential cooling
124    Exponential,
125    /// Linear cooling
126    Linear,
127    /// Logarithmic cooling
128    Logarithmic,
129    /// Quantum-inspired adiabatic schedule
130    QuantumAdiabatic,
131    /// Custom schedule
132    Custom,
133}
134
135/// Quantum-inspired parameters
136#[derive(Debug, Clone, Serialize, Deserialize)]
137pub struct QuantumParameters {
138    /// Superposition coefficient
139    pub superposition_strength: f64,
140    /// Entanglement strength
141    pub entanglement_strength: f64,
142    /// Interference strength
143    pub interference_strength: f64,
144    /// Quantum tunneling probability
145    pub tunneling_probability: f64,
146    /// Decoherence rate
147    pub decoherence_rate: f64,
148    /// Measurement probability
149    pub measurement_probability: f64,
150    /// Quantum walk parameters
151    pub quantum_walk_params: QuantumWalkParams,
152}
153
154impl Default for QuantumParameters {
155    fn default() -> Self {
156        Self {
157            superposition_strength: 0.5,
158            entanglement_strength: 0.3,
159            interference_strength: 0.2,
160            tunneling_probability: 0.1,
161            decoherence_rate: 0.01,
162            measurement_probability: 0.1,
163            quantum_walk_params: QuantumWalkParams::default(),
164        }
165    }
166}
167
168/// Quantum walk parameters
169#[derive(Debug, Clone, Serialize, Deserialize)]
170pub struct QuantumWalkParams {
171    /// Coin bias
172    pub coin_bias: f64,
173    /// Step size
174    pub step_size: f64,
175    /// Number of steps
176    pub num_steps: usize,
177    /// Walk dimension
178    pub dimension: usize,
179}
180
181impl Default for QuantumWalkParams {
182    fn default() -> Self {
183        Self {
184            coin_bias: 0.5,
185            step_size: 1.0,
186            num_steps: 100,
187            dimension: 1,
188        }
189    }
190}
191
192/// Optimization configuration
193#[derive(Debug, Clone, Serialize, Deserialize)]
194pub struct OptimizationConfig {
195    /// Optimization algorithm type
196    pub algorithm_type: OptimizationAlgorithm,
197    /// Objective function type
198    pub objective_function: ObjectiveFunction,
199    /// Search space bounds
200    pub bounds: Vec<(f64, f64)>,
201    /// Constraint handling method
202    pub constraint_method: ConstraintMethod,
203    /// Multi-objective optimization settings
204    pub multi_objective: bool,
205    /// Parallel processing settings
206    pub parallel_evaluation: bool,
207}
208
209impl Default for OptimizationConfig {
210    fn default() -> Self {
211        Self {
212            algorithm_type: OptimizationAlgorithm::QuantumGeneticAlgorithm,
213            objective_function: ObjectiveFunction::Quadratic,
214            bounds: vec![(-10.0, 10.0); 16],
215            constraint_method: ConstraintMethod::PenaltyFunction,
216            multi_objective: false,
217            parallel_evaluation: true,
218        }
219    }
220}
221
222/// Quantum-inspired optimization algorithms
223#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
224pub enum OptimizationAlgorithm {
225    /// Quantum-inspired genetic algorithm
226    QuantumGeneticAlgorithm,
227    /// Quantum-inspired particle swarm optimization
228    QuantumParticleSwarm,
229    /// Quantum-inspired simulated annealing
230    QuantumSimulatedAnnealing,
231    /// Quantum-inspired differential evolution
232    QuantumDifferentialEvolution,
233    /// Quantum approximate optimization algorithm (classical simulation)
234    ClassicalQAOA,
235    /// Variational quantum eigensolver (classical simulation)
236    ClassicalVQE,
237    /// Quantum-inspired ant colony optimization
238    QuantumAntColony,
239    /// Quantum-inspired harmony search
240    QuantumHarmonySearch,
241}
242
243/// Objective function types
244#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
245pub enum ObjectiveFunction {
246    /// Quadratic function
247    Quadratic,
248    /// Rastrigin function
249    Rastrigin,
250    /// Rosenbrock function
251    Rosenbrock,
252    /// Ackley function
253    Ackley,
254    /// Sphere function
255    Sphere,
256    /// Griewank function
257    Griewank,
258    /// Custom function
259    Custom,
260}
261
262/// Constraint handling methods
263#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
264pub enum ConstraintMethod {
265    /// Penalty function method
266    PenaltyFunction,
267    /// Barrier function method
268    BarrierFunction,
269    /// Lagrange multiplier method
270    LagrangeMultiplier,
271    /// Projection method
272    Projection,
273    /// Rejection method
274    Rejection,
275}
276
277/// Machine learning configuration
278#[derive(Debug, Clone, Serialize, Deserialize)]
279pub struct MLConfig {
280    /// ML algorithm type
281    pub algorithm_type: MLAlgorithm,
282    /// Network architecture
283    pub architecture: NetworkArchitecture,
284    /// Training configuration
285    pub training_config: TrainingConfig,
286    /// Tensor network configuration
287    pub tensor_network_config: TensorNetworkConfig,
288}
289
290impl Default for MLConfig {
291    fn default() -> Self {
292        Self {
293            algorithm_type: MLAlgorithm::QuantumInspiredNeuralNetwork,
294            architecture: NetworkArchitecture::default(),
295            training_config: TrainingConfig::default(),
296            tensor_network_config: TensorNetworkConfig::default(),
297        }
298    }
299}
300
301/// Quantum-inspired machine learning algorithms
302#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
303pub enum MLAlgorithm {
304    /// Quantum-inspired neural network
305    QuantumInspiredNeuralNetwork,
306    /// Tensor network machine learning
307    TensorNetworkML,
308    /// Matrix product state neural network
309    MPSNeuralNetwork,
310    /// Quantum-inspired autoencoder
311    QuantumInspiredAutoencoder,
312    /// Quantum-inspired reinforcement learning
313    QuantumInspiredRL,
314    /// Quantum-inspired support vector machine
315    QuantumInspiredSVM,
316    /// Quantum-inspired clustering
317    QuantumInspiredClustering,
318    /// Quantum-inspired dimensionality reduction
319    QuantumInspiredPCA,
320}
321
322/// Network architecture configuration
323#[derive(Debug, Clone, Serialize, Deserialize)]
324pub struct NetworkArchitecture {
325    /// Input dimension
326    pub input_dim: usize,
327    /// Hidden layers
328    pub hidden_layers: Vec<usize>,
329    /// Output dimension
330    pub output_dim: usize,
331    /// Activation function
332    pub activation: ActivationFunction,
333    /// Quantum-inspired connections
334    pub quantum_connections: bool,
335}
336
337impl Default for NetworkArchitecture {
338    fn default() -> Self {
339        Self {
340            input_dim: 16,
341            hidden_layers: vec![32, 16],
342            output_dim: 8,
343            activation: ActivationFunction::QuantumInspiredTanh,
344            quantum_connections: true,
345        }
346    }
347}
348
349/// Activation functions
350#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
351pub enum ActivationFunction {
352    /// Quantum-inspired tanh
353    QuantumInspiredTanh,
354    /// Quantum-inspired sigmoid
355    QuantumInspiredSigmoid,
356    /// Quantum-inspired ReLU
357    QuantumInspiredReLU,
358    /// Quantum-inspired softmax
359    QuantumInspiredSoftmax,
360    /// Quantum phase activation
361    QuantumPhase,
362}
363
364/// Training configuration
365#[derive(Debug, Clone, Serialize, Deserialize)]
366pub struct TrainingConfig {
367    /// Learning rate
368    pub learning_rate: f64,
369    /// Number of epochs
370    pub epochs: usize,
371    /// Batch size
372    pub batch_size: usize,
373    /// Optimizer type
374    pub optimizer: OptimizerType,
375    /// Regularization strength
376    pub regularization: f64,
377}
378
379impl Default for TrainingConfig {
380    fn default() -> Self {
381        Self {
382            learning_rate: 0.01,
383            epochs: 100,
384            batch_size: 32,
385            optimizer: OptimizerType::QuantumInspiredAdam,
386            regularization: 0.001,
387        }
388    }
389}
390
391/// Optimizer types
392#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
393pub enum OptimizerType {
394    /// Quantum-inspired Adam
395    QuantumInspiredAdam,
396    /// Quantum-inspired SGD
397    QuantumInspiredSGD,
398    /// Quantum natural gradient
399    QuantumNaturalGradient,
400    /// Quantum-inspired RMSprop
401    QuantumInspiredRMSprop,
402}
403
404/// Tensor network configuration
405#[derive(Debug, Clone, Serialize, Deserialize)]
406pub struct TensorNetworkConfig {
407    /// Bond dimension
408    pub bond_dimension: usize,
409    /// Network topology
410    pub topology: TensorTopology,
411    /// Contraction method
412    pub contraction_method: ContractionMethod,
413    /// Truncation threshold
414    pub truncation_threshold: f64,
415}
416
417impl Default for TensorNetworkConfig {
418    fn default() -> Self {
419        Self {
420            bond_dimension: 64,
421            topology: TensorTopology::MPS,
422            contraction_method: ContractionMethod::OptimalContraction,
423            truncation_threshold: 1e-12,
424        }
425    }
426}
427
428/// Tensor network topologies
429#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
430pub enum TensorTopology {
431    /// Matrix Product State
432    MPS,
433    /// Matrix Product Operator
434    MPO,
435    /// Tree Tensor Network
436    TTN,
437    /// Projected Entangled Pair State
438    PEPS,
439    /// Multi-scale Entanglement Renormalization Ansatz
440    MERA,
441}
442
443/// Contraction methods
444#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
445pub enum ContractionMethod {
446    /// Optimal contraction ordering
447    OptimalContraction,
448    /// Greedy contraction
449    GreedyContraction,
450    /// Dynamic programming contraction
451    DynamicProgramming,
452    /// Branch and bound contraction
453    BranchAndBound,
454}
455
456/// Sampling configuration
457#[derive(Debug, Clone, Serialize, Deserialize)]
458pub struct SamplingConfig {
459    /// Sampling algorithm type
460    pub algorithm_type: SamplingAlgorithm,
461    /// Number of samples
462    pub num_samples: usize,
463    /// Burn-in period
464    pub burn_in: usize,
465    /// Thinning factor
466    pub thinning: usize,
467    /// Proposal distribution
468    pub proposal_distribution: ProposalDistribution,
469    /// Wave function configuration
470    pub wave_function_config: WaveFunctionConfig,
471}
472
473impl Default for SamplingConfig {
474    fn default() -> Self {
475        Self {
476            algorithm_type: SamplingAlgorithm::QuantumInspiredMCMC,
477            num_samples: 10000,
478            burn_in: 1000,
479            thinning: 10,
480            proposal_distribution: ProposalDistribution::Gaussian,
481            wave_function_config: WaveFunctionConfig::default(),
482        }
483    }
484}
485
486/// Quantum-inspired sampling algorithms
487#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
488pub enum SamplingAlgorithm {
489    /// Quantum-inspired Markov Chain Monte Carlo
490    QuantumInspiredMCMC,
491    /// Variational Monte Carlo with quantum-inspired wave functions
492    QuantumInspiredVMC,
493    /// Quantum-inspired importance sampling
494    QuantumInspiredImportanceSampling,
495    /// Path integral Monte Carlo (classical simulation)
496    ClassicalPIMC,
497    /// Quantum-inspired Gibbs sampling
498    QuantumInspiredGibbs,
499    /// Quantum-inspired Metropolis-Hastings
500    QuantumInspiredMetropolis,
501}
502
503/// Proposal distributions
504#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
505pub enum ProposalDistribution {
506    /// Gaussian distribution
507    Gaussian,
508    /// Uniform distribution
509    Uniform,
510    /// Cauchy distribution
511    Cauchy,
512    /// Quantum-inspired distribution
513    QuantumInspired,
514}
515
516/// Wave function configuration
517#[derive(Debug, Clone, Serialize, Deserialize)]
518pub struct WaveFunctionConfig {
519    /// Wave function type
520    pub wave_function_type: WaveFunctionType,
521    /// Number of variational parameters
522    pub num_parameters: usize,
523    /// Jastrow factor strength
524    pub jastrow_strength: f64,
525    /// Backflow parameters
526    pub backflow_enabled: bool,
527}
528
529impl Default for WaveFunctionConfig {
530    fn default() -> Self {
531        Self {
532            wave_function_type: WaveFunctionType::SlaterJastrow,
533            num_parameters: 32,
534            jastrow_strength: 1.0,
535            backflow_enabled: false,
536        }
537    }
538}
539
540/// Wave function types
541#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
542pub enum WaveFunctionType {
543    /// Slater-Jastrow wave function
544    SlaterJastrow,
545    /// Quantum-inspired neural network wave function
546    QuantumNeuralNetwork,
547    /// Matrix product state wave function
548    MatrixProductState,
549    /// Pfaffian wave function
550    Pfaffian,
551    /// BCS wave function
552    BCS,
553}
554
555/// Linear algebra configuration
556#[derive(Debug, Clone, Serialize, Deserialize)]
557pub struct LinalgConfig {
558    /// Linear algebra algorithm type
559    pub algorithm_type: LinalgAlgorithm,
560    /// Matrix dimension
561    pub matrix_dimension: usize,
562    /// Precision requirements
563    pub precision: f64,
564    /// Maximum number of iterations
565    pub max_iterations: usize,
566    /// Krylov subspace dimension
567    pub krylov_dimension: usize,
568}
569
570impl Default for LinalgConfig {
571    fn default() -> Self {
572        Self {
573            algorithm_type: LinalgAlgorithm::QuantumInspiredLinearSolver,
574            matrix_dimension: 1024,
575            precision: 1e-8,
576            max_iterations: 1000,
577            krylov_dimension: 50,
578        }
579    }
580}
581
582/// Quantum-inspired linear algebra algorithms
583#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
584pub enum LinalgAlgorithm {
585    /// Quantum-inspired linear system solver
586    QuantumInspiredLinearSolver,
587    /// Quantum-inspired SVD
588    QuantumInspiredSVD,
589    /// Quantum-inspired eigenvalue solver
590    QuantumInspiredEigenSolver,
591    /// Quantum-inspired matrix inversion
592    QuantumInspiredInversion,
593    /// Quantum-inspired PCA
594    QuantumInspiredPCA,
595    /// Quantum-inspired matrix exponentiation
596    QuantumInspiredMatrixExp,
597}
598
599/// Graph algorithm configuration
600#[derive(Debug, Clone, Serialize, Deserialize)]
601pub struct GraphConfig {
602    /// Graph algorithm type
603    pub algorithm_type: GraphAlgorithm,
604    /// Number of vertices
605    pub num_vertices: usize,
606    /// Graph connectivity
607    pub connectivity: f64,
608    /// Walk parameters
609    pub walk_params: QuantumWalkParams,
610    /// Community detection parameters
611    pub community_params: CommunityDetectionParams,
612}
613
614impl Default for GraphConfig {
615    fn default() -> Self {
616        Self {
617            algorithm_type: GraphAlgorithm::QuantumInspiredRandomWalk,
618            num_vertices: 100,
619            connectivity: 0.1,
620            walk_params: QuantumWalkParams::default(),
621            community_params: CommunityDetectionParams::default(),
622        }
623    }
624}
625
626/// Quantum-inspired graph algorithms
627#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
628pub enum GraphAlgorithm {
629    /// Quantum-inspired random walk
630    QuantumInspiredRandomWalk,
631    /// Quantum-inspired shortest path
632    QuantumInspiredShortestPath,
633    /// Quantum-inspired graph coloring
634    QuantumInspiredGraphColoring,
635    /// Quantum-inspired community detection
636    QuantumInspiredCommunityDetection,
637    /// Quantum-inspired maximum cut
638    QuantumInspiredMaxCut,
639    /// Quantum-inspired graph matching
640    QuantumInspiredGraphMatching,
641}
642
643/// Community detection parameters
644#[derive(Debug, Clone, Serialize, Deserialize)]
645pub struct CommunityDetectionParams {
646    /// Resolution parameter
647    pub resolution: f64,
648    /// Number of iterations
649    pub num_iterations: usize,
650    /// Modularity threshold
651    pub modularity_threshold: f64,
652}
653
654impl Default for CommunityDetectionParams {
655    fn default() -> Self {
656        Self {
657            resolution: 1.0,
658            num_iterations: 100,
659            modularity_threshold: 0.01,
660        }
661    }
662}
663
664/// Benchmarking configuration
665#[derive(Debug, Clone, Serialize, Deserialize)]
666pub struct BenchmarkingConfig {
667    /// Enable benchmarking
668    pub enabled: bool,
669    /// Number of benchmark runs
670    pub num_runs: usize,
671    /// Benchmark classical algorithms for comparison
672    pub compare_classical: bool,
673    /// Record detailed metrics
674    pub detailed_metrics: bool,
675    /// Performance analysis settings
676    pub performance_analysis: PerformanceAnalysisConfig,
677}
678
679impl Default for BenchmarkingConfig {
680    fn default() -> Self {
681        Self {
682            enabled: true,
683            num_runs: 10,
684            compare_classical: true,
685            detailed_metrics: true,
686            performance_analysis: PerformanceAnalysisConfig::default(),
687        }
688    }
689}
690
691/// Performance analysis configuration
692#[derive(Debug, Clone, Serialize, Deserialize)]
693pub struct PerformanceAnalysisConfig {
694    /// Analyze convergence behavior
695    pub analyze_convergence: bool,
696    /// Analyze scalability
697    pub analyze_scalability: bool,
698    /// Analyze quantum advantage
699    pub analyze_quantum_advantage: bool,
700    /// Record memory usage
701    pub record_memory_usage: bool,
702}
703
704impl Default for PerformanceAnalysisConfig {
705    fn default() -> Self {
706        Self {
707            analyze_convergence: true,
708            analyze_scalability: true,
709            analyze_quantum_advantage: true,
710            record_memory_usage: true,
711        }
712    }
713}
714
715/// Main quantum-inspired classical algorithms framework
716#[derive(Debug)]
717pub struct QuantumInspiredFramework {
718    /// Configuration
719    config: QuantumInspiredConfig,
720    /// Current state
721    state: QuantumInspiredState,
722    /// SciRS2 backend for numerical operations
723    backend: Option<SciRS2Backend>,
724    /// Performance statistics
725    stats: QuantumInspiredStats,
726    /// Random number generator
727    rng: Arc<Mutex<rand::rngs::ThreadRng>>,
728}
729
730/// Framework state
731#[derive(Debug)]
732pub struct QuantumInspiredState {
733    /// Current variables/solution
734    pub variables: Array1<f64>,
735    /// Current objective value
736    pub objective_value: f64,
737    /// Current iteration
738    pub iteration: usize,
739    /// Best solution found
740    pub best_solution: Array1<f64>,
741    /// Best objective value
742    pub best_objective: f64,
743    /// Convergence history
744    pub convergence_history: Vec<f64>,
745    /// Runtime statistics
746    pub runtime_stats: RuntimeStats,
747}
748
749/// Runtime statistics
750#[derive(Debug, Clone)]
751pub struct RuntimeStats {
752    /// Total function evaluations
753    pub function_evaluations: usize,
754    /// Total gradient evaluations
755    pub gradient_evaluations: usize,
756    /// Total CPU time (seconds)
757    pub cpu_time: f64,
758    /// Memory usage (bytes)
759    pub memory_usage: usize,
760    /// Quantum-inspired operations count
761    pub quantum_operations: usize,
762}
763
764impl Default for RuntimeStats {
765    fn default() -> Self {
766        Self {
767            function_evaluations: 0,
768            gradient_evaluations: 0,
769            cpu_time: 0.0,
770            memory_usage: 0,
771            quantum_operations: 0,
772        }
773    }
774}
775
776/// Framework statistics
777#[derive(Debug, Clone)]
778pub struct QuantumInspiredStats {
779    /// Algorithm execution statistics
780    pub execution_stats: ExecutionStats,
781    /// Performance comparison statistics
782    pub comparison_stats: ComparisonStats,
783    /// Convergence analysis
784    pub convergence_analysis: ConvergenceAnalysis,
785    /// Quantum advantage metrics
786    pub quantum_advantage_metrics: QuantumAdvantageMetrics,
787}
788
789impl Default for QuantumInspiredStats {
790    fn default() -> Self {
791        Self {
792            execution_stats: ExecutionStats::default(),
793            comparison_stats: ComparisonStats::default(),
794            convergence_analysis: ConvergenceAnalysis::default(),
795            quantum_advantage_metrics: QuantumAdvantageMetrics::default(),
796        }
797    }
798}
799
800/// Execution statistics
801#[derive(Debug, Clone)]
802pub struct ExecutionStats {
803    /// Total runtime (seconds)
804    pub total_runtime: f64,
805    /// Average runtime per iteration (seconds)
806    pub avg_runtime_per_iteration: f64,
807    /// Peak memory usage (bytes)
808    pub peak_memory_usage: usize,
809    /// Successful runs
810    pub successful_runs: usize,
811    /// Failed runs
812    pub failed_runs: usize,
813}
814
815impl Default for ExecutionStats {
816    fn default() -> Self {
817        Self {
818            total_runtime: 0.0,
819            avg_runtime_per_iteration: 0.0,
820            peak_memory_usage: 0,
821            successful_runs: 0,
822            failed_runs: 0,
823        }
824    }
825}
826
827/// Performance comparison statistics
828#[derive(Debug, Clone)]
829pub struct ComparisonStats {
830    /// Quantum-inspired algorithm performance
831    pub quantum_inspired_performance: f64,
832    /// Classical algorithm performance
833    pub classical_performance: f64,
834    /// Speedup factor
835    pub speedup_factor: f64,
836    /// Solution quality comparison
837    pub solution_quality_ratio: f64,
838    /// Convergence speed comparison
839    pub convergence_speed_ratio: f64,
840}
841
842impl Default for ComparisonStats {
843    fn default() -> Self {
844        Self {
845            quantum_inspired_performance: 0.0,
846            classical_performance: 0.0,
847            speedup_factor: 1.0,
848            solution_quality_ratio: 1.0,
849            convergence_speed_ratio: 1.0,
850        }
851    }
852}
853
854/// Convergence analysis
855#[derive(Debug, Clone)]
856pub struct ConvergenceAnalysis {
857    /// Convergence rate
858    pub convergence_rate: f64,
859    /// Number of iterations to convergence
860    pub iterations_to_convergence: usize,
861    /// Final gradient norm
862    pub final_gradient_norm: f64,
863    /// Convergence achieved
864    pub converged: bool,
865    /// Convergence criterion
866    pub convergence_criterion: String,
867}
868
869impl Default for ConvergenceAnalysis {
870    fn default() -> Self {
871        Self {
872            convergence_rate: 0.0,
873            iterations_to_convergence: 0,
874            final_gradient_norm: f64::INFINITY,
875            converged: false,
876            convergence_criterion: "tolerance".to_string(),
877        }
878    }
879}
880
881/// Quantum advantage metrics
882#[derive(Debug, Clone)]
883pub struct QuantumAdvantageMetrics {
884    /// Theoretical quantum speedup
885    pub theoretical_speedup: f64,
886    /// Practical quantum advantage
887    pub practical_advantage: f64,
888    /// Problem complexity class
889    pub complexity_class: String,
890    /// Quantum resource requirements
891    pub quantum_resource_requirements: usize,
892    /// Classical resource requirements
893    pub classical_resource_requirements: usize,
894}
895
896impl Default for QuantumAdvantageMetrics {
897    fn default() -> Self {
898        Self {
899            theoretical_speedup: 1.0,
900            practical_advantage: 1.0,
901            complexity_class: "NP".to_string(),
902            quantum_resource_requirements: 0,
903            classical_resource_requirements: 0,
904        }
905    }
906}
907
908/// Optimization result
909#[derive(Debug, Clone)]
910pub struct OptimizationResult {
911    /// Optimal solution
912    pub solution: Array1<f64>,
913    /// Optimal objective value
914    pub objective_value: f64,
915    /// Number of iterations
916    pub iterations: usize,
917    /// Convergence achieved
918    pub converged: bool,
919    /// Runtime statistics
920    pub runtime_stats: RuntimeStats,
921    /// Algorithm-specific metadata
922    pub metadata: HashMap<String, f64>,
923}
924
925/// Machine learning training result
926#[derive(Debug, Clone)]
927pub struct MLTrainingResult {
928    /// Final model parameters
929    pub parameters: Array1<f64>,
930    /// Training loss history
931    pub loss_history: Vec<f64>,
932    /// Validation accuracy
933    pub validation_accuracy: f64,
934    /// Training time (seconds)
935    pub training_time: f64,
936    /// Model complexity metrics
937    pub complexity_metrics: HashMap<String, f64>,
938}
939
940/// Sampling result
941#[derive(Debug, Clone)]
942pub struct SamplingResult {
943    /// Generated samples
944    pub samples: Array2<f64>,
945    /// Sample statistics
946    pub statistics: SampleStatistics,
947    /// Acceptance rate
948    pub acceptance_rate: f64,
949    /// Effective sample size
950    pub effective_sample_size: usize,
951    /// Auto-correlation times
952    pub autocorr_times: Array1<f64>,
953}
954
955/// Sample statistics
956#[derive(Debug, Clone)]
957pub struct SampleStatistics {
958    /// Sample mean
959    pub mean: Array1<f64>,
960    /// Sample variance
961    pub variance: Array1<f64>,
962    /// Sample skewness
963    pub skewness: Array1<f64>,
964    /// Sample kurtosis
965    pub kurtosis: Array1<f64>,
966    /// Correlation matrix
967    pub correlation_matrix: Array2<f64>,
968}
969
970/// Linear algebra result
971#[derive(Debug, Clone)]
972pub struct LinalgResult {
973    /// Solution vector
974    pub solution: Array1<Complex64>,
975    /// Eigenvalues (if applicable)
976    pub eigenvalues: Option<Array1<Complex64>>,
977    /// Eigenvectors (if applicable)
978    pub eigenvectors: Option<Array2<Complex64>>,
979    /// Singular values (if applicable)
980    pub singular_values: Option<Array1<f64>>,
981    /// Residual norm
982    pub residual_norm: f64,
983    /// Number of iterations
984    pub iterations: usize,
985}
986
987/// Graph algorithm result
988#[derive(Debug, Clone)]
989pub struct GraphResult {
990    /// Solution (e.g., coloring, path, communities)
991    pub solution: Vec<usize>,
992    /// Objective value
993    pub objective_value: f64,
994    /// Graph metrics
995    pub graph_metrics: GraphMetrics,
996    /// Walk statistics (if applicable)
997    pub walk_stats: Option<WalkStatistics>,
998}
999
1000/// Graph metrics
1001#[derive(Debug, Clone)]
1002pub struct GraphMetrics {
1003    /// Modularity (for community detection)
1004    pub modularity: f64,
1005    /// Clustering coefficient
1006    pub clustering_coefficient: f64,
1007    /// Average path length
1008    pub average_path_length: f64,
1009    /// Graph diameter
1010    pub diameter: usize,
1011}
1012
1013/// Walk statistics
1014#[derive(Debug, Clone)]
1015pub struct WalkStatistics {
1016    /// Visit frequency
1017    pub visit_frequency: Array1<f64>,
1018    /// Hitting times
1019    pub hitting_times: Array1<f64>,
1020    /// Return times
1021    pub return_times: Array1<f64>,
1022    /// Mixing time
1023    pub mixing_time: f64,
1024}
1025
1026/// Benchmarking results
1027#[derive(Debug, Clone)]
1028pub struct BenchmarkingResults {
1029    /// Algorithm performance metrics
1030    pub performance_metrics: Vec<f64>,
1031    /// Execution times
1032    pub execution_times: Vec<f64>,
1033    /// Memory usage
1034    pub memory_usage: Vec<usize>,
1035    /// Solution qualities
1036    pub solution_qualities: Vec<f64>,
1037    /// Convergence rates
1038    pub convergence_rates: Vec<f64>,
1039    /// Statistical analysis
1040    pub statistical_analysis: StatisticalAnalysis,
1041}
1042
1043/// Statistical analysis results
1044#[derive(Debug, Clone)]
1045pub struct StatisticalAnalysis {
1046    /// Mean performance
1047    pub mean_performance: f64,
1048    /// Standard deviation
1049    pub std_deviation: f64,
1050    /// Confidence intervals
1051    pub confidence_intervals: (f64, f64),
1052    /// Statistical significance
1053    pub p_value: f64,
1054    /// Effect size
1055    pub effect_size: f64,
1056}
1057
1058impl QuantumInspiredFramework {
1059    /// Create a new quantum-inspired framework
1060    pub fn new(config: QuantumInspiredConfig) -> Result<Self> {
1061        let state = QuantumInspiredState {
1062            variables: Array1::zeros(config.num_variables),
1063            objective_value: f64::INFINITY,
1064            iteration: 0,
1065            best_solution: Array1::zeros(config.num_variables),
1066            best_objective: f64::INFINITY,
1067            convergence_history: Vec::new(),
1068            runtime_stats: RuntimeStats::default(),
1069        };
1070
1071        // Note: For seeded RNG we would need to restructure to store the RNG
1072        // For now, just use thread_rng() and ignore the seed
1073        let rng = thread_rng();
1074
1075        Ok(Self {
1076            config,
1077            state,
1078            backend: None,
1079            stats: QuantumInspiredStats::default(),
1080            rng: Arc::new(Mutex::new(rng)),
1081        })
1082    }
1083
1084    /// Set SciRS2 backend for numerical operations
1085    pub fn set_backend(&mut self, backend: SciRS2Backend) {
1086        self.backend = Some(backend);
1087    }
1088
1089    /// Run optimization algorithm
1090    pub fn optimize(&mut self) -> Result<OptimizationResult> {
1091        let start_time = std::time::Instant::now();
1092
1093        match self.config.optimization_config.algorithm_type {
1094            OptimizationAlgorithm::QuantumGeneticAlgorithm => self.quantum_genetic_algorithm(),
1095            OptimizationAlgorithm::QuantumParticleSwarm => {
1096                self.quantum_particle_swarm_optimization()
1097            }
1098            OptimizationAlgorithm::QuantumSimulatedAnnealing => self.quantum_simulated_annealing(),
1099            OptimizationAlgorithm::QuantumDifferentialEvolution => {
1100                self.quantum_differential_evolution()
1101            }
1102            OptimizationAlgorithm::ClassicalQAOA => self.classical_qaoa_simulation(),
1103            OptimizationAlgorithm::ClassicalVQE => self.classical_vqe_simulation(),
1104            OptimizationAlgorithm::QuantumAntColony => self.quantum_ant_colony_optimization(),
1105            OptimizationAlgorithm::QuantumHarmonySearch => self.quantum_harmony_search(),
1106        }
1107    }
1108
1109    /// Quantum-inspired genetic algorithm
1110    fn quantum_genetic_algorithm(&mut self) -> Result<OptimizationResult> {
1111        let pop_size = self.config.algorithm_config.population_size;
1112        let num_vars = self.config.num_variables;
1113        let max_iterations = self.config.algorithm_config.max_iterations;
1114
1115        // Initialize population with quantum-inspired superposition
1116        let mut population = self.initialize_quantum_population(pop_size, num_vars)?;
1117        let mut fitness_values = vec![0.0; pop_size];
1118
1119        // Evaluate initial population
1120        for (i, individual) in population.iter().enumerate() {
1121            fitness_values[i] = self.evaluate_objective(individual)?;
1122            self.state.runtime_stats.function_evaluations += 1;
1123        }
1124
1125        for generation in 0..max_iterations {
1126            self.state.iteration = generation;
1127
1128            // Selection using quantum-inspired interference
1129            let parents = self.quantum_selection(&population, &fitness_values)?;
1130
1131            // Quantum-inspired crossover
1132            let mut offspring = self.quantum_crossover(&parents)?;
1133
1134            // Quantum-inspired mutation
1135            self.quantum_mutation(&mut offspring)?;
1136
1137            // Evaluate offspring
1138            let mut offspring_fitness = vec![0.0; offspring.len()];
1139            for (i, individual) in offspring.iter().enumerate() {
1140                offspring_fitness[i] = self.evaluate_objective(individual)?;
1141                self.state.runtime_stats.function_evaluations += 1;
1142            }
1143
1144            // Quantum-inspired replacement using entanglement
1145            self.quantum_replacement(
1146                &mut population,
1147                &mut fitness_values,
1148                offspring,
1149                offspring_fitness,
1150            )?;
1151
1152            // Update best solution
1153            let best_idx = fitness_values
1154                .iter()
1155                .enumerate()
1156                .min_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
1157                .unwrap()
1158                .0;
1159
1160            if fitness_values[best_idx] < self.state.best_objective {
1161                self.state.best_objective = fitness_values[best_idx];
1162                self.state.best_solution = population[best_idx].clone();
1163            }
1164
1165            self.state
1166                .convergence_history
1167                .push(self.state.best_objective);
1168
1169            // Check convergence
1170            if self.check_convergence()? {
1171                break;
1172            }
1173        }
1174
1175        Ok(OptimizationResult {
1176            solution: self.state.best_solution.clone(),
1177            objective_value: self.state.best_objective,
1178            iterations: self.state.iteration,
1179            converged: self.check_convergence()?,
1180            runtime_stats: self.state.runtime_stats.clone(),
1181            metadata: HashMap::new(),
1182        })
1183    }
1184
1185    /// Initialize quantum-inspired population with superposition
1186    fn initialize_quantum_population(
1187        &mut self,
1188        pop_size: usize,
1189        num_vars: usize,
1190    ) -> Result<Vec<Array1<f64>>> {
1191        let mut population = Vec::with_capacity(pop_size);
1192        let bounds = &self.config.optimization_config.bounds;
1193        let quantum_params = &self.config.algorithm_config.quantum_parameters;
1194
1195        for _ in 0..pop_size {
1196            let mut individual = Array1::zeros(num_vars);
1197
1198            for j in 0..num_vars {
1199                let (min_bound, max_bound) = if j < bounds.len() {
1200                    bounds[j]
1201                } else {
1202                    (-1.0, 1.0)
1203                };
1204
1205                // Quantum-inspired initialization with superposition
1206                let mut rng = self.rng.lock().unwrap();
1207                let base_value = rng.gen::<f64>() * (max_bound - min_bound) + min_bound;
1208
1209                // Add quantum superposition effect
1210                let superposition_noise = (rng.gen::<f64>() - 0.5)
1211                    * quantum_params.superposition_strength
1212                    * (max_bound - min_bound);
1213
1214                individual[j] = (base_value + superposition_noise).clamp(min_bound, max_bound);
1215            }
1216
1217            population.push(individual);
1218        }
1219
1220        Ok(population)
1221    }
1222
1223    /// Quantum-inspired selection using interference
1224    fn quantum_selection(
1225        &mut self,
1226        population: &[Array1<f64>],
1227        fitness: &[f64],
1228    ) -> Result<Vec<Array1<f64>>> {
1229        let pop_size = population.len();
1230        let elite_size = (self.config.algorithm_config.elite_ratio * pop_size as f64) as usize;
1231        let quantum_params = &self.config.algorithm_config.quantum_parameters;
1232
1233        // Elite selection
1234        let mut indexed_fitness: Vec<(usize, f64)> =
1235            fitness.iter().enumerate().map(|(i, &f)| (i, f)).collect();
1236        indexed_fitness.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
1237
1238        let mut parents = Vec::new();
1239
1240        // Add elite individuals
1241        for i in 0..elite_size {
1242            parents.push(population[indexed_fitness[i].0].clone());
1243        }
1244
1245        // Quantum-inspired tournament selection for remaining parents
1246        let mut rng = self.rng.lock().unwrap();
1247        while parents.len() < pop_size {
1248            let tournament_size = 3;
1249            let mut tournament_indices = Vec::new();
1250
1251            for _ in 0..tournament_size {
1252                tournament_indices.push(rng.gen_range(0..pop_size));
1253            }
1254
1255            // Quantum interference-based selection probability
1256            let mut selection_probabilities = vec![0.0; tournament_size];
1257            for (i, &idx) in tournament_indices.iter().enumerate() {
1258                let normalized_fitness = 1.0 / (1.0 + fitness[idx]);
1259                let interference_factor = (quantum_params.interference_strength
1260                    * (i as f64 * PI / tournament_size as f64))
1261                    .cos()
1262                    .abs();
1263                selection_probabilities[i] = normalized_fitness * (1.0 + interference_factor);
1264            }
1265
1266            // Normalize probabilities
1267            let sum: f64 = selection_probabilities.iter().sum();
1268            for prob in &mut selection_probabilities {
1269                *prob /= sum;
1270            }
1271
1272            // Select based on quantum probabilities
1273            let mut cumulative = 0.0;
1274            let random_val = rng.gen::<f64>();
1275            for (i, &prob) in selection_probabilities.iter().enumerate() {
1276                cumulative += prob;
1277                if random_val <= cumulative {
1278                    parents.push(population[tournament_indices[i]].clone());
1279                    break;
1280                }
1281            }
1282        }
1283
1284        Ok(parents)
1285    }
1286
1287    /// Quantum-inspired crossover with entanglement
1288    fn quantum_crossover(&mut self, parents: &[Array1<f64>]) -> Result<Vec<Array1<f64>>> {
1289        let mut offspring = Vec::new();
1290        let crossover_rate = self.config.algorithm_config.crossover_rate;
1291        let quantum_params = &self.config.algorithm_config.quantum_parameters;
1292        let mut rng = self.rng.lock().unwrap();
1293
1294        for i in (0..parents.len()).step_by(2) {
1295            if i + 1 < parents.len() && rng.gen::<f64>() < crossover_rate {
1296                let parent1 = &parents[i];
1297                let parent2 = &parents[i + 1];
1298
1299                let mut child1 = parent1.clone();
1300                let mut child2 = parent2.clone();
1301
1302                // Quantum-inspired crossover with entanglement
1303                for j in 0..parent1.len() {
1304                    let entanglement_strength = quantum_params.entanglement_strength;
1305                    let alpha = rng.gen::<f64>();
1306
1307                    // Quantum entanglement-based recombination
1308                    let entangled_val1 = alpha * parent1[j] + (1.0 - alpha) * parent2[j];
1309                    let entangled_val2 = (1.0 - alpha) * parent1[j] + alpha * parent2[j];
1310
1311                    // Add quantum entanglement correlation
1312                    let correlation = entanglement_strength
1313                        * (parent1[j] - parent2[j]).abs()
1314                        * (rng.gen::<f64>() - 0.5);
1315
1316                    child1[j] = entangled_val1 + correlation;
1317                    child2[j] = entangled_val2 - correlation;
1318                }
1319
1320                offspring.push(child1);
1321                offspring.push(child2);
1322            } else {
1323                offspring.push(parents[i].clone());
1324                if i + 1 < parents.len() {
1325                    offspring.push(parents[i + 1].clone());
1326                }
1327            }
1328        }
1329
1330        Ok(offspring)
1331    }
1332
1333    /// Quantum-inspired mutation with tunneling
1334    fn quantum_mutation(&mut self, population: &mut [Array1<f64>]) -> Result<()> {
1335        let mutation_rate = self.config.algorithm_config.mutation_rate;
1336        let quantum_params = &self.config.algorithm_config.quantum_parameters;
1337        let bounds = &self.config.optimization_config.bounds;
1338        let mut rng = self.rng.lock().unwrap();
1339
1340        for individual in population.iter_mut() {
1341            for j in 0..individual.len() {
1342                if rng.gen::<f64>() < mutation_rate {
1343                    let (min_bound, max_bound) = if j < bounds.len() {
1344                        bounds[j]
1345                    } else {
1346                        (-1.0, 1.0)
1347                    };
1348
1349                    // Quantum tunneling-inspired mutation
1350                    let current_val = individual[j];
1351                    let range = max_bound - min_bound;
1352
1353                    // Standard mutation
1354                    let gaussian_mutation =
1355                        rng.gen::<f64>() * 0.1 * range * (rng.gen::<f64>() - 0.5);
1356
1357                    // Quantum tunneling effect
1358                    let tunneling_prob = quantum_params.tunneling_probability;
1359                    let tunneling_mutation = if rng.gen::<f64>() < tunneling_prob {
1360                        // Large jump to explore distant regions
1361                        (rng.gen::<f64>() - 0.5) * range
1362                    } else {
1363                        0.0
1364                    };
1365
1366                    individual[j] = (current_val + gaussian_mutation + tunneling_mutation)
1367                        .clamp(min_bound, max_bound);
1368                }
1369            }
1370        }
1371
1372        self.state.runtime_stats.quantum_operations += population.len();
1373        Ok(())
1374    }
1375
1376    /// Quantum-inspired replacement using quantum measurement
1377    fn quantum_replacement(
1378        &mut self,
1379        population: &mut Vec<Array1<f64>>,
1380        fitness: &mut Vec<f64>,
1381        offspring: Vec<Array1<f64>>,
1382        offspring_fitness: Vec<f64>,
1383    ) -> Result<()> {
1384        let quantum_params = &self.config.algorithm_config.quantum_parameters;
1385        let measurement_prob = quantum_params.measurement_probability;
1386        let mut rng = self.rng.lock().unwrap();
1387
1388        // Combine populations
1389        let mut combined_population = population.clone();
1390        combined_population.extend(offspring);
1391
1392        let mut combined_fitness = fitness.clone();
1393        combined_fitness.extend(offspring_fitness);
1394
1395        // Quantum measurement-based selection
1396        let pop_size = population.len();
1397        let mut new_population = Vec::with_capacity(pop_size);
1398        let mut new_fitness = Vec::with_capacity(pop_size);
1399
1400        // Sort combined population by fitness
1401        let mut indexed_combined: Vec<(usize, f64)> = combined_fitness
1402            .iter()
1403            .enumerate()
1404            .map(|(i, &f)| (i, f))
1405            .collect();
1406        indexed_combined.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
1407
1408        // Select top individuals with quantum measurement probability
1409        for i in 0..pop_size {
1410            if i < indexed_combined.len() {
1411                let idx = indexed_combined[i].0;
1412
1413                // Quantum measurement-based acceptance
1414                let acceptance_prob = if rng.gen::<f64>() < measurement_prob {
1415                    // Quantum measurement collapses to definite state
1416                    1.0
1417                } else {
1418                    // Classical selection probability
1419                    1.0 / (1.0 + (i as f64 / pop_size as f64))
1420                };
1421
1422                if rng.gen::<f64>() < acceptance_prob {
1423                    new_population.push(combined_population[idx].clone());
1424                    new_fitness.push(combined_fitness[idx]);
1425                }
1426            }
1427        }
1428
1429        // Fill remaining slots with best individuals
1430        while new_population.len() < pop_size {
1431            for i in 0..indexed_combined.len() {
1432                if new_population.len() >= pop_size {
1433                    break;
1434                }
1435                let idx = indexed_combined[i].0;
1436                if !new_population.iter().any(|x| {
1437                    x.iter()
1438                        .zip(combined_population[idx].iter())
1439                        .all(|(a, b)| (a - b).abs() < 1e-10)
1440                }) {
1441                    new_population.push(combined_population[idx].clone());
1442                    new_fitness.push(combined_fitness[idx]);
1443                }
1444            }
1445        }
1446
1447        // Truncate to exact population size
1448        new_population.truncate(pop_size);
1449        new_fitness.truncate(pop_size);
1450
1451        *population = new_population;
1452        *fitness = new_fitness;
1453
1454        Ok(())
1455    }
1456
1457    /// Quantum particle swarm optimization
1458    fn quantum_particle_swarm_optimization(&mut self) -> Result<OptimizationResult> {
1459        let pop_size = self.config.algorithm_config.population_size;
1460        let num_vars = self.config.num_variables;
1461        let max_iterations = self.config.algorithm_config.max_iterations;
1462        let quantum_params = self.config.algorithm_config.quantum_parameters.clone();
1463        let bounds = self.config.optimization_config.bounds.clone();
1464
1465        // Initialize particles
1466        let mut particles = self.initialize_quantum_population(pop_size, num_vars)?;
1467        let mut velocities: Vec<Array1<f64>> = vec![Array1::zeros(num_vars); pop_size];
1468        let mut personal_best = particles.clone();
1469        let mut personal_best_fitness = vec![f64::INFINITY; pop_size];
1470        let mut global_best = Array1::zeros(num_vars);
1471        let mut global_best_fitness = f64::INFINITY;
1472
1473        // Evaluate initial particles
1474        for (i, particle) in particles.iter().enumerate() {
1475            let fitness = self.evaluate_objective(particle)?;
1476            personal_best_fitness[i] = fitness;
1477
1478            if fitness < global_best_fitness {
1479                global_best_fitness = fitness;
1480                global_best = particle.clone();
1481            }
1482
1483            self.state.runtime_stats.function_evaluations += 1;
1484        }
1485
1486        // PSO parameters
1487        let w = 0.7; // Inertia weight
1488        let c1 = 2.0; // Cognitive parameter
1489        let c2 = 2.0; // Social parameter
1490
1491        for iteration in 0..max_iterations {
1492            self.state.iteration = iteration;
1493
1494            for i in 0..pop_size {
1495                let mut rng = self.rng.lock().unwrap();
1496
1497                // Update velocity with quantum-inspired terms
1498                for j in 0..num_vars {
1499                    let r1 = rng.gen::<f64>();
1500                    let r2 = rng.gen::<f64>();
1501
1502                    // Classical PSO velocity update
1503                    let cognitive_term = c1 * r1 * (personal_best[i][j] - particles[i][j]);
1504                    let social_term = c2 * r2 * (global_best[j] - particles[i][j]);
1505
1506                    // Quantum-inspired terms
1507                    let quantum_fluctuation =
1508                        quantum_params.superposition_strength * (rng.gen::<f64>() - 0.5);
1509                    let quantum_tunneling =
1510                        if rng.gen::<f64>() < quantum_params.tunneling_probability {
1511                            (rng.gen::<f64>() - 0.5) * 2.0
1512                        } else {
1513                            0.0
1514                        };
1515
1516                    velocities[i][j] = w * velocities[i][j]
1517                        + cognitive_term
1518                        + social_term
1519                        + quantum_fluctuation
1520                        + quantum_tunneling;
1521                }
1522
1523                // Update position
1524                for j in 0..num_vars {
1525                    particles[i][j] += velocities[i][j];
1526
1527                    // Apply bounds
1528                    let (min_bound, max_bound) = if j < bounds.len() {
1529                        bounds[j]
1530                    } else {
1531                        (-10.0, 10.0)
1532                    };
1533                    particles[i][j] = particles[i][j].clamp(min_bound, max_bound);
1534                }
1535
1536                // Drop RNG lock before calling evaluate_objective
1537                drop(rng);
1538
1539                // Evaluate new position
1540                let fitness = self.evaluate_objective(&particles[i])?;
1541                self.state.runtime_stats.function_evaluations += 1;
1542
1543                // Update personal best
1544                if fitness < personal_best_fitness[i] {
1545                    personal_best_fitness[i] = fitness;
1546                    personal_best[i] = particles[i].clone();
1547                }
1548
1549                // Update global best
1550                if fitness < global_best_fitness {
1551                    global_best_fitness = fitness;
1552                    global_best = particles[i].clone();
1553                }
1554            }
1555
1556            self.state.best_objective = global_best_fitness;
1557            self.state.best_solution = global_best.clone();
1558            self.state.convergence_history.push(global_best_fitness);
1559
1560            // Check convergence
1561            if self.check_convergence()? {
1562                break;
1563            }
1564        }
1565
1566        Ok(OptimizationResult {
1567            solution: global_best,
1568            objective_value: global_best_fitness,
1569            iterations: self.state.iteration,
1570            converged: self.check_convergence()?,
1571            runtime_stats: self.state.runtime_stats.clone(),
1572            metadata: HashMap::new(),
1573        })
1574    }
1575
1576    /// Quantum-inspired simulated annealing
1577    fn quantum_simulated_annealing(&mut self) -> Result<OptimizationResult> {
1578        let max_iterations = self.config.algorithm_config.max_iterations;
1579        let temperature_schedule = self.config.algorithm_config.temperature_schedule;
1580        let quantum_parameters = self.config.algorithm_config.quantum_parameters.clone();
1581        let bounds = self.config.optimization_config.bounds.clone();
1582        let num_vars = self.config.num_variables;
1583
1584        // Initialize current solution randomly
1585        let mut current_solution = Array1::zeros(num_vars);
1586        let mut rng = self.rng.lock().unwrap();
1587
1588        for i in 0..num_vars {
1589            let (min_bound, max_bound) = if i < bounds.len() {
1590                bounds[i]
1591            } else {
1592                (-10.0, 10.0)
1593            };
1594            current_solution[i] = rng.gen::<f64>() * (max_bound - min_bound) + min_bound;
1595        }
1596        drop(rng);
1597
1598        let mut current_energy = self.evaluate_objective(&current_solution)?;
1599        let mut best_solution = current_solution.clone();
1600        let mut best_energy = current_energy;
1601
1602        self.state.runtime_stats.function_evaluations += 1;
1603
1604        // Initial temperature
1605        let initial_temp = 100.0;
1606        let final_temp = 0.01;
1607
1608        for iteration in 0..max_iterations {
1609            self.state.iteration = iteration;
1610
1611            // Calculate temperature based on schedule
1612            let temp = match temperature_schedule {
1613                TemperatureSchedule::Exponential => {
1614                    initial_temp
1615                        * ((final_temp / initial_temp) as f64)
1616                            .powf(iteration as f64 / max_iterations as f64)
1617                }
1618                TemperatureSchedule::Linear => {
1619                    initial_temp
1620                        - (initial_temp - final_temp) * (iteration as f64 / max_iterations as f64)
1621                }
1622                TemperatureSchedule::Logarithmic => initial_temp / (1.0 + (iteration as f64).ln()),
1623                TemperatureSchedule::QuantumAdiabatic => {
1624                    // Quantum adiabatic schedule
1625                    let s = iteration as f64 / max_iterations as f64;
1626                    initial_temp * (1.0 - s) + final_temp * s * (1.0 - (1.0 - s).powi(3))
1627                }
1628                TemperatureSchedule::Custom => initial_temp * 0.95_f64.powi(iteration as i32),
1629            };
1630
1631            // Generate neighbor solution with quantum-inspired moves
1632            let mut neighbor = current_solution.clone();
1633            let quantum_params = &quantum_parameters;
1634            let mut rng = self.rng.lock().unwrap();
1635
1636            for i in 0..num_vars {
1637                if rng.gen::<f64>() < 0.5 {
1638                    let (min_bound, max_bound) = if i < bounds.len() {
1639                        bounds[i]
1640                    } else {
1641                        (-10.0, 10.0)
1642                    };
1643
1644                    // Quantum-inspired neighbor generation
1645                    let step_size = temp / initial_temp;
1646                    let gaussian_step =
1647                        rng.gen::<f64>() * step_size * (max_bound - min_bound) * 0.1;
1648
1649                    // Quantum tunneling move
1650                    let tunneling_move = if rng.gen::<f64>() < quantum_params.tunneling_probability
1651                    {
1652                        (rng.gen::<f64>() - 0.5) * (max_bound - min_bound) * 0.5
1653                    } else {
1654                        0.0
1655                    };
1656
1657                    neighbor[i] = (current_solution[i] + gaussian_step + tunneling_move)
1658                        .clamp(min_bound, max_bound);
1659                }
1660            }
1661            drop(rng);
1662
1663            let neighbor_energy = self.evaluate_objective(&neighbor)?;
1664            self.state.runtime_stats.function_evaluations += 1;
1665
1666            // Quantum-inspired acceptance probability
1667            let delta_energy = neighbor_energy - current_energy;
1668            let acceptance_prob = if delta_energy < 0.0 {
1669                1.0
1670            } else {
1671                // Classical Boltzmann factor with quantum corrections
1672                let boltzmann_factor = (-delta_energy / temp).exp();
1673
1674                // Quantum interference correction
1675                let quantum_correction = quantum_params.interference_strength
1676                    * (2.0 * PI * iteration as f64 / max_iterations as f64).cos()
1677                    * 0.1;
1678
1679                (boltzmann_factor + quantum_correction).clamp(0.0, 1.0)
1680            };
1681
1682            // Accept or reject
1683            let mut rng = self.rng.lock().unwrap();
1684            if rng.gen::<f64>() < acceptance_prob {
1685                current_solution = neighbor;
1686                current_energy = neighbor_energy;
1687
1688                // Update best solution
1689                if current_energy < best_energy {
1690                    best_solution = current_solution.clone();
1691                    best_energy = current_energy;
1692                }
1693            }
1694            drop(rng);
1695
1696            self.state.best_objective = best_energy;
1697            self.state.best_solution = best_solution.clone();
1698            self.state.convergence_history.push(best_energy);
1699
1700            // Check convergence
1701            if temp < final_temp || self.check_convergence()? {
1702                break;
1703            }
1704        }
1705
1706        Ok(OptimizationResult {
1707            solution: best_solution,
1708            objective_value: best_energy,
1709            iterations: self.state.iteration,
1710            converged: self.check_convergence()?,
1711            runtime_stats: self.state.runtime_stats.clone(),
1712            metadata: HashMap::new(),
1713        })
1714    }
1715
1716    /// Quantum differential evolution
1717    fn quantum_differential_evolution(&mut self) -> Result<OptimizationResult> {
1718        // Implement quantum-inspired differential evolution
1719        // This is a placeholder for the full implementation
1720        Err(SimulatorError::NotImplemented(
1721            "Quantum Differential Evolution not yet implemented".to_string(),
1722        ))
1723    }
1724
1725    /// Classical QAOA simulation
1726    fn classical_qaoa_simulation(&mut self) -> Result<OptimizationResult> {
1727        // Implement classical simulation of QAOA
1728        // This is a placeholder for the full implementation
1729        Err(SimulatorError::NotImplemented(
1730            "Classical QAOA simulation not yet implemented".to_string(),
1731        ))
1732    }
1733
1734    /// Classical VQE simulation
1735    fn classical_vqe_simulation(&mut self) -> Result<OptimizationResult> {
1736        // Implement classical simulation of VQE
1737        // This is a placeholder for the full implementation
1738        Err(SimulatorError::NotImplemented(
1739            "Classical VQE simulation not yet implemented".to_string(),
1740        ))
1741    }
1742
1743    /// Quantum ant colony optimization
1744    fn quantum_ant_colony_optimization(&mut self) -> Result<OptimizationResult> {
1745        // Implement quantum-inspired ant colony optimization
1746        // This is a placeholder for the full implementation
1747        Err(SimulatorError::NotImplemented(
1748            "Quantum Ant Colony Optimization not yet implemented".to_string(),
1749        ))
1750    }
1751
1752    /// Quantum harmony search
1753    fn quantum_harmony_search(&mut self) -> Result<OptimizationResult> {
1754        // Implement quantum-inspired harmony search
1755        // This is a placeholder for the full implementation
1756        Err(SimulatorError::NotImplemented(
1757            "Quantum Harmony Search not yet implemented".to_string(),
1758        ))
1759    }
1760
1761    /// Evaluate objective function
1762    fn evaluate_objective(&mut self, solution: &Array1<f64>) -> Result<f64> {
1763        let result = match self.config.optimization_config.objective_function {
1764            ObjectiveFunction::Quadratic => solution.iter().map(|&x| x * x).sum(),
1765            ObjectiveFunction::Rastrigin => {
1766                let n = solution.len() as f64;
1767                let a = 10.0;
1768                a * n
1769                    + solution
1770                        .iter()
1771                        .map(|&x| x * x - a * (2.0 * PI * x).cos())
1772                        .sum::<f64>()
1773            }
1774            ObjectiveFunction::Rosenbrock => {
1775                if solution.len() < 2 {
1776                    return Ok(0.0);
1777                }
1778                let mut result = 0.0;
1779                for i in 0..solution.len() - 1 {
1780                    let x = solution[i];
1781                    let y = solution[i + 1];
1782                    result += 100.0 * (y - x * x).powi(2) + (1.0 - x).powi(2);
1783                }
1784                result
1785            }
1786            ObjectiveFunction::Ackley => {
1787                let n = solution.len() as f64;
1788                let a = 20.0;
1789                let b = 0.2;
1790                let c = 2.0 * PI;
1791
1792                let sum1 = solution.iter().map(|&x| x * x).sum::<f64>() / n;
1793                let sum2 = solution.iter().map(|&x| (c * x).cos()).sum::<f64>() / n;
1794
1795                -a * (-b * sum1.sqrt()).exp() - sum2.exp() + a + std::f64::consts::E
1796            }
1797            ObjectiveFunction::Sphere => solution.iter().map(|&x| x * x).sum(),
1798            ObjectiveFunction::Griewank => {
1799                let sum_sq = solution.iter().map(|&x| x * x).sum::<f64>() / 4000.0;
1800                let prod_cos = solution
1801                    .iter()
1802                    .enumerate()
1803                    .map(|(i, &x)| (x / ((i + 1) as f64).sqrt()).cos())
1804                    .product::<f64>();
1805                1.0 + sum_sq - prod_cos
1806            }
1807            ObjectiveFunction::Custom => {
1808                // Custom objective function - placeholder
1809                solution.iter().map(|&x| x * x).sum()
1810            }
1811        };
1812
1813        Ok(result)
1814    }
1815
1816    /// Check convergence
1817    fn check_convergence(&self) -> Result<bool> {
1818        if self.state.convergence_history.len() < 2 {
1819            return Ok(false);
1820        }
1821
1822        let tolerance = self.config.algorithm_config.tolerance;
1823        let recent_improvements = &self.state.convergence_history
1824            [self.state.convergence_history.len().saturating_sub(10)..];
1825
1826        if recent_improvements.len() < 2 {
1827            return Ok(false);
1828        }
1829
1830        // Check for convergence by comparing consecutive recent values
1831        let last_value = recent_improvements.last().unwrap();
1832        let second_last_value = recent_improvements[recent_improvements.len() - 2];
1833        let change = (last_value - second_last_value).abs();
1834        Ok(change < tolerance)
1835    }
1836
1837    /// Train machine learning model
1838    pub fn train_ml_model(
1839        &mut self,
1840        training_data: &[(Array1<f64>, Array1<f64>)],
1841    ) -> Result<MLTrainingResult> {
1842        // Implement quantum-inspired machine learning training
1843        // This is a placeholder for the full implementation
1844        Err(SimulatorError::NotImplemented(
1845            "ML training not yet implemented".to_string(),
1846        ))
1847    }
1848
1849    /// Perform sampling
1850    pub fn sample(&mut self) -> Result<SamplingResult> {
1851        // Implement quantum-inspired sampling
1852        // This is a placeholder for the full implementation
1853        Err(SimulatorError::NotImplemented(
1854            "Sampling not yet implemented".to_string(),
1855        ))
1856    }
1857
1858    /// Solve linear algebra problem
1859    pub fn solve_linear_algebra(
1860        &mut self,
1861        matrix: &Array2<Complex64>,
1862        rhs: &Array1<Complex64>,
1863    ) -> Result<LinalgResult> {
1864        // Implement quantum-inspired linear algebra
1865        // This is a placeholder for the full implementation
1866        Err(SimulatorError::NotImplemented(
1867            "Linear algebra solving not yet implemented".to_string(),
1868        ))
1869    }
1870
1871    /// Solve graph problem
1872    pub fn solve_graph_problem(&mut self, adjacency_matrix: &Array2<f64>) -> Result<GraphResult> {
1873        // Implement quantum-inspired graph algorithms
1874        // This is a placeholder for the full implementation
1875        Err(SimulatorError::NotImplemented(
1876            "Graph algorithms not yet implemented".to_string(),
1877        ))
1878    }
1879
1880    /// Get current statistics
1881    pub fn get_stats(&self) -> &QuantumInspiredStats {
1882        &self.stats
1883    }
1884
1885    /// Get current state
1886    pub fn get_state(&self) -> &QuantumInspiredState {
1887        &self.state
1888    }
1889
1890    /// Get mutable state access
1891    pub fn get_state_mut(&mut self) -> &mut QuantumInspiredState {
1892        &mut self.state
1893    }
1894
1895    /// Evaluate objective function (public version)
1896    pub fn evaluate_objective_public(&mut self, solution: &Array1<f64>) -> Result<f64> {
1897        self.evaluate_objective(solution)
1898    }
1899
1900    /// Check convergence (public version)
1901    pub fn check_convergence_public(&self) -> Result<bool> {
1902        self.check_convergence()
1903    }
1904
1905    /// Reset framework state
1906    pub fn reset(&mut self) {
1907        self.state = QuantumInspiredState {
1908            variables: Array1::zeros(self.config.num_variables),
1909            objective_value: f64::INFINITY,
1910            iteration: 0,
1911            best_solution: Array1::zeros(self.config.num_variables),
1912            best_objective: f64::INFINITY,
1913            convergence_history: Vec::new(),
1914            runtime_stats: RuntimeStats::default(),
1915        };
1916
1917        self.stats = QuantumInspiredStats::default();
1918    }
1919}
1920
1921/// Utility functions for quantum-inspired algorithms
1922pub struct QuantumInspiredUtils;
1923
1924impl QuantumInspiredUtils {
1925    /// Generate synthetic optimization problems
1926    pub fn generate_optimization_problem(
1927        problem_type: ObjectiveFunction,
1928        dimension: usize,
1929        bounds: (f64, f64),
1930    ) -> (ObjectiveFunction, Vec<(f64, f64)>, Array1<f64>) {
1931        let bounds_vec = vec![bounds; dimension];
1932        let optimal_solution = Array1::zeros(dimension); // Placeholder
1933
1934        (problem_type, bounds_vec, optimal_solution)
1935    }
1936
1937    /// Analyze convergence behavior
1938    pub fn analyze_convergence(convergence_history: &[f64]) -> ConvergenceAnalysis {
1939        if convergence_history.len() < 2 {
1940            return ConvergenceAnalysis::default();
1941        }
1942
1943        let final_value = *convergence_history.last().unwrap();
1944        let initial_value = convergence_history[0];
1945        let improvement = initial_value - final_value;
1946
1947        // Estimate convergence rate
1948        let convergence_rate = if improvement > 0.0 {
1949            improvement / convergence_history.len() as f64
1950        } else {
1951            0.0
1952        };
1953
1954        // Find convergence point by checking for stable windows
1955        let mut convergence_iteration = convergence_history.len();
1956
1957        // Check if we have enough data for window analysis
1958        if convergence_history.len() >= 5 {
1959            for (i, window) in convergence_history.windows(5).enumerate() {
1960                let mean = window.iter().sum::<f64>() / window.len() as f64;
1961                let variance =
1962                    window.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / window.len() as f64;
1963
1964                // Use adaptive tolerance based on the magnitude of values
1965                let adaptive_tolerance = (mean.abs() * 0.1).max(0.1);
1966
1967                if variance < adaptive_tolerance {
1968                    convergence_iteration = i + 5;
1969                    break;
1970                }
1971            }
1972        }
1973
1974        ConvergenceAnalysis {
1975            convergence_rate,
1976            iterations_to_convergence: convergence_iteration,
1977            final_gradient_norm: 0.0, // Placeholder
1978            converged: convergence_iteration < convergence_history.len(),
1979            convergence_criterion: "variance".to_string(),
1980        }
1981    }
1982
1983    /// Compare algorithm performances
1984    pub fn compare_algorithms(
1985        results1: &[OptimizationResult],
1986        results2: &[OptimizationResult],
1987    ) -> ComparisonStats {
1988        let perf1 = results1
1989            .iter()
1990            .map(|r| r.objective_value)
1991            .collect::<Vec<_>>();
1992        let perf2 = results2
1993            .iter()
1994            .map(|r| r.objective_value)
1995            .collect::<Vec<_>>();
1996
1997        let mean1 = perf1.iter().sum::<f64>() / perf1.len() as f64;
1998        let mean2 = perf2.iter().sum::<f64>() / perf2.len() as f64;
1999
2000        let speedup = if mean2 > 0.0 { mean2 / mean1 } else { 1.0 };
2001
2002        ComparisonStats {
2003            quantum_inspired_performance: mean1,
2004            classical_performance: mean2,
2005            speedup_factor: speedup,
2006            solution_quality_ratio: mean1 / mean2,
2007            convergence_speed_ratio: 1.0, // Placeholder
2008        }
2009    }
2010
2011    /// Estimate quantum advantage
2012    pub fn estimate_quantum_advantage(
2013        problem_size: usize,
2014        algorithm_type: OptimizationAlgorithm,
2015    ) -> QuantumAdvantageMetrics {
2016        let theoretical_speedup = match algorithm_type {
2017            OptimizationAlgorithm::QuantumGeneticAlgorithm => (problem_size as f64).sqrt(),
2018            OptimizationAlgorithm::QuantumParticleSwarm => (problem_size as f64).log2(),
2019            OptimizationAlgorithm::ClassicalQAOA => 2.0_f64.powf(problem_size as f64 / 2.0),
2020            _ => 1.0,
2021        };
2022
2023        QuantumAdvantageMetrics {
2024            theoretical_speedup,
2025            practical_advantage: theoretical_speedup * 0.5, // Conservative estimate
2026            complexity_class: "BQP".to_string(),
2027            quantum_resource_requirements: problem_size * 10,
2028            classical_resource_requirements: problem_size * problem_size,
2029        }
2030    }
2031}
2032
2033/// Benchmark quantum-inspired algorithms
2034pub fn benchmark_quantum_inspired_algorithms(
2035    config: &QuantumInspiredConfig,
2036) -> Result<BenchmarkingResults> {
2037    let mut framework = QuantumInspiredFramework::new(config.clone())?;
2038    let num_runs = config.benchmarking_config.num_runs;
2039
2040    let mut execution_times = Vec::new();
2041    let mut solution_qualities = Vec::new();
2042    let mut convergence_rates = Vec::new();
2043    let mut memory_usage = Vec::new();
2044
2045    for _ in 0..num_runs {
2046        let start_time = std::time::Instant::now();
2047        let result = framework.optimize()?;
2048        let execution_time = start_time.elapsed().as_secs_f64();
2049
2050        execution_times.push(execution_time);
2051        solution_qualities.push(result.objective_value);
2052
2053        let convergence_analysis =
2054            QuantumInspiredUtils::analyze_convergence(&framework.state.convergence_history);
2055        convergence_rates.push(convergence_analysis.convergence_rate);
2056        memory_usage.push(framework.state.runtime_stats.memory_usage);
2057
2058        framework.reset();
2059    }
2060
2061    // Statistical analysis
2062    let mean_performance = solution_qualities.iter().sum::<f64>() / solution_qualities.len() as f64;
2063    let variance = solution_qualities
2064        .iter()
2065        .map(|&x| (x - mean_performance).powi(2))
2066        .sum::<f64>()
2067        / solution_qualities.len() as f64;
2068    let std_deviation = variance.sqrt();
2069
2070    let statistical_analysis = StatisticalAnalysis {
2071        mean_performance,
2072        std_deviation,
2073        confidence_intervals: (
2074            mean_performance - 1.96 * std_deviation,
2075            mean_performance + 1.96 * std_deviation,
2076        ),
2077        p_value: 0.05, // Placeholder
2078        effect_size: mean_performance / std_deviation,
2079    };
2080
2081    Ok(BenchmarkingResults {
2082        performance_metrics: solution_qualities.clone(),
2083        execution_times,
2084        memory_usage,
2085        solution_qualities,
2086        convergence_rates,
2087        statistical_analysis,
2088    })
2089}
2090
2091#[cfg(test)]
2092mod tests {
2093    use super::*;
2094
2095    #[test]
2096    fn test_quantum_inspired_config() {
2097        let config = QuantumInspiredConfig::default();
2098        assert_eq!(config.num_variables, 16);
2099        assert_eq!(config.algorithm_category, AlgorithmCategory::Optimization);
2100        assert!(config.enable_quantum_heuristics);
2101    }
2102
2103    #[test]
2104    fn test_framework_creation() {
2105        let config = QuantumInspiredConfig::default();
2106        let framework = QuantumInspiredFramework::new(config);
2107        assert!(framework.is_ok());
2108    }
2109
2110    #[test]
2111    fn test_objective_functions() {
2112        let config = QuantumInspiredConfig::default();
2113        let mut framework = QuantumInspiredFramework::new(config).unwrap();
2114
2115        let solution = Array1::from(vec![1.0, 2.0, 3.0, 4.0]);
2116        let result = framework.evaluate_objective(&solution);
2117        assert!(result.is_ok());
2118        assert!(result.unwrap() > 0.0);
2119    }
2120
2121    #[test]
2122    fn test_quantum_genetic_algorithm() {
2123        let mut config = QuantumInspiredConfig::default();
2124        config.algorithm_config.max_iterations = 10; // Short test
2125        config.num_variables = 4;
2126
2127        let mut framework = QuantumInspiredFramework::new(config).unwrap();
2128        let result = framework.optimize();
2129        assert!(result.is_ok());
2130
2131        let opt_result = result.unwrap();
2132        assert!(opt_result.iterations <= 10);
2133        assert!(opt_result.objective_value.is_finite());
2134    }
2135
2136    #[test]
2137    fn test_quantum_particle_swarm() {
2138        let mut config = QuantumInspiredConfig::default();
2139        config.optimization_config.algorithm_type = OptimizationAlgorithm::QuantumParticleSwarm;
2140        config.algorithm_config.max_iterations = 10;
2141        config.num_variables = 4;
2142
2143        let mut framework = QuantumInspiredFramework::new(config).unwrap();
2144        let result = framework.optimize();
2145        assert!(result.is_ok());
2146    }
2147
2148    #[test]
2149    fn test_quantum_simulated_annealing() {
2150        let mut config = QuantumInspiredConfig::default();
2151        config.optimization_config.algorithm_type =
2152            OptimizationAlgorithm::QuantumSimulatedAnnealing;
2153        config.algorithm_config.max_iterations = 10;
2154        config.num_variables = 4;
2155
2156        let mut framework = QuantumInspiredFramework::new(config).unwrap();
2157        let result = framework.optimize();
2158        assert!(result.is_ok());
2159    }
2160
2161    #[test]
2162    fn test_convergence_analysis() {
2163        let history = vec![100.0, 90.0, 80.0, 70.0, 65.0, 64.9, 64.8, 64.8, 64.8];
2164        let analysis = QuantumInspiredUtils::analyze_convergence(&history);
2165        assert!(analysis.convergence_rate > 0.0);
2166        assert!(analysis.converged);
2167    }
2168
2169    #[test]
2170    fn test_quantum_parameters() {
2171        let params = QuantumParameters::default();
2172        assert!(params.superposition_strength > 0.0);
2173        assert!(params.entanglement_strength > 0.0);
2174        assert!(params.tunneling_probability > 0.0);
2175    }
2176
2177    #[test]
2178    fn test_benchmarking() {
2179        let mut config = QuantumInspiredConfig::default();
2180        config.algorithm_config.max_iterations = 5;
2181        config.benchmarking_config.num_runs = 3;
2182        config.num_variables = 4;
2183
2184        let result = benchmark_quantum_inspired_algorithms(&config);
2185        assert!(result.is_ok());
2186
2187        let benchmark = result.unwrap();
2188        assert_eq!(benchmark.execution_times.len(), 3);
2189        assert_eq!(benchmark.solution_qualities.len(), 3);
2190    }
2191}