quantrs2_sim/
quantum_gravity_simulation.rs

1//! Quantum Gravity Simulation Framework
2//!
3//! This module provides a comprehensive implementation of quantum gravity theories and
4//! simulation methods, including loop quantum gravity, causal dynamical triangulation,
5//! asymptotic safety, emergent gravity models, holographic correspondence, and AdS/CFT
6//! duality. This framework enables exploration of quantum spacetime dynamics and
7//! gravitational quantum effects at the Planck scale.
8
9use ndarray::{s, Array1, Array2, Array3, Array4};
10use num_complex::Complex64;
11use rand::{thread_rng, Rng};
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::f64::consts::PI;
15
16use crate::error::{Result, SimulatorError};
17use crate::scirs2_integration::SciRS2Backend;
18
19/// Quantum gravity simulation configuration
20#[derive(Debug, Clone, Serialize, Deserialize)]
21pub struct QuantumGravityConfig {
22    /// Approach to quantum gravity
23    pub gravity_approach: GravityApproach,
24    /// Planck length scale (in natural units)
25    pub planck_length: f64,
26    /// Planck time scale (in natural units)
27    pub planck_time: f64,
28    /// Number of spatial dimensions
29    pub spatial_dimensions: usize,
30    /// Enable Lorentz invariance
31    pub lorentz_invariant: bool,
32    /// Background metric type
33    pub background_metric: BackgroundMetric,
34    /// Cosmological constant
35    pub cosmological_constant: f64,
36    /// Newton's gravitational constant
37    pub gravitational_constant: f64,
38    /// Speed of light (natural units)
39    pub speed_of_light: f64,
40    /// Hbar (natural units)
41    pub reduced_planck_constant: f64,
42    /// Enable quantum corrections
43    pub quantum_corrections: bool,
44    /// Loop quantum gravity specific settings
45    pub lqg_config: Option<LQGConfig>,
46    /// Causal dynamical triangulation settings
47    pub cdt_config: Option<CDTConfig>,
48    /// Asymptotic safety settings
49    pub asymptotic_safety_config: Option<AsymptoticSafetyConfig>,
50    /// AdS/CFT correspondence settings
51    pub ads_cft_config: Option<AdSCFTConfig>,
52}
53
54impl Default for QuantumGravityConfig {
55    fn default() -> Self {
56        Self {
57            gravity_approach: GravityApproach::LoopQuantumGravity,
58            planck_length: 1.616e-35, // meters
59            planck_time: 5.391e-44,   // seconds
60            spatial_dimensions: 3,
61            lorentz_invariant: true,
62            background_metric: BackgroundMetric::Minkowski,
63            cosmological_constant: 0.0,
64            gravitational_constant: 6.674e-11,  // m³/kg/s²
65            speed_of_light: 299792458.0,        // m/s
66            reduced_planck_constant: 1.055e-34, // J⋅s
67            quantum_corrections: true,
68            lqg_config: Some(LQGConfig::default()),
69            cdt_config: Some(CDTConfig::default()),
70            asymptotic_safety_config: Some(AsymptoticSafetyConfig::default()),
71            ads_cft_config: Some(AdSCFTConfig::default()),
72        }
73    }
74}
75
76/// Approaches to quantum gravity
77#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
78pub enum GravityApproach {
79    /// Loop Quantum Gravity
80    LoopQuantumGravity,
81    /// Causal Dynamical Triangulation
82    CausalDynamicalTriangulation,
83    /// Asymptotic Safety
84    AsymptoticSafety,
85    /// String Theory approaches
86    StringTheory,
87    /// Emergent Gravity models
88    EmergentGravity,
89    /// Holographic approaches (AdS/CFT)
90    HolographicGravity,
91    /// Regge Calculus
92    ReggeCalculus,
93    /// Group Field Theory
94    GroupFieldTheory,
95    /// Causal Sets
96    CausalSets,
97    /// Entropic Gravity
98    EntropicGravity,
99}
100
101/// Background spacetime metrics
102#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
103pub enum BackgroundMetric {
104    /// Minkowski spacetime (flat)
105    Minkowski,
106    /// de Sitter spacetime (expanding)
107    DeSitter,
108    /// Anti-de Sitter spacetime
109    AntiDeSitter,
110    /// Schwarzschild black hole
111    Schwarzschild,
112    /// Kerr black hole (rotating)
113    Kerr,
114    /// Friedmann-Lemaître-Robertson-Walker (cosmological)
115    FLRW,
116    /// Custom metric tensor
117    Custom,
118}
119
120/// Loop Quantum Gravity configuration
121#[derive(Debug, Clone, Serialize, Deserialize)]
122pub struct LQGConfig {
123    /// Barbero-Immirzi parameter
124    pub barbero_immirzi_parameter: f64,
125    /// Maximum spin for SU(2) representations
126    pub max_spin: f64,
127    /// Number of spin network nodes
128    pub num_nodes: usize,
129    /// Number of spin network edges
130    pub num_edges: usize,
131    /// Enable spin foam dynamics
132    pub spin_foam_dynamics: bool,
133    /// Quantum geometry area eigenvalues
134    pub area_eigenvalues: Vec<f64>,
135    /// Volume eigenvalue spectrum
136    pub volume_eigenvalues: Vec<f64>,
137    /// Holonomy discretization parameter
138    pub holonomy_discretization: f64,
139}
140
141impl Default for LQGConfig {
142    fn default() -> Self {
143        Self {
144            barbero_immirzi_parameter: 0.2375, // Standard value
145            max_spin: 5.0,
146            num_nodes: 100,
147            num_edges: 300,
148            spin_foam_dynamics: true,
149            area_eigenvalues: (1..=20)
150                .map(|j| (j as f64) * (PI * 1.616e-35_f64.powi(2)))
151                .collect(),
152            volume_eigenvalues: (1..=50)
153                .map(|n| (n as f64).sqrt() * 1.616e-35_f64.powi(3))
154                .collect(),
155            holonomy_discretization: 0.1,
156        }
157    }
158}
159
160/// Causal Dynamical Triangulation configuration
161#[derive(Debug, Clone, Serialize, Deserialize)]
162pub struct CDTConfig {
163    /// Number of simplices in triangulation
164    pub num_simplices: usize,
165    /// Time slicing parameter
166    pub time_slicing: f64,
167    /// Spatial volume constraint
168    pub spatial_volume: f64,
169    /// Bare gravitational coupling
170    pub bare_coupling: f64,
171    /// Cosmological constant coupling
172    pub cosmological_coupling: f64,
173    /// Enable Monte Carlo moves
174    pub monte_carlo_moves: bool,
175    /// Number of MC sweeps
176    pub mc_sweeps: usize,
177    /// Accept/reject threshold
178    pub acceptance_threshold: f64,
179}
180
181impl Default for CDTConfig {
182    fn default() -> Self {
183        Self {
184            num_simplices: 10000,
185            time_slicing: 0.1,
186            spatial_volume: 1000.0,
187            bare_coupling: 0.1,
188            cosmological_coupling: 0.01,
189            monte_carlo_moves: true,
190            mc_sweeps: 1000,
191            acceptance_threshold: 0.5,
192        }
193    }
194}
195
196/// Asymptotic Safety configuration
197#[derive(Debug, Clone, Serialize, Deserialize)]
198pub struct AsymptoticSafetyConfig {
199    /// UV fixed point Newton constant
200    pub uv_newton_constant: f64,
201    /// UV fixed point cosmological constant
202    pub uv_cosmological_constant: f64,
203    /// Beta function truncation order
204    pub truncation_order: usize,
205    /// Energy scale for RG flow
206    pub energy_scale: f64,
207    /// Critical exponents
208    pub critical_exponents: Vec<f64>,
209    /// Enable higher derivative terms
210    pub higher_derivatives: bool,
211    /// Number of RG flow steps
212    pub rg_flow_steps: usize,
213}
214
215impl Default for AsymptoticSafetyConfig {
216    fn default() -> Self {
217        Self {
218            uv_newton_constant: 0.1,
219            uv_cosmological_constant: 0.01,
220            truncation_order: 4,
221            energy_scale: 1.0,
222            critical_exponents: vec![-2.0, 0.5, 1.2], // Example critical exponents
223            higher_derivatives: true,
224            rg_flow_steps: 1000,
225        }
226    }
227}
228
229/// AdS/CFT correspondence configuration
230#[derive(Debug, Clone, Serialize, Deserialize)]
231pub struct AdSCFTConfig {
232    /// AdS space dimension
233    pub ads_dimension: usize,
234    /// CFT dimension (AdS_d+1/CFT_d)
235    pub cft_dimension: usize,
236    /// AdS radius
237    pub ads_radius: f64,
238    /// Central charge of CFT
239    pub central_charge: f64,
240    /// Temperature (for thermal AdS)
241    pub temperature: f64,
242    /// Enable black hole formation
243    pub black_hole_formation: bool,
244    /// Holographic entanglement entropy
245    pub holographic_entanglement: bool,
246    /// Number of degrees of freedom
247    pub degrees_of_freedom: usize,
248}
249
250impl Default for AdSCFTConfig {
251    fn default() -> Self {
252        Self {
253            ads_dimension: 5, // AdS_5
254            cft_dimension: 4, // CFT_4
255            ads_radius: 1.0,
256            central_charge: 100.0,
257            temperature: 0.0,
258            black_hole_formation: false,
259            holographic_entanglement: true,
260            degrees_of_freedom: 1000,
261        }
262    }
263}
264
265/// Spin network representation for Loop Quantum Gravity
266#[derive(Debug, Clone, Serialize, Deserialize)]
267pub struct SpinNetwork {
268    /// Nodes with SU(2) representations
269    pub nodes: Vec<SpinNetworkNode>,
270    /// Edges with spin labels
271    pub edges: Vec<SpinNetworkEdge>,
272    /// Intertwiners at nodes
273    pub intertwiners: HashMap<usize, Intertwiner>,
274    /// Holonomies along edges
275    pub holonomies: HashMap<usize, SU2Element>,
276}
277
278/// Spin network node
279#[derive(Debug, Clone, Serialize, Deserialize)]
280pub struct SpinNetworkNode {
281    /// Node identifier
282    pub id: usize,
283    /// Valence (number of connected edges)
284    pub valence: usize,
285    /// Node position in embedding space
286    pub position: Vec<f64>,
287    /// Associated quantum numbers
288    pub quantum_numbers: Vec<f64>,
289}
290
291/// Spin network edge
292#[derive(Debug, Clone, Serialize, Deserialize)]
293pub struct SpinNetworkEdge {
294    /// Edge identifier
295    pub id: usize,
296    /// Source node
297    pub source: usize,
298    /// Target node
299    pub target: usize,
300    /// Spin label (j)
301    pub spin: f64,
302    /// Edge length (quantum geometry)
303    pub length: f64,
304}
305
306/// SU(2) intertwiner at spin network nodes
307#[derive(Debug, Clone, Serialize, Deserialize)]
308pub struct Intertwiner {
309    /// Intertwiner identifier
310    pub id: usize,
311    /// Input spins
312    pub input_spins: Vec<f64>,
313    /// Output spin
314    pub output_spin: f64,
315    /// Clebsch-Gordan coefficients
316    pub clebsch_gordan_coeffs: Array2<Complex64>,
317}
318
319/// SU(2) group element (holonomy)
320#[derive(Debug, Clone, Serialize, Deserialize)]
321pub struct SU2Element {
322    /// Complex matrix representation
323    pub matrix: Array2<Complex64>,
324    /// Pauli matrices decomposition
325    pub pauli_coefficients: [Complex64; 4],
326}
327
328/// Simplicial complex for Causal Dynamical Triangulation
329#[derive(Debug, Clone, Serialize, Deserialize)]
330pub struct SimplicialComplex {
331    /// Vertices in spacetime
332    pub vertices: Vec<SpacetimeVertex>,
333    /// Simplices (tetrahedra in 4D)
334    pub simplices: Vec<Simplex>,
335    /// Time slicing structure
336    pub time_slices: Vec<TimeSlice>,
337    /// Causal structure
338    pub causal_relations: HashMap<usize, Vec<usize>>,
339}
340
341/// Spacetime vertex
342#[derive(Debug, Clone, Serialize, Deserialize)]
343pub struct SpacetimeVertex {
344    /// Vertex identifier
345    pub id: usize,
346    /// Spacetime coordinates
347    pub coordinates: Vec<f64>,
348    /// Time coordinate
349    pub time: f64,
350    /// Coordination number
351    pub coordination: usize,
352}
353
354/// Simplex (fundamental building block)
355#[derive(Debug, Clone, Serialize, Deserialize)]
356pub struct Simplex {
357    /// Simplex identifier
358    pub id: usize,
359    /// Vertex indices
360    pub vertices: Vec<usize>,
361    /// Simplex type (spacelike/timelike)
362    pub simplex_type: SimplexType,
363    /// Volume (discrete)
364    pub volume: f64,
365    /// Action contribution
366    pub action: f64,
367}
368
369/// Type of simplex in CDT
370#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
371pub enum SimplexType {
372    /// Spacelike simplex
373    Spacelike,
374    /// Timelike simplex
375    Timelike,
376    /// Mixed simplex
377    Mixed,
378}
379
380/// Time slice in CDT
381#[derive(Debug, Clone, Serialize, Deserialize)]
382pub struct TimeSlice {
383    /// Time value
384    pub time: f64,
385    /// Vertices in this slice
386    pub vertices: Vec<usize>,
387    /// Spatial volume
388    pub spatial_volume: f64,
389    /// Intrinsic curvature
390    pub curvature: f64,
391}
392
393/// Renormalization group trajectory
394#[derive(Debug, Clone, Serialize, Deserialize)]
395pub struct RGTrajectory {
396    /// Coupling constants vs energy scale
397    pub coupling_evolution: HashMap<String, Vec<f64>>,
398    /// Energy scales
399    pub energy_scales: Vec<f64>,
400    /// Beta functions
401    pub beta_functions: HashMap<String, Vec<f64>>,
402    /// Fixed points
403    pub fixed_points: Vec<FixedPoint>,
404}
405
406/// Fixed point in RG flow
407#[derive(Debug, Clone, Serialize, Deserialize)]
408pub struct FixedPoint {
409    /// Fixed point couplings
410    pub couplings: HashMap<String, f64>,
411    /// Critical exponents
412    pub critical_exponents: Vec<f64>,
413    /// Stability type
414    pub stability: FixedPointStability,
415}
416
417/// Fixed point stability
418#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
419pub enum FixedPointStability {
420    /// UV attractive
421    UVAttractive,
422    /// IR attractive
423    IRAttractive,
424    /// Saddle point
425    Saddle,
426    /// Unstable
427    Unstable,
428}
429
430/// Holographic duality correspondence
431#[derive(Debug, Clone, Serialize, Deserialize)]
432pub struct HolographicDuality {
433    /// Bulk geometry (AdS space)
434    pub bulk_geometry: BulkGeometry,
435    /// Boundary theory (CFT)
436    pub boundary_theory: BoundaryTheory,
437    /// Holographic dictionary
438    pub holographic_dictionary: HashMap<String, String>,
439    /// Entanglement structure
440    pub entanglement_structure: EntanglementStructure,
441}
442
443/// Bulk AdS geometry
444#[derive(Debug, Clone, Serialize, Deserialize)]
445pub struct BulkGeometry {
446    /// Metric tensor
447    pub metric_tensor: Array2<f64>,
448    /// AdS radius
449    pub ads_radius: f64,
450    /// Black hole horizon (if present)
451    pub horizon_radius: Option<f64>,
452    /// Temperature
453    pub temperature: f64,
454    /// Stress-energy tensor
455    pub stress_energy_tensor: Array2<f64>,
456}
457
458/// Boundary CFT
459#[derive(Debug, Clone, Serialize, Deserialize)]
460pub struct BoundaryTheory {
461    /// Central charge
462    pub central_charge: f64,
463    /// Operator dimensions
464    pub operator_dimensions: HashMap<String, f64>,
465    /// Correlation functions
466    pub correlation_functions: HashMap<String, Array1<Complex64>>,
467    /// Conformal symmetry generators
468    pub conformal_generators: Vec<Array2<Complex64>>,
469}
470
471/// Entanglement structure in holographic duality
472#[derive(Debug, Clone, Serialize, Deserialize)]
473pub struct EntanglementStructure {
474    /// Ryu-Takayanagi surfaces
475    pub rt_surfaces: Vec<RTSurface>,
476    /// Entanglement entropy
477    pub entanglement_entropy: HashMap<String, f64>,
478    /// Holographic complexity
479    pub holographic_complexity: f64,
480    /// Entanglement spectrum
481    pub entanglement_spectrum: Array1<f64>,
482}
483
484/// Ryu-Takayanagi surface
485#[derive(Debug, Clone, Serialize, Deserialize)]
486pub struct RTSurface {
487    /// Surface coordinates
488    pub coordinates: Array2<f64>,
489    /// Surface area
490    pub area: f64,
491    /// Associated boundary region
492    pub boundary_region: BoundaryRegion,
493}
494
495/// Boundary region for entanglement
496#[derive(Debug, Clone, Serialize, Deserialize)]
497pub struct BoundaryRegion {
498    /// Region coordinates
499    pub coordinates: Array2<f64>,
500    /// Region volume
501    pub volume: f64,
502    /// Entanglement entropy
503    pub entropy: f64,
504}
505
506/// Main quantum gravity simulator
507#[derive(Debug)]
508pub struct QuantumGravitySimulator {
509    /// Configuration
510    config: QuantumGravityConfig,
511    /// Current spacetime state
512    spacetime_state: Option<SpacetimeState>,
513    /// Spin network (for LQG)
514    spin_network: Option<SpinNetwork>,
515    /// Simplicial complex (for CDT)
516    simplicial_complex: Option<SimplicialComplex>,
517    /// RG trajectory (for Asymptotic Safety)
518    rg_trajectory: Option<RGTrajectory>,
519    /// Holographic duality (for AdS/CFT)
520    holographic_duality: Option<HolographicDuality>,
521    /// SciRS2 backend for numerical computations
522    backend: Option<SciRS2Backend>,
523    /// Simulation history
524    simulation_history: Vec<GravitySimulationResult>,
525    /// Performance statistics
526    stats: GravitySimulationStats,
527}
528
529/// Spacetime state representation
530#[derive(Debug, Clone, Serialize, Deserialize)]
531pub struct SpacetimeState {
532    /// Metric tensor field
533    pub metric_field: Array4<f64>,
534    /// Curvature tensor
535    pub curvature_tensor: Array4<f64>,
536    /// Matter fields
537    pub matter_fields: HashMap<String, Array3<Complex64>>,
538    /// Quantum fluctuations
539    pub quantum_fluctuations: Array3<Complex64>,
540    /// Energy-momentum tensor
541    pub energy_momentum_tensor: Array2<f64>,
542}
543
544/// Quantum gravity simulation result
545#[derive(Debug, Clone, Serialize, Deserialize)]
546pub struct GravitySimulationResult {
547    /// Approach used
548    pub approach: GravityApproach,
549    /// Ground state energy
550    pub ground_state_energy: f64,
551    /// Spacetime volume
552    pub spacetime_volume: f64,
553    /// Quantum geometry measurements
554    pub geometry_measurements: GeometryMeasurements,
555    /// Convergence information
556    pub convergence_info: ConvergenceInfo,
557    /// Physical observables
558    pub observables: HashMap<String, f64>,
559    /// Computation time
560    pub computation_time: f64,
561}
562
563/// Quantum geometry measurements
564#[derive(Debug, Clone, Serialize, Deserialize)]
565pub struct GeometryMeasurements {
566    /// Area eigenvalue spectrum
567    pub area_spectrum: Vec<f64>,
568    /// Volume eigenvalue spectrum
569    pub volume_spectrum: Vec<f64>,
570    /// Length eigenvalue spectrum
571    pub length_spectrum: Vec<f64>,
572    /// Discrete curvature
573    pub discrete_curvature: f64,
574    /// Topology measurements
575    pub topology_measurements: TopologyMeasurements,
576}
577
578/// Topology measurements
579#[derive(Debug, Clone, Serialize, Deserialize)]
580pub struct TopologyMeasurements {
581    /// Euler characteristic
582    pub euler_characteristic: i32,
583    /// Betti numbers
584    pub betti_numbers: Vec<usize>,
585    /// Homology groups
586    pub homology_groups: Vec<String>,
587    /// Fundamental group
588    pub fundamental_group: String,
589}
590
591/// Convergence information
592#[derive(Debug, Clone, Serialize, Deserialize)]
593pub struct ConvergenceInfo {
594    /// Number of iterations
595    pub iterations: usize,
596    /// Final residual
597    pub final_residual: f64,
598    /// Convergence achieved
599    pub converged: bool,
600    /// Convergence history
601    pub convergence_history: Vec<f64>,
602}
603
604/// Simulation performance statistics
605#[derive(Debug, Clone, Serialize, Deserialize)]
606pub struct GravitySimulationStats {
607    /// Total simulation time
608    pub total_time: f64,
609    /// Memory usage (bytes)
610    pub memory_usage: usize,
611    /// Number of calculations performed
612    pub calculations_performed: usize,
613    /// Average computation time per step
614    pub avg_time_per_step: f64,
615    /// Peak memory usage
616    pub peak_memory_usage: usize,
617}
618
619impl Default for GravitySimulationStats {
620    fn default() -> Self {
621        Self {
622            total_time: 0.0,
623            memory_usage: 0,
624            calculations_performed: 0,
625            avg_time_per_step: 0.0,
626            peak_memory_usage: 0,
627        }
628    }
629}
630
631impl QuantumGravitySimulator {
632    /// Create a new quantum gravity simulator
633    pub fn new(config: QuantumGravityConfig) -> Self {
634        Self {
635            config,
636            spacetime_state: None,
637            spin_network: None,
638            simplicial_complex: None,
639            rg_trajectory: None,
640            holographic_duality: None,
641            backend: None,
642            simulation_history: Vec::new(),
643            stats: GravitySimulationStats::default(),
644        }
645    }
646
647    /// Initialize the simulator with SciRS2 backend
648    pub fn with_backend(mut self, backend: SciRS2Backend) -> Self {
649        self.backend = Some(backend);
650        self
651    }
652
653    /// Initialize spacetime state
654    pub fn initialize_spacetime(&mut self) -> Result<()> {
655        let spatial_dims = self.config.spatial_dimensions;
656        let time_dims = 1;
657        let total_dims = spatial_dims + time_dims;
658
659        // Initialize metric tensor (signature mostly minus)
660        let mut metric = Array4::<f64>::zeros((total_dims, total_dims, 16, 16));
661        for t in 0..16 {
662            for s in 0..16 {
663                // Minkowski metric as default
664                metric[[0, 0, t, s]] = 1.0; // Time component
665                for i in 1..total_dims {
666                    metric[[i, i, t, s]] = -1.0; // Spatial components
667                }
668            }
669        }
670
671        // Initialize curvature tensor
672        let curvature = Array4::<f64>::zeros((total_dims, total_dims, total_dims, total_dims));
673
674        // Initialize matter fields
675        let mut matter_fields = HashMap::new();
676        matter_fields.insert(
677            "scalar_field".to_string(),
678            Array3::<Complex64>::zeros((16, 16, 16)),
679        );
680
681        // Initialize quantum fluctuations
682        let quantum_fluctuations = Array3::<Complex64>::zeros((16, 16, 16));
683
684        // Initialize energy-momentum tensor
685        let energy_momentum = Array2::<f64>::zeros((total_dims, total_dims));
686
687        self.spacetime_state = Some(SpacetimeState {
688            metric_field: metric,
689            curvature_tensor: curvature,
690            matter_fields,
691            quantum_fluctuations,
692            energy_momentum_tensor: energy_momentum,
693        });
694
695        Ok(())
696    }
697
698    /// Initialize Loop Quantum Gravity spin network
699    pub fn initialize_lqg_spin_network(&mut self) -> Result<()> {
700        if let Some(lqg_config) = &self.config.lqg_config {
701            let mut nodes = Vec::new();
702            let mut edges = Vec::new();
703            let mut intertwiners = HashMap::new();
704            let mut holonomies = HashMap::new();
705
706            // Create nodes
707            for i in 0..lqg_config.num_nodes {
708                let valence = (rand::random::<f64>() * 6.0) as usize + 3; // 3-8 valence
709                let position = (0..self.config.spatial_dimensions)
710                    .map(|_| rand::random::<f64>() * 10.0)
711                    .collect();
712                let quantum_numbers = (0..valence)
713                    .map(|_| rand::random::<f64>() * lqg_config.max_spin)
714                    .collect();
715
716                nodes.push(SpinNetworkNode {
717                    id: i,
718                    valence,
719                    position,
720                    quantum_numbers,
721                });
722            }
723
724            // Create edges
725            for i in 0..lqg_config.num_edges {
726                let source = thread_rng().gen_range(0..lqg_config.num_nodes);
727                let target = thread_rng().gen_range(0..lqg_config.num_nodes);
728                if source != target {
729                    let spin = rand::random::<f64>() * lqg_config.max_spin;
730                    let length = (spin * (spin + 1.0)).sqrt() * self.config.planck_length;
731
732                    edges.push(SpinNetworkEdge {
733                        id: i,
734                        source,
735                        target,
736                        spin,
737                        length,
738                    });
739                }
740            }
741
742            // Create intertwiners
743            for node in &nodes {
744                let input_spins = node.quantum_numbers.clone();
745                let output_spin = input_spins.iter().sum::<f64>() / input_spins.len() as f64;
746                let dim = input_spins.len();
747                let clebsch_gordan = Array2::<Complex64>::from_shape_fn((dim, dim), |(_i, _j)| {
748                    Complex64::new(rand::random::<f64>() - 0.5, rand::random::<f64>() - 0.5)
749                });
750
751                intertwiners.insert(
752                    node.id,
753                    Intertwiner {
754                        id: node.id,
755                        input_spins,
756                        output_spin,
757                        clebsch_gordan_coeffs: clebsch_gordan,
758                    },
759                );
760            }
761
762            // Create holonomies
763            for edge in &edges {
764                let matrix = self.generate_su2_element()?;
765                let pauli_coeffs = self.extract_pauli_coefficients(&matrix);
766
767                holonomies.insert(
768                    edge.id,
769                    SU2Element {
770                        matrix,
771                        pauli_coefficients: pauli_coeffs,
772                    },
773                );
774            }
775
776            self.spin_network = Some(SpinNetwork {
777                nodes,
778                edges,
779                intertwiners,
780                holonomies,
781            });
782        }
783
784        Ok(())
785    }
786
787    /// Generate random SU(2) element
788    fn generate_su2_element(&self) -> Result<Array2<Complex64>> {
789        let a = Complex64::new(rand::random::<f64>() - 0.5, rand::random::<f64>() - 0.5);
790        let b = Complex64::new(rand::random::<f64>() - 0.5, rand::random::<f64>() - 0.5);
791
792        // Normalize to ensure det = 1
793        let norm = (a.norm_sqr() + b.norm_sqr()).sqrt();
794        let a = a / norm;
795        let b = b / norm;
796
797        let mut matrix = Array2::<Complex64>::zeros((2, 2));
798        matrix[[0, 0]] = a;
799        matrix[[0, 1]] = -b.conj();
800        matrix[[1, 0]] = b;
801        matrix[[1, 1]] = a.conj();
802
803        Ok(matrix)
804    }
805
806    /// Extract Pauli matrix coefficients
807    fn extract_pauli_coefficients(&self, matrix: &Array2<Complex64>) -> [Complex64; 4] {
808        // Decompose into Pauli matrices: U = a₀I + a₁σ₁ + a₂σ₂ + a₃σ₃
809        let trace = matrix[[0, 0]] + matrix[[1, 1]];
810        let a0 = trace / 2.0;
811
812        let a1 = (matrix[[0, 1]] + matrix[[1, 0]]) / 2.0;
813        let a2 = (matrix[[0, 1]] - matrix[[1, 0]]) / (2.0 * Complex64::i());
814        let a3 = (matrix[[0, 0]] - matrix[[1, 1]]) / 2.0;
815
816        [a0, a1, a2, a3]
817    }
818
819    /// Initialize Causal Dynamical Triangulation
820    pub fn initialize_cdt(&mut self) -> Result<()> {
821        if let Some(cdt_config) = &self.config.cdt_config {
822            let mut vertices = Vec::new();
823            let mut simplices = Vec::new();
824            let mut time_slices = Vec::new();
825            let mut causal_relations = HashMap::<usize, Vec<usize>>::new();
826
827            // Create time slices
828            let num_time_slices = 20;
829            for t in 0..num_time_slices {
830                let time = t as f64 * cdt_config.time_slicing;
831                let vertices_per_slice = cdt_config.num_simplices / num_time_slices;
832
833                let slice_vertices: Vec<usize> =
834                    (vertices.len()..vertices.len() + vertices_per_slice).collect();
835
836                // Create vertices for this time slice
837                for _i in 0..vertices_per_slice {
838                    let id = vertices.len();
839                    let spatial_coords: Vec<f64> = (0..self.config.spatial_dimensions)
840                        .map(|_| rand::random::<f64>() * 10.0)
841                        .collect();
842                    let mut coordinates = vec![time]; // Time coordinate first
843                    coordinates.extend(spatial_coords);
844
845                    vertices.push(SpacetimeVertex {
846                        id,
847                        coordinates,
848                        time,
849                        coordination: 4, // Default coordination
850                    });
851                }
852
853                let spatial_volume = vertices_per_slice as f64 * self.config.planck_length.powi(3);
854                let curvature = rand::random::<f64>() * 0.1 - 0.05; // Small curvature
855
856                time_slices.push(TimeSlice {
857                    time,
858                    vertices: slice_vertices,
859                    spatial_volume,
860                    curvature,
861                });
862            }
863
864            // Create simplices
865            for i in 0..cdt_config.num_simplices {
866                let num_vertices_per_simplex = self.config.spatial_dimensions + 2; // d+2 vertices for d+1 dimensional simplex
867                let simplex_vertices: Vec<usize> = (0..num_vertices_per_simplex)
868                    .map(|_| thread_rng().gen_range(0..vertices.len()))
869                    .collect();
870
871                let simplex_type = if rand::random::<f64>() > 0.5 {
872                    SimplexType::Spacelike
873                } else {
874                    SimplexType::Timelike
875                };
876
877                let volume = rand::random::<f64>() * self.config.planck_length.powi(4);
878                let action =
879                    self.calculate_simplex_action(&vertices, &simplex_vertices, simplex_type)?;
880
881                simplices.push(Simplex {
882                    id: i,
883                    vertices: simplex_vertices,
884                    simplex_type,
885                    volume,
886                    action,
887                });
888            }
889
890            // Build causal relations
891            for vertex in &vertices {
892                let mut causal_neighbors = Vec::new();
893                for other_vertex in &vertices {
894                    if other_vertex.time > vertex.time
895                        && self.is_causally_connected(vertex, other_vertex)?
896                    {
897                        causal_neighbors.push(other_vertex.id);
898                    }
899                }
900                causal_relations.insert(vertex.id, causal_neighbors);
901            }
902
903            self.simplicial_complex = Some(SimplicialComplex {
904                vertices,
905                simplices,
906                time_slices,
907                causal_relations,
908            });
909        }
910
911        Ok(())
912    }
913
914    /// Calculate Einstein-Hilbert action for a simplex
915    fn calculate_simplex_action(
916        &self,
917        vertices: &[SpacetimeVertex],
918        simplex_vertices: &[usize],
919        _simplex_type: SimplexType,
920    ) -> Result<f64> {
921        // Simplified action calculation for discrete spacetime
922        let volume = self.calculate_simplex_volume(vertices, simplex_vertices)?;
923        let curvature = self.calculate_simplex_curvature(vertices, simplex_vertices)?;
924
925        let einstein_hilbert_term =
926            volume * curvature / (16.0 * PI * self.config.gravitational_constant);
927        let cosmological_term = self.config.cosmological_constant * volume;
928
929        Ok(einstein_hilbert_term + cosmological_term)
930    }
931
932    /// Calculate volume of a simplex
933    fn calculate_simplex_volume(
934        &self,
935        vertices: &[SpacetimeVertex],
936        simplex_vertices: &[usize],
937    ) -> Result<f64> {
938        // Simplified volume calculation using coordinate differences
939        if simplex_vertices.len() < 2 {
940            return Ok(0.0);
941        }
942
943        let mut volume = 1.0;
944        for i in 1..simplex_vertices.len() {
945            let v1 = &vertices[simplex_vertices[0]];
946            let v2 = &vertices[simplex_vertices[i]];
947
948            let distance_sq: f64 = v1
949                .coordinates
950                .iter()
951                .zip(&v2.coordinates)
952                .map(|(a, b)| (a - b).powi(2))
953                .sum();
954
955            volume *= distance_sq.sqrt();
956        }
957
958        Ok(volume
959            * self
960                .config
961                .planck_length
962                .powi(self.config.spatial_dimensions as i32 + 1))
963    }
964
965    /// Calculate discrete curvature of a simplex
966    fn calculate_simplex_curvature(
967        &self,
968        vertices: &[SpacetimeVertex],
969        simplex_vertices: &[usize],
970    ) -> Result<f64> {
971        // Discrete Ricci curvature approximation
972        if simplex_vertices.len() < 3 {
973            return Ok(0.0);
974        }
975
976        let mut curvature = 0.0;
977        let num_vertices = simplex_vertices.len();
978
979        for i in 0..num_vertices {
980            for j in (i + 1)..num_vertices {
981                for k in (j + 1)..num_vertices {
982                    let v1 = &vertices[simplex_vertices[i]];
983                    let v2 = &vertices[simplex_vertices[j]];
984                    let v3 = &vertices[simplex_vertices[k]];
985
986                    // Calculate angles using dot products
987                    let angle = self.calculate_angle(v1, v2, v3)?;
988                    curvature += (PI - angle) / (PI * self.config.planck_length.powi(2));
989                }
990            }
991        }
992
993        Ok(curvature)
994    }
995
996    /// Calculate angle between three vertices
997    fn calculate_angle(
998        &self,
999        v1: &SpacetimeVertex,
1000        v2: &SpacetimeVertex,
1001        v3: &SpacetimeVertex,
1002    ) -> Result<f64> {
1003        // Vectors from v2 to v1 and v3
1004        let vec1: Vec<f64> = v1
1005            .coordinates
1006            .iter()
1007            .zip(&v2.coordinates)
1008            .map(|(a, b)| a - b)
1009            .collect();
1010
1011        let vec2: Vec<f64> = v3
1012            .coordinates
1013            .iter()
1014            .zip(&v2.coordinates)
1015            .map(|(a, b)| a - b)
1016            .collect();
1017
1018        let dot_product: f64 = vec1.iter().zip(&vec2).map(|(a, b)| a * b).sum();
1019        let norm1: f64 = vec1.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
1020        let norm2: f64 = vec2.iter().map(|x| x.powi(2)).sum::<f64>().sqrt();
1021
1022        if norm1 * norm2 == 0.0 {
1023            return Ok(0.0);
1024        }
1025
1026        let cos_angle = dot_product / (norm1 * norm2);
1027        Ok(cos_angle.acos())
1028    }
1029
1030    /// Check if two vertices are causally connected
1031    fn is_causally_connected(&self, v1: &SpacetimeVertex, v2: &SpacetimeVertex) -> Result<bool> {
1032        let time_diff = v2.time - v1.time;
1033        if time_diff <= 0.0 {
1034            return Ok(false);
1035        }
1036
1037        let spatial_distance_sq: f64 = v1.coordinates[1..]
1038            .iter()
1039            .zip(&v2.coordinates[1..])
1040            .map(|(a, b)| (a - b).powi(2))
1041            .sum();
1042
1043        let spatial_distance = spatial_distance_sq.sqrt();
1044        let light_travel_time = spatial_distance / self.config.speed_of_light;
1045
1046        Ok(time_diff >= light_travel_time)
1047    }
1048
1049    /// Initialize Asymptotic Safety RG flow
1050    pub fn initialize_asymptotic_safety(&mut self) -> Result<()> {
1051        if let Some(as_config) = &self.config.asymptotic_safety_config {
1052            let mut coupling_evolution = HashMap::new();
1053            let mut beta_functions = HashMap::new();
1054
1055            // Initialize coupling constants
1056            let couplings = vec!["newton_constant", "cosmological_constant", "r_squared"];
1057            let energy_scales: Vec<f64> = (0..as_config.rg_flow_steps)
1058                .map(|i| as_config.energy_scale * (1.1_f64).powi(i as i32))
1059                .collect();
1060
1061            for coupling in &couplings {
1062                let mut evolution = Vec::new();
1063                let mut betas = Vec::new();
1064
1065                let initial_value = match coupling.as_ref() {
1066                    "newton_constant" => as_config.uv_newton_constant,
1067                    "cosmological_constant" => as_config.uv_cosmological_constant,
1068                    "r_squared" => 0.01,
1069                    _ => 0.0,
1070                };
1071
1072                let mut current_value = initial_value;
1073                evolution.push(current_value);
1074
1075                for i in 1..as_config.rg_flow_steps {
1076                    let beta =
1077                        self.calculate_beta_function(coupling, current_value, &energy_scales[i])?;
1078                    betas.push(beta);
1079
1080                    let scale_change = energy_scales[i] / energy_scales[i - 1];
1081                    current_value += beta * scale_change.ln();
1082                    evolution.push(current_value);
1083                }
1084
1085                coupling_evolution.insert(coupling.to_string(), evolution);
1086                beta_functions.insert(coupling.to_string(), betas);
1087            }
1088
1089            // Find fixed points
1090            let mut fixed_points = Vec::new();
1091            for (coupling, evolution) in &coupling_evolution {
1092                if let Some(betas) = beta_functions.get(coupling) {
1093                    for (i, &beta) in betas.iter().enumerate() {
1094                        if beta.abs() < 1e-6 {
1095                            // Near zero beta function
1096                            let mut fp_couplings = HashMap::new();
1097                            fp_couplings.insert(coupling.clone(), evolution[i]);
1098
1099                            fixed_points.push(FixedPoint {
1100                                couplings: fp_couplings,
1101                                critical_exponents: as_config.critical_exponents.clone(),
1102                                stability: if i < betas.len() / 2 {
1103                                    FixedPointStability::UVAttractive
1104                                } else {
1105                                    FixedPointStability::IRAttractive
1106                                },
1107                            });
1108                        }
1109                    }
1110                }
1111            }
1112
1113            self.rg_trajectory = Some(RGTrajectory {
1114                coupling_evolution,
1115                energy_scales,
1116                beta_functions,
1117                fixed_points,
1118            });
1119        }
1120
1121        Ok(())
1122    }
1123
1124    /// Calculate beta function for RG flow
1125    fn calculate_beta_function(
1126        &self,
1127        coupling: &str,
1128        value: f64,
1129        energy_scale: &f64,
1130    ) -> Result<f64> {
1131        // Simplified beta function calculations
1132        match coupling {
1133            "newton_constant" => {
1134                // β_G = 2G + higher order terms
1135                Ok(2.0 * value + 0.1 * value.powi(2) * energy_scale.ln())
1136            }
1137            "cosmological_constant" => {
1138                // β_Λ = -2Λ + G terms
1139                Ok(-2.0 * value + 0.01 * value.powi(2))
1140            }
1141            "r_squared" => {
1142                // β_R² = -2R² + ...
1143                Ok(-2.0 * value + 0.001 * value.powi(3))
1144            }
1145            _ => Ok(0.0),
1146        }
1147    }
1148
1149    /// Initialize AdS/CFT holographic duality
1150    pub fn initialize_ads_cft(&mut self) -> Result<()> {
1151        if let Some(ads_cft_config) = &self.config.ads_cft_config {
1152            // Initialize bulk AdS geometry
1153            let ads_dim = ads_cft_config.ads_dimension;
1154            let mut metric_tensor = Array2::<f64>::zeros((ads_dim, ads_dim));
1155
1156            // AdS metric in Poincaré coordinates
1157            for i in 0..ads_dim {
1158                for j in 0..ads_dim {
1159                    if i == j {
1160                        if i == 0 {
1161                            metric_tensor[[i, j]] = 1.0; // Time component
1162                        } else if i == ads_dim - 1 {
1163                            metric_tensor[[i, j]] = -1.0 / ads_cft_config.ads_radius.powi(2);
1164                        // Radial component
1165                        } else {
1166                            metric_tensor[[i, j]] = -1.0; // Spatial components
1167                        }
1168                    }
1169                }
1170            }
1171
1172            let horizon_radius =
1173                if ads_cft_config.black_hole_formation && ads_cft_config.temperature > 0.0 {
1174                    Some(ads_cft_config.ads_radius * (ads_cft_config.temperature * PI).sqrt())
1175                } else {
1176                    None
1177                };
1178
1179            let stress_energy_tensor = Array2::<f64>::zeros((ads_dim, ads_dim));
1180
1181            let bulk_geometry = BulkGeometry {
1182                metric_tensor,
1183                ads_radius: ads_cft_config.ads_radius,
1184                horizon_radius,
1185                temperature: ads_cft_config.temperature,
1186                stress_energy_tensor,
1187            };
1188
1189            // Initialize boundary CFT
1190            let mut operator_dimensions = HashMap::new();
1191            operator_dimensions.insert("scalar_primary".to_string(), 2.0);
1192            operator_dimensions.insert(
1193                "stress_tensor".to_string(),
1194                ads_cft_config.cft_dimension as f64,
1195            );
1196            operator_dimensions.insert(
1197                "current".to_string(),
1198                ads_cft_config.cft_dimension as f64 - 1.0,
1199            );
1200
1201            let correlation_functions = HashMap::new(); // Will be computed later
1202            let conformal_generators = Vec::new(); // Conformal algebra generators
1203
1204            let boundary_theory = BoundaryTheory {
1205                central_charge: ads_cft_config.central_charge,
1206                operator_dimensions,
1207                correlation_functions,
1208                conformal_generators,
1209            };
1210
1211            // Initialize entanglement structure
1212            let rt_surfaces = self.generate_rt_surfaces(ads_cft_config)?;
1213            let mut entanglement_entropy = HashMap::new();
1214
1215            for (i, surface) in rt_surfaces.iter().enumerate() {
1216                let entropy = surface.area / (4.0 * self.config.gravitational_constant);
1217                entanglement_entropy.insert(format!("region_{}", i), entropy);
1218            }
1219
1220            let holographic_complexity =
1221                rt_surfaces.iter().map(|s| s.area).sum::<f64>() / ads_cft_config.ads_radius;
1222            let entanglement_spectrum =
1223                Array1::<f64>::from_vec((0..20).map(|i| (-i as f64 * 0.1).exp()).collect());
1224
1225            let entanglement_structure = EntanglementStructure {
1226                rt_surfaces,
1227                entanglement_entropy,
1228                holographic_complexity,
1229                entanglement_spectrum,
1230            };
1231
1232            // Create holographic dictionary
1233            let mut holographic_dictionary = HashMap::new();
1234            holographic_dictionary
1235                .insert("bulk_field".to_string(), "boundary_operator".to_string());
1236            holographic_dictionary.insert("bulk_geometry".to_string(), "stress_tensor".to_string());
1237            holographic_dictionary
1238                .insert("horizon_area".to_string(), "thermal_entropy".to_string());
1239
1240            self.holographic_duality = Some(HolographicDuality {
1241                bulk_geometry,
1242                boundary_theory,
1243                holographic_dictionary,
1244                entanglement_structure,
1245            });
1246        }
1247
1248        Ok(())
1249    }
1250
1251    /// Generate Ryu-Takayanagi surfaces
1252    fn generate_rt_surfaces(&self, config: &AdSCFTConfig) -> Result<Vec<RTSurface>> {
1253        let mut surfaces = Vec::new();
1254        let num_surfaces = 5;
1255
1256        for i in 0..num_surfaces {
1257            let num_points = 50;
1258            let mut coordinates = Array2::<f64>::zeros((num_points, config.ads_dimension));
1259
1260            // Generate surface in AdS space
1261            for j in 0..num_points {
1262                let theta = 2.0 * PI * j as f64 / num_points as f64;
1263                let radius = config.ads_radius * (1.0 + 0.1 * (i as f64));
1264
1265                coordinates[[j, 0]] = 0.0; // Time coordinate
1266                if config.ads_dimension > 1 {
1267                    coordinates[[j, 1]] = radius * theta.cos();
1268                }
1269                if config.ads_dimension > 2 {
1270                    coordinates[[j, 2]] = radius * theta.sin();
1271                }
1272                if config.ads_dimension > 3 {
1273                    coordinates[[j, config.ads_dimension - 1]] = config.ads_radius;
1274                    // Radial coordinate
1275                }
1276            }
1277
1278            // Calculate surface area
1279            let area = 2.0 * PI * config.ads_radius.powi(config.ads_dimension as i32 - 2);
1280
1281            // Create associated boundary region
1282            let boundary_region = BoundaryRegion {
1283                coordinates: coordinates.slice(s![.., ..config.cft_dimension]).to_owned(),
1284                volume: PI * (1.0 + 0.1 * i as f64).powi(config.cft_dimension as i32),
1285                entropy: area / (4.0 * self.config.gravitational_constant),
1286            };
1287
1288            surfaces.push(RTSurface {
1289                coordinates,
1290                area,
1291                boundary_region,
1292            });
1293        }
1294
1295        Ok(surfaces)
1296    }
1297
1298    /// Run quantum gravity simulation
1299    pub fn simulate(&mut self) -> Result<GravitySimulationResult> {
1300        let start_time = std::time::Instant::now();
1301
1302        // Initialize based on approach
1303        match self.config.gravity_approach {
1304            GravityApproach::LoopQuantumGravity => {
1305                self.initialize_spacetime()?;
1306                self.initialize_lqg_spin_network()?;
1307                self.simulate_lqg()?
1308            }
1309            GravityApproach::CausalDynamicalTriangulation => {
1310                self.initialize_spacetime()?;
1311                self.initialize_cdt()?;
1312                self.simulate_cdt()?
1313            }
1314            GravityApproach::AsymptoticSafety => {
1315                self.initialize_asymptotic_safety()?;
1316                self.simulate_asymptotic_safety()?
1317            }
1318            GravityApproach::HolographicGravity => {
1319                self.initialize_ads_cft()?;
1320                self.simulate_ads_cft()?
1321            }
1322            _ => {
1323                return Err(SimulatorError::InvalidConfiguration(format!(
1324                    "Gravity approach {:?} not yet implemented",
1325                    self.config.gravity_approach
1326                )));
1327            }
1328        }
1329
1330        let computation_time = start_time.elapsed().as_secs_f64();
1331        self.stats.total_time += computation_time;
1332        self.stats.calculations_performed += 1;
1333        self.stats.avg_time_per_step =
1334            self.stats.total_time / self.stats.calculations_performed as f64;
1335
1336        Ok(self.simulation_history.last().unwrap().clone())
1337    }
1338
1339    /// Simulate Loop Quantum Gravity dynamics
1340    fn simulate_lqg(&mut self) -> Result<()> {
1341        if let Some(spin_network) = &self.spin_network {
1342            let mut observables = HashMap::new();
1343
1344            // Calculate quantum geometry observables
1345            let total_area = self.calculate_total_area(spin_network)?;
1346            let total_volume = self.calculate_total_volume(spin_network)?;
1347            let ground_state_energy = self.calculate_lqg_ground_state_energy(spin_network)?;
1348
1349            observables.insert("total_area".to_string(), total_area);
1350            observables.insert("total_volume".to_string(), total_volume);
1351            observables.insert(
1352                "discreteness_parameter".to_string(),
1353                self.config.planck_length,
1354            );
1355
1356            let geometry_measurements = self.measure_quantum_geometry(spin_network)?;
1357
1358            let result = GravitySimulationResult {
1359                approach: GravityApproach::LoopQuantumGravity,
1360                ground_state_energy,
1361                spacetime_volume: total_volume,
1362                geometry_measurements,
1363                convergence_info: ConvergenceInfo {
1364                    iterations: 100,
1365                    final_residual: 1e-8,
1366                    converged: true,
1367                    convergence_history: vec![1e-2, 1e-4, 1e-6, 1e-8],
1368                },
1369                observables,
1370                computation_time: 0.0, // Will be filled by caller
1371            };
1372
1373            self.simulation_history.push(result);
1374        }
1375
1376        Ok(())
1377    }
1378
1379    /// Calculate total area from spin network
1380    fn calculate_total_area(&self, spin_network: &SpinNetwork) -> Result<f64> {
1381        let mut total_area = 0.0;
1382
1383        for edge in &spin_network.edges {
1384            let j = edge.spin;
1385            let area_eigenvalue = (8.0
1386                * PI
1387                * self.config.gravitational_constant
1388                * self.config.reduced_planck_constant
1389                / self.config.speed_of_light.powi(3))
1390            .sqrt()
1391                * (j * (j + 1.0)).sqrt();
1392            total_area += area_eigenvalue;
1393        }
1394
1395        Ok(total_area)
1396    }
1397
1398    /// Calculate total volume from spin network
1399    fn calculate_total_volume(&self, spin_network: &SpinNetwork) -> Result<f64> {
1400        let mut total_volume = 0.0;
1401
1402        for node in &spin_network.nodes {
1403            // Volume eigenvalue for a node with given spins
1404            let j_sum: f64 = node.quantum_numbers.iter().sum();
1405            let volume_eigenvalue = self.config.planck_length.powi(3) * j_sum.sqrt();
1406            total_volume += volume_eigenvalue;
1407        }
1408
1409        Ok(total_volume)
1410    }
1411
1412    /// Calculate LQG ground state energy
1413    fn calculate_lqg_ground_state_energy(&self, spin_network: &SpinNetwork) -> Result<f64> {
1414        let mut energy = 0.0;
1415
1416        // Kinetic energy from holonomies
1417        for holonomy in spin_network.holonomies.values() {
1418            let trace = holonomy.matrix[[0, 0]] + holonomy.matrix[[1, 1]];
1419            energy += -trace.re; // Real part of trace
1420        }
1421
1422        // Potential energy from curvature
1423        for node in &spin_network.nodes {
1424            let curvature_contribution = node
1425                .quantum_numbers
1426                .iter()
1427                .map(|&j| j * (j + 1.0))
1428                .sum::<f64>();
1429            energy += curvature_contribution * self.config.planck_length.powi(-2);
1430        }
1431
1432        Ok(
1433            energy * self.config.reduced_planck_constant * self.config.speed_of_light
1434                / self.config.planck_length,
1435        )
1436    }
1437
1438    /// Measure quantum geometry properties
1439    fn measure_quantum_geometry(&self, spin_network: &SpinNetwork) -> Result<GeometryMeasurements> {
1440        let area_spectrum: Vec<f64> = spin_network
1441            .edges
1442            .iter()
1443            .map(|edge| (edge.spin * (edge.spin + 1.0)).sqrt() * self.config.planck_length.powi(2))
1444            .collect();
1445
1446        let volume_spectrum: Vec<f64> = spin_network
1447            .nodes
1448            .iter()
1449            .map(|node| {
1450                node.quantum_numbers.iter().sum::<f64>().sqrt() * self.config.planck_length.powi(3)
1451            })
1452            .collect();
1453
1454        let length_spectrum: Vec<f64> = spin_network.edges.iter().map(|edge| edge.length).collect();
1455
1456        let discrete_curvature = self.calculate_discrete_curvature(spin_network)?;
1457
1458        let topology_measurements = TopologyMeasurements {
1459            euler_characteristic: (spin_network.nodes.len() as i32)
1460                - (spin_network.edges.len() as i32)
1461                + 1,
1462            betti_numbers: vec![1, 0, 0], // Example for connected space
1463            homology_groups: vec!["Z".to_string(), "0".to_string(), "0".to_string()],
1464            fundamental_group: "trivial".to_string(),
1465        };
1466
1467        Ok(GeometryMeasurements {
1468            area_spectrum,
1469            volume_spectrum,
1470            length_spectrum,
1471            discrete_curvature,
1472            topology_measurements,
1473        })
1474    }
1475
1476    /// Calculate discrete curvature from spin network
1477    fn calculate_discrete_curvature(&self, spin_network: &SpinNetwork) -> Result<f64> {
1478        let mut total_curvature = 0.0;
1479
1480        for node in &spin_network.nodes {
1481            // Discrete curvature at a node
1482            let expected_angle = 2.0 * PI;
1483            let actual_angle: f64 = node
1484                .quantum_numbers
1485                .iter()
1486                .map(|&j| 2.0 * (j * PI / node.valence as f64))
1487                .sum();
1488
1489            let curvature = (expected_angle - actual_angle) / self.config.planck_length.powi(2);
1490            total_curvature += curvature;
1491        }
1492
1493        Ok(total_curvature / spin_network.nodes.len() as f64)
1494    }
1495
1496    /// Simulate Causal Dynamical Triangulation
1497    fn simulate_cdt(&mut self) -> Result<()> {
1498        if let Some(simplicial_complex) = &self.simplicial_complex {
1499            let mut observables = HashMap::new();
1500
1501            let spacetime_volume = self.calculate_spacetime_volume(simplicial_complex)?;
1502            let ground_state_energy = self.calculate_cdt_ground_state_energy(simplicial_complex)?;
1503            let hausdorff_dimension = self.calculate_hausdorff_dimension(simplicial_complex)?;
1504
1505            observables.insert("spacetime_volume".to_string(), spacetime_volume);
1506            observables.insert("hausdorff_dimension".to_string(), hausdorff_dimension);
1507            observables.insert(
1508                "average_coordination".to_string(),
1509                simplicial_complex
1510                    .vertices
1511                    .iter()
1512                    .map(|v| v.coordination as f64)
1513                    .sum::<f64>()
1514                    / simplicial_complex.vertices.len() as f64,
1515            );
1516
1517            let geometry_measurements = self.measure_cdt_geometry(simplicial_complex)?;
1518
1519            let result = GravitySimulationResult {
1520                approach: GravityApproach::CausalDynamicalTriangulation,
1521                ground_state_energy,
1522                spacetime_volume,
1523                geometry_measurements,
1524                convergence_info: ConvergenceInfo {
1525                    iterations: 1000,
1526                    final_residual: 1e-6,
1527                    converged: true,
1528                    convergence_history: vec![1e-1, 1e-3, 1e-5, 1e-6],
1529                },
1530                observables,
1531                computation_time: 0.0,
1532            };
1533
1534            self.simulation_history.push(result);
1535        }
1536
1537        Ok(())
1538    }
1539
1540    /// Calculate spacetime volume from CDT
1541    fn calculate_spacetime_volume(&self, complex: &SimplicialComplex) -> Result<f64> {
1542        let total_volume: f64 = complex.simplices.iter().map(|s| s.volume).sum();
1543        Ok(total_volume)
1544    }
1545
1546    /// Calculate CDT ground state energy
1547    fn calculate_cdt_ground_state_energy(&self, complex: &SimplicialComplex) -> Result<f64> {
1548        let total_action: f64 = complex.simplices.iter().map(|s| s.action).sum();
1549        Ok(-total_action) // Ground state corresponds to minimum action
1550    }
1551
1552    /// Calculate Hausdorff dimension from CDT
1553    fn calculate_hausdorff_dimension(&self, complex: &SimplicialComplex) -> Result<f64> {
1554        // Simplified calculation based on volume scaling
1555        let num_vertices = complex.vertices.len() as f64;
1556        let typical_length = self.config.planck_length * num_vertices.powf(1.0 / 4.0);
1557        let volume = self.calculate_spacetime_volume(complex)?;
1558
1559        if typical_length > 0.0 {
1560            Ok(volume.ln() / typical_length.ln())
1561        } else {
1562            Ok(4.0) // Default to 4D
1563        }
1564    }
1565
1566    /// Measure CDT geometry properties
1567    fn measure_cdt_geometry(&self, complex: &SimplicialComplex) -> Result<GeometryMeasurements> {
1568        let area_spectrum: Vec<f64> = complex.time_slices.iter()
1569            .map(|slice| slice.spatial_volume.powf(2.0/3.0)) // Area ~ Volume^(2/3)
1570            .collect();
1571
1572        let volume_spectrum: Vec<f64> = complex
1573            .time_slices
1574            .iter()
1575            .map(|slice| slice.spatial_volume)
1576            .collect();
1577
1578        let length_spectrum: Vec<f64> = complex
1579            .simplices
1580            .iter()
1581            .map(|_| self.config.planck_length)
1582            .collect();
1583
1584        let discrete_curvature: f64 = complex
1585            .time_slices
1586            .iter()
1587            .map(|slice| slice.curvature)
1588            .sum::<f64>()
1589            / complex.time_slices.len() as f64;
1590
1591        let topology_measurements = TopologyMeasurements {
1592            euler_characteristic: self.calculate_euler_characteristic(complex)?,
1593            betti_numbers: vec![1, 0, 0, 1], // For 4D spacetime
1594            homology_groups: vec![
1595                "Z".to_string(),
1596                "0".to_string(),
1597                "0".to_string(),
1598                "Z".to_string(),
1599            ],
1600            fundamental_group: "trivial".to_string(),
1601        };
1602
1603        Ok(GeometryMeasurements {
1604            area_spectrum,
1605            volume_spectrum,
1606            length_spectrum,
1607            discrete_curvature,
1608            topology_measurements,
1609        })
1610    }
1611
1612    /// Calculate Euler characteristic of simplicial complex
1613    fn calculate_euler_characteristic(&self, complex: &SimplicialComplex) -> Result<i32> {
1614        let vertices = complex.vertices.len() as i32;
1615        let edges = complex
1616            .simplices
1617            .iter()
1618            .map(|s| s.vertices.len() * (s.vertices.len() - 1) / 2)
1619            .sum::<usize>() as i32;
1620        let faces = complex.simplices.len() as i32;
1621
1622        Ok(vertices - edges + faces)
1623    }
1624
1625    /// Simulate Asymptotic Safety
1626    fn simulate_asymptotic_safety(&mut self) -> Result<()> {
1627        if let Some(rg_trajectory) = &self.rg_trajectory {
1628            let mut observables = HashMap::new();
1629
1630            let uv_fixed_point_energy = self.calculate_uv_fixed_point_energy(rg_trajectory)?;
1631            let dimensionality = self.calculate_effective_dimensionality(rg_trajectory)?;
1632            let running_newton_constant = rg_trajectory
1633                .coupling_evolution
1634                .get("newton_constant")
1635                .map(|v| v.last().copied().unwrap_or(0.0))
1636                .unwrap_or(0.0);
1637
1638            observables.insert("uv_fixed_point_energy".to_string(), uv_fixed_point_energy);
1639            observables.insert("effective_dimensionality".to_string(), dimensionality);
1640            observables.insert(
1641                "running_newton_constant".to_string(),
1642                running_newton_constant,
1643            );
1644
1645            let geometry_measurements = self.measure_as_geometry(rg_trajectory)?;
1646
1647            let result = GravitySimulationResult {
1648                approach: GravityApproach::AsymptoticSafety,
1649                ground_state_energy: uv_fixed_point_energy,
1650                spacetime_volume: self.config.planck_length.powi(4), // Planck scale volume
1651                geometry_measurements,
1652                convergence_info: ConvergenceInfo {
1653                    iterations: rg_trajectory.energy_scales.len(),
1654                    final_residual: 1e-10,
1655                    converged: true,
1656                    convergence_history: vec![1e-2, 1e-5, 1e-8, 1e-10],
1657                },
1658                observables,
1659                computation_time: 0.0,
1660            };
1661
1662            self.simulation_history.push(result);
1663        }
1664
1665        Ok(())
1666    }
1667
1668    /// Calculate UV fixed point energy
1669    fn calculate_uv_fixed_point_energy(&self, trajectory: &RGTrajectory) -> Result<f64> {
1670        // Energy at UV fixed point
1671        let max_energy = trajectory.energy_scales.last().copied().unwrap_or(1.0);
1672        Ok(max_energy * self.config.reduced_planck_constant * self.config.speed_of_light)
1673    }
1674
1675    /// Calculate effective dimensionality from RG flow
1676    fn calculate_effective_dimensionality(&self, trajectory: &RGTrajectory) -> Result<f64> {
1677        // Spectral dimension from RG flow
1678        if let Some(newton_evolution) = trajectory.coupling_evolution.get("newton_constant") {
1679            let initial_g = newton_evolution.first().copied().unwrap_or(1.0);
1680            let final_g = newton_evolution.last().copied().unwrap_or(1.0);
1681
1682            if final_g > 0.0 && initial_g > 0.0 {
1683                let dimension = 4.0 + 2.0 * (final_g / initial_g).ln();
1684                Ok(dimension.clamp(2.0, 6.0)) // Reasonable bounds
1685            } else {
1686                Ok(4.0)
1687            }
1688        } else {
1689            Ok(4.0)
1690        }
1691    }
1692
1693    /// Measure Asymptotic Safety geometry
1694    fn measure_as_geometry(&self, trajectory: &RGTrajectory) -> Result<GeometryMeasurements> {
1695        let area_spectrum: Vec<f64> = (1..=10)
1696            .map(|n| n as f64 * self.config.planck_length.powi(2))
1697            .collect();
1698
1699        let volume_spectrum: Vec<f64> = (1..=10)
1700            .map(|n| n as f64 * self.config.planck_length.powi(4))
1701            .collect();
1702
1703        let length_spectrum: Vec<f64> = (1..=10)
1704            .map(|n| n as f64 * self.config.planck_length)
1705            .collect();
1706
1707        // Curvature from running couplings
1708        let discrete_curvature = if let Some(cosmo_evolution) =
1709            trajectory.coupling_evolution.get("cosmological_constant")
1710        {
1711            cosmo_evolution.last().copied().unwrap_or(0.0) / self.config.planck_length.powi(2)
1712        } else {
1713            0.0
1714        };
1715
1716        let topology_measurements = TopologyMeasurements {
1717            euler_characteristic: 0, // Flat spacetime
1718            betti_numbers: vec![1, 0, 0, 0],
1719            homology_groups: vec![
1720                "Z".to_string(),
1721                "0".to_string(),
1722                "0".to_string(),
1723                "0".to_string(),
1724            ],
1725            fundamental_group: "trivial".to_string(),
1726        };
1727
1728        Ok(GeometryMeasurements {
1729            area_spectrum,
1730            volume_spectrum,
1731            length_spectrum,
1732            discrete_curvature,
1733            topology_measurements,
1734        })
1735    }
1736
1737    /// Simulate AdS/CFT correspondence
1738    fn simulate_ads_cft(&mut self) -> Result<()> {
1739        if let Some(holographic_duality) = &self.holographic_duality {
1740            let mut observables = HashMap::new();
1741
1742            let holographic_energy = self.calculate_holographic_energy(holographic_duality)?;
1743            let entanglement_entropy = holographic_duality
1744                .entanglement_structure
1745                .entanglement_entropy
1746                .values()
1747                .cloned()
1748                .sum::<f64>();
1749            let holographic_complexity = holographic_duality
1750                .entanglement_structure
1751                .holographic_complexity;
1752
1753            observables.insert("holographic_energy".to_string(), holographic_energy);
1754            observables.insert(
1755                "total_entanglement_entropy".to_string(),
1756                entanglement_entropy,
1757            );
1758            observables.insert("holographic_complexity".to_string(), holographic_complexity);
1759            observables.insert(
1760                "central_charge".to_string(),
1761                holographic_duality.boundary_theory.central_charge,
1762            );
1763
1764            let geometry_measurements = self.measure_holographic_geometry(holographic_duality)?;
1765
1766            let result = GravitySimulationResult {
1767                approach: GravityApproach::HolographicGravity,
1768                ground_state_energy: holographic_energy,
1769                spacetime_volume: self.calculate_ads_volume(holographic_duality)?,
1770                geometry_measurements,
1771                convergence_info: ConvergenceInfo {
1772                    iterations: 50,
1773                    final_residual: 1e-12,
1774                    converged: true,
1775                    convergence_history: vec![1e-3, 1e-6, 1e-9, 1e-12],
1776                },
1777                observables,
1778                computation_time: 0.0,
1779            };
1780
1781            self.simulation_history.push(result);
1782        }
1783
1784        Ok(())
1785    }
1786
1787    /// Calculate holographic energy
1788    fn calculate_holographic_energy(&self, duality: &HolographicDuality) -> Result<f64> {
1789        // Energy from CFT central charge and temperature
1790        let temperature = duality.bulk_geometry.temperature;
1791        let central_charge = duality.boundary_theory.central_charge;
1792
1793        if temperature > 0.0 {
1794            Ok(PI * central_charge * temperature.powi(4) / 120.0)
1795        } else {
1796            Ok(central_charge * 0.1) // Zero temperature contribution
1797        }
1798    }
1799
1800    /// Calculate AdS volume
1801    fn calculate_ads_volume(&self, duality: &HolographicDuality) -> Result<f64> {
1802        let ads_radius = duality.bulk_geometry.ads_radius;
1803        let dimension = 5; // AdS_5 volume
1804
1805        // Simple approximation for gamma function
1806        let _half_dim = dimension as f64 / 2.0;
1807        let gamma_approx = if dimension % 2 == 0 {
1808            // For integer values: gamma(n) = (n-1)!
1809            (1..=(dimension / 2)).map(|i| i as f64).product::<f64>()
1810        } else {
1811            // For half-integer values: gamma(n+1/2) = sqrt(π) * (2n)! / (4^n * n!)
1812            let n = dimension / 2;
1813            PI.sqrt() * (1..=(2 * n)).map(|i| i as f64).product::<f64>()
1814                / (4.0_f64.powi(n) * (1..=n).map(|i| i as f64).product::<f64>())
1815        };
1816
1817        Ok(PI.powi(dimension / 2) * ads_radius.powi(dimension) / gamma_approx)
1818    }
1819
1820    /// Measure holographic geometry
1821    fn measure_holographic_geometry(
1822        &self,
1823        duality: &HolographicDuality,
1824    ) -> Result<GeometryMeasurements> {
1825        let area_spectrum: Vec<f64> = duality
1826            .entanglement_structure
1827            .rt_surfaces
1828            .iter()
1829            .map(|surface| surface.area)
1830            .collect();
1831
1832        let volume_spectrum: Vec<f64> = duality
1833            .entanglement_structure
1834            .rt_surfaces
1835            .iter()
1836            .map(|surface| surface.boundary_region.volume)
1837            .collect();
1838
1839        let length_spectrum: Vec<f64> = (1..=10)
1840            .map(|n| n as f64 * duality.bulk_geometry.ads_radius / 10.0)
1841            .collect();
1842
1843        // Curvature from AdS metric
1844        let discrete_curvature = -1.0 / duality.bulk_geometry.ads_radius.powi(2);
1845
1846        let topology_measurements = TopologyMeasurements {
1847            euler_characteristic: 0, // AdS space
1848            betti_numbers: vec![1, 0, 0, 0, 0],
1849            homology_groups: vec!["Z".to_string(); 5],
1850            fundamental_group: "trivial".to_string(),
1851        };
1852
1853        Ok(GeometryMeasurements {
1854            area_spectrum,
1855            volume_spectrum,
1856            length_spectrum,
1857            discrete_curvature,
1858            topology_measurements,
1859        })
1860    }
1861}
1862
1863/// Utility functions for quantum gravity simulation
1864pub struct QuantumGravityUtils;
1865
1866impl QuantumGravityUtils {
1867    /// Calculate Planck units
1868    pub fn planck_units() -> HashMap<String, f64> {
1869        let mut units = HashMap::new();
1870        units.insert("length".to_string(), 1.616e-35); // meters
1871        units.insert("time".to_string(), 5.391e-44); // seconds
1872        units.insert("mass".to_string(), 2.176e-8); // kg
1873        units.insert("energy".to_string(), 1.956e9); // J
1874        units.insert("temperature".to_string(), 1.417e32); // K
1875        units
1876    }
1877
1878    /// Compare quantum gravity approaches
1879    pub fn compare_approaches(results: &[GravitySimulationResult]) -> String {
1880        let mut comparison = String::new();
1881        comparison.push_str("Quantum Gravity Approach Comparison:\n");
1882
1883        for result in results {
1884            comparison.push_str(&format!(
1885                "{:?}: Energy = {:.6e}, Volume = {:.6e}, Computation Time = {:.3}s\n",
1886                result.approach,
1887                result.ground_state_energy,
1888                result.spacetime_volume,
1889                result.computation_time
1890            ));
1891        }
1892
1893        comparison
1894    }
1895
1896    /// Validate physical constraints
1897    pub fn validate_physical_constraints(result: &GravitySimulationResult) -> Vec<String> {
1898        let mut violations = Vec::new();
1899
1900        // Check energy positivity
1901        if result.ground_state_energy < 0.0 {
1902            violations.push("Negative ground state energy detected".to_string());
1903        }
1904
1905        // Check volume positivity
1906        if result.spacetime_volume <= 0.0 {
1907            violations.push("Non-positive spacetime volume detected".to_string());
1908        }
1909
1910        // Check curvature bounds
1911        if result.geometry_measurements.discrete_curvature.abs() > 1e10 {
1912            violations.push("Extreme curvature values detected".to_string());
1913        }
1914
1915        violations
1916    }
1917}
1918
1919/// Benchmark quantum gravity simulation performance
1920pub fn benchmark_quantum_gravity_simulation() -> Result<GravityBenchmarkResults> {
1921    let approaches = vec![
1922        GravityApproach::LoopQuantumGravity,
1923        GravityApproach::CausalDynamicalTriangulation,
1924        GravityApproach::AsymptoticSafety,
1925        GravityApproach::HolographicGravity,
1926    ];
1927
1928    let mut results = Vec::new();
1929    let mut timings = HashMap::new();
1930
1931    for approach in approaches {
1932        let config = QuantumGravityConfig {
1933            gravity_approach: approach,
1934            ..Default::default()
1935        };
1936
1937        let start_time = std::time::Instant::now();
1938        let mut simulator = QuantumGravitySimulator::new(config);
1939        let result = simulator.simulate()?;
1940        let elapsed = start_time.elapsed().as_secs_f64();
1941
1942        results.push(result);
1943        timings.insert(format!("{:?}", approach), elapsed);
1944    }
1945
1946    Ok(GravityBenchmarkResults {
1947        approach_results: results,
1948        timing_comparisons: timings,
1949        memory_usage: std::mem::size_of::<QuantumGravitySimulator>(),
1950        accuracy_metrics: HashMap::new(), // Would be filled with comparison to analytical results
1951    })
1952}
1953
1954/// Benchmark results for quantum gravity approaches
1955#[derive(Debug, Clone, Serialize, Deserialize)]
1956pub struct GravityBenchmarkResults {
1957    /// Results for each approach
1958    pub approach_results: Vec<GravitySimulationResult>,
1959    /// Timing comparisons
1960    pub timing_comparisons: HashMap<String, f64>,
1961    /// Memory usage statistics
1962    pub memory_usage: usize,
1963    /// Accuracy metrics vs analytical results
1964    pub accuracy_metrics: HashMap<String, f64>,
1965}
1966
1967#[cfg(test)]
1968mod tests {
1969    use super::*;
1970
1971    #[test]
1972    fn test_quantum_gravity_config_creation() {
1973        let config = QuantumGravityConfig::default();
1974        assert_eq!(config.spatial_dimensions, 3);
1975        assert_eq!(config.gravity_approach, GravityApproach::LoopQuantumGravity);
1976        assert!(config.quantum_corrections);
1977    }
1978
1979    #[test]
1980    fn test_lqg_config_creation() {
1981        let lqg_config = LQGConfig::default();
1982        assert_eq!(lqg_config.barbero_immirzi_parameter, 0.2375);
1983        assert_eq!(lqg_config.max_spin, 5.0);
1984        assert!(lqg_config.spin_foam_dynamics);
1985    }
1986
1987    #[test]
1988    fn test_cdt_config_creation() {
1989        let cdt_config = CDTConfig::default();
1990        assert_eq!(cdt_config.num_simplices, 10000);
1991        assert!(cdt_config.monte_carlo_moves);
1992    }
1993
1994    #[test]
1995    fn test_asymptotic_safety_config() {
1996        let as_config = AsymptoticSafetyConfig::default();
1997        assert_eq!(as_config.truncation_order, 4);
1998        assert!(as_config.higher_derivatives);
1999    }
2000
2001    #[test]
2002    fn test_ads_cft_config() {
2003        let ads_cft_config = AdSCFTConfig::default();
2004        assert_eq!(ads_cft_config.ads_dimension, 5);
2005        assert_eq!(ads_cft_config.cft_dimension, 4);
2006        assert!(ads_cft_config.holographic_entanglement);
2007    }
2008
2009    #[test]
2010    fn test_quantum_gravity_simulator_creation() {
2011        let config = QuantumGravityConfig::default();
2012        let simulator = QuantumGravitySimulator::new(config);
2013        assert!(simulator.spacetime_state.is_none());
2014        assert!(simulator.spin_network.is_none());
2015    }
2016
2017    #[test]
2018    fn test_spacetime_initialization() {
2019        let config = QuantumGravityConfig::default();
2020        let mut simulator = QuantumGravitySimulator::new(config);
2021
2022        assert!(simulator.initialize_spacetime().is_ok());
2023        assert!(simulator.spacetime_state.is_some());
2024
2025        let spacetime = simulator.spacetime_state.as_ref().unwrap();
2026        assert_eq!(spacetime.metric_field.ndim(), 4);
2027    }
2028
2029    #[test]
2030    fn test_lqg_spin_network_initialization() {
2031        let mut config = QuantumGravityConfig::default();
2032        config.lqg_config = Some(LQGConfig {
2033            num_nodes: 10,
2034            num_edges: 20,
2035            ..LQGConfig::default()
2036        });
2037
2038        let mut simulator = QuantumGravitySimulator::new(config);
2039        assert!(simulator.initialize_lqg_spin_network().is_ok());
2040        assert!(simulator.spin_network.is_some());
2041
2042        let spin_network = simulator.spin_network.as_ref().unwrap();
2043        assert_eq!(spin_network.nodes.len(), 10);
2044        assert!(spin_network.edges.len() <= 20); // Some edges might be filtered out
2045    }
2046
2047    #[test]
2048    fn test_cdt_initialization() {
2049        let mut config = QuantumGravityConfig::default();
2050        config.cdt_config = Some(CDTConfig {
2051            num_simplices: 100,
2052            ..CDTConfig::default()
2053        });
2054
2055        let mut simulator = QuantumGravitySimulator::new(config);
2056        assert!(simulator.initialize_cdt().is_ok());
2057        assert!(simulator.simplicial_complex.is_some());
2058
2059        let complex = simulator.simplicial_complex.as_ref().unwrap();
2060        assert_eq!(complex.simplices.len(), 100);
2061        assert!(!complex.vertices.is_empty());
2062        assert!(!complex.time_slices.is_empty());
2063    }
2064
2065    #[test]
2066    fn test_asymptotic_safety_initialization() {
2067        let mut config = QuantumGravityConfig::default();
2068        config.asymptotic_safety_config = Some(AsymptoticSafetyConfig {
2069            rg_flow_steps: 10,
2070            ..AsymptoticSafetyConfig::default()
2071        });
2072
2073        let mut simulator = QuantumGravitySimulator::new(config);
2074        assert!(simulator.initialize_asymptotic_safety().is_ok());
2075        assert!(simulator.rg_trajectory.is_some());
2076
2077        let trajectory = simulator.rg_trajectory.as_ref().unwrap();
2078        assert_eq!(trajectory.energy_scales.len(), 10);
2079        assert!(!trajectory.coupling_evolution.is_empty());
2080    }
2081
2082    #[test]
2083    fn test_ads_cft_initialization() {
2084        let config = QuantumGravityConfig::default();
2085        let mut simulator = QuantumGravitySimulator::new(config);
2086
2087        assert!(simulator.initialize_ads_cft().is_ok());
2088        assert!(simulator.holographic_duality.is_some());
2089
2090        let duality = simulator.holographic_duality.as_ref().unwrap();
2091        assert_eq!(duality.bulk_geometry.ads_radius, 1.0);
2092        assert_eq!(duality.boundary_theory.central_charge, 100.0);
2093        assert!(!duality.entanglement_structure.rt_surfaces.is_empty());
2094    }
2095
2096    #[test]
2097    fn test_su2_element_generation() {
2098        let config = QuantumGravityConfig::default();
2099        let simulator = QuantumGravitySimulator::new(config);
2100
2101        let su2_element = simulator.generate_su2_element().unwrap();
2102
2103        // Check that it's 2x2
2104        assert_eq!(su2_element.shape(), [2, 2]);
2105
2106        // Check unitarity (approximately)
2107        let determinant =
2108            su2_element[[0, 0]] * su2_element[[1, 1]] - su2_element[[0, 1]] * su2_element[[1, 0]];
2109        assert!((determinant.norm() - 1.0).abs() < 1e-10);
2110    }
2111
2112    #[test]
2113    fn test_pauli_coefficient_extraction() {
2114        let config = QuantumGravityConfig::default();
2115        let simulator = QuantumGravitySimulator::new(config);
2116
2117        let su2_element = simulator.generate_su2_element().unwrap();
2118        let coeffs = simulator.extract_pauli_coefficients(&su2_element);
2119
2120        // Check that we have 4 coefficients
2121        assert_eq!(coeffs.len(), 4);
2122
2123        // Check trace relation
2124        let trace = su2_element[[0, 0]] + su2_element[[1, 1]];
2125        assert!((coeffs[0] - trace / 2.0).norm() < 1e-10);
2126    }
2127
2128    #[test]
2129    fn test_simplex_volume_calculation() {
2130        let config = QuantumGravityConfig::default();
2131        let simulator = QuantumGravitySimulator::new(config);
2132
2133        let vertices = vec![
2134            SpacetimeVertex {
2135                id: 0,
2136                coordinates: vec![0.0, 0.0, 0.0, 0.0],
2137                time: 0.0,
2138                coordination: 4,
2139            },
2140            SpacetimeVertex {
2141                id: 1,
2142                coordinates: vec![1.0, 1.0, 0.0, 0.0],
2143                time: 1.0,
2144                coordination: 4,
2145            },
2146        ];
2147
2148        let simplex_vertices = vec![0, 1];
2149        let volume = simulator
2150            .calculate_simplex_volume(&vertices, &simplex_vertices)
2151            .unwrap();
2152
2153        assert!(volume > 0.0);
2154    }
2155
2156    #[test]
2157    fn test_causal_connection() {
2158        let config = QuantumGravityConfig::default();
2159        let simulator = QuantumGravitySimulator::new(config);
2160
2161        let v1 = SpacetimeVertex {
2162            id: 0,
2163            coordinates: vec![0.0, 0.0, 0.0, 0.0],
2164            time: 0.0,
2165            coordination: 4,
2166        };
2167
2168        let v2 = SpacetimeVertex {
2169            id: 1,
2170            coordinates: vec![1.0, 1.0, 0.0, 0.0],
2171            time: 1.0,
2172            coordination: 4,
2173        };
2174
2175        let is_connected = simulator.is_causally_connected(&v1, &v2).unwrap();
2176        assert!(is_connected); // Should be causally connected
2177    }
2178
2179    #[test]
2180    fn test_beta_function_calculation() {
2181        let config = QuantumGravityConfig::default();
2182        let simulator = QuantumGravitySimulator::new(config);
2183
2184        let beta_g = simulator
2185            .calculate_beta_function("newton_constant", 0.1, &1.0)
2186            .unwrap();
2187        let beta_lambda = simulator
2188            .calculate_beta_function("cosmological_constant", 0.01, &1.0)
2189            .unwrap();
2190
2191        assert!(beta_g.is_finite());
2192        assert!(beta_lambda.is_finite());
2193    }
2194
2195    #[test]
2196    fn test_rt_surface_generation() {
2197        let config = QuantumGravityConfig::default();
2198        let simulator = QuantumGravitySimulator::new(config);
2199        let ads_cft_config = AdSCFTConfig::default();
2200
2201        let surfaces = simulator.generate_rt_surfaces(&ads_cft_config).unwrap();
2202
2203        assert!(!surfaces.is_empty());
2204        for surface in &surfaces {
2205            assert!(surface.area > 0.0);
2206            assert_eq!(surface.coordinates.ncols(), ads_cft_config.ads_dimension);
2207        }
2208    }
2209
2210    #[test]
2211    fn test_lqg_simulation() {
2212        let mut config = QuantumGravityConfig::default();
2213        config.gravity_approach = GravityApproach::LoopQuantumGravity;
2214        config.lqg_config = Some(LQGConfig {
2215            num_nodes: 5,
2216            num_edges: 10,
2217            ..LQGConfig::default()
2218        });
2219
2220        let mut simulator = QuantumGravitySimulator::new(config);
2221
2222        let result = simulator.simulate();
2223        assert!(result.is_ok());
2224
2225        let simulation_result = result.unwrap();
2226        assert_eq!(
2227            simulation_result.approach,
2228            GravityApproach::LoopQuantumGravity
2229        );
2230        assert!(simulation_result.spacetime_volume > 0.0);
2231        assert!(!simulation_result.observables.is_empty());
2232    }
2233
2234    #[test]
2235    fn test_cdt_simulation() {
2236        let mut config = QuantumGravityConfig::default();
2237        config.gravity_approach = GravityApproach::CausalDynamicalTriangulation;
2238        config.cdt_config = Some(CDTConfig {
2239            num_simplices: 50,
2240            mc_sweeps: 10,
2241            ..CDTConfig::default()
2242        });
2243
2244        let mut simulator = QuantumGravitySimulator::new(config);
2245
2246        let result = simulator.simulate();
2247        assert!(result.is_ok());
2248
2249        let simulation_result = result.unwrap();
2250        assert_eq!(
2251            simulation_result.approach,
2252            GravityApproach::CausalDynamicalTriangulation
2253        );
2254        assert!(simulation_result.spacetime_volume > 0.0);
2255    }
2256
2257    #[test]
2258    fn test_asymptotic_safety_simulation() {
2259        let mut config = QuantumGravityConfig::default();
2260        config.gravity_approach = GravityApproach::AsymptoticSafety;
2261        config.asymptotic_safety_config = Some(AsymptoticSafetyConfig {
2262            rg_flow_steps: 5,
2263            ..AsymptoticSafetyConfig::default()
2264        });
2265
2266        let mut simulator = QuantumGravitySimulator::new(config);
2267
2268        let result = simulator.simulate();
2269        assert!(result.is_ok());
2270
2271        let simulation_result = result.unwrap();
2272        assert_eq!(
2273            simulation_result.approach,
2274            GravityApproach::AsymptoticSafety
2275        );
2276        assert!(simulation_result.ground_state_energy.is_finite());
2277    }
2278
2279    #[test]
2280    fn test_ads_cft_simulation() {
2281        let mut config = QuantumGravityConfig::default();
2282        config.gravity_approach = GravityApproach::HolographicGravity;
2283
2284        let mut simulator = QuantumGravitySimulator::new(config);
2285
2286        let result = simulator.simulate();
2287        assert!(result.is_ok());
2288
2289        let simulation_result = result.unwrap();
2290        assert_eq!(
2291            simulation_result.approach,
2292            GravityApproach::HolographicGravity
2293        );
2294        assert!(simulation_result.spacetime_volume > 0.0);
2295        assert!(simulation_result
2296            .observables
2297            .contains_key("holographic_complexity"));
2298    }
2299
2300    #[test]
2301    fn test_planck_units() {
2302        let units = QuantumGravityUtils::planck_units();
2303
2304        assert!(units.contains_key("length"));
2305        assert!(units.contains_key("time"));
2306        assert!(units.contains_key("mass"));
2307        assert!(units.contains_key("energy"));
2308
2309        assert_eq!(units["length"], 1.616e-35);
2310        assert_eq!(units["time"], 5.391e-44);
2311    }
2312
2313    #[test]
2314    fn test_approach_comparison() {
2315        let results = vec![GravitySimulationResult {
2316            approach: GravityApproach::LoopQuantumGravity,
2317            ground_state_energy: 1e-10,
2318            spacetime_volume: 1e-105,
2319            geometry_measurements: GeometryMeasurements {
2320                area_spectrum: vec![1e-70],
2321                volume_spectrum: vec![1e-105],
2322                length_spectrum: vec![1e-35],
2323                discrete_curvature: 1e70,
2324                topology_measurements: TopologyMeasurements {
2325                    euler_characteristic: 1,
2326                    betti_numbers: vec![1],
2327                    homology_groups: vec!["Z".to_string()],
2328                    fundamental_group: "trivial".to_string(),
2329                },
2330            },
2331            convergence_info: ConvergenceInfo {
2332                iterations: 100,
2333                final_residual: 1e-8,
2334                converged: true,
2335                convergence_history: vec![1e-2, 1e-8],
2336            },
2337            observables: HashMap::new(),
2338            computation_time: 1.0,
2339        }];
2340
2341        let comparison = QuantumGravityUtils::compare_approaches(&results);
2342        assert!(comparison.contains("LoopQuantumGravity"));
2343        assert!(comparison.contains("Energy"));
2344        assert!(comparison.contains("Volume"));
2345    }
2346
2347    #[test]
2348    fn test_physical_constraints_validation() {
2349        let result = GravitySimulationResult {
2350            approach: GravityApproach::LoopQuantumGravity,
2351            ground_state_energy: -1.0, // Invalid negative energy
2352            spacetime_volume: 0.0,     // Invalid zero volume
2353            geometry_measurements: GeometryMeasurements {
2354                area_spectrum: vec![1e-70],
2355                volume_spectrum: vec![1e-105],
2356                length_spectrum: vec![1e-35],
2357                discrete_curvature: 1e15, // Extreme curvature
2358                topology_measurements: TopologyMeasurements {
2359                    euler_characteristic: 1,
2360                    betti_numbers: vec![1],
2361                    homology_groups: vec!["Z".to_string()],
2362                    fundamental_group: "trivial".to_string(),
2363                },
2364            },
2365            convergence_info: ConvergenceInfo {
2366                iterations: 100,
2367                final_residual: 1e-8,
2368                converged: true,
2369                convergence_history: vec![1e-2, 1e-8],
2370            },
2371            observables: HashMap::new(),
2372            computation_time: 1.0,
2373        };
2374
2375        let violations = QuantumGravityUtils::validate_physical_constraints(&result);
2376
2377        assert_eq!(violations.len(), 3);
2378        assert!(violations
2379            .iter()
2380            .any(|v| v.contains("Negative ground state energy")));
2381        assert!(violations.iter().any(|v| v.contains("volume")));
2382        assert!(violations.iter().any(|v| v.contains("curvature")));
2383    }
2384
2385    #[test]
2386    #[ignore]
2387    fn test_benchmark_quantum_gravity() {
2388        // This is a more comprehensive test that would run longer
2389        // In practice, you might want to make this an integration test
2390        let result = benchmark_quantum_gravity_simulation();
2391        assert!(result.is_ok());
2392
2393        let benchmark = result.unwrap();
2394        assert!(!benchmark.approach_results.is_empty());
2395        assert!(!benchmark.timing_comparisons.is_empty());
2396        assert!(benchmark.memory_usage > 0);
2397    }
2398}