1use crate::prelude::SimulatorError;
9use ndarray::{Array1, Array2};
10use num_complex::Complex64;
11use scirs2_core::parallel_ops::*;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::sync::{Arc, Mutex};
15use std::time::{Duration, Instant};
16
17use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
18use crate::error::Result;
19
20#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
22pub enum QuantumAdvantageType {
23 QuantumSupremacy,
25 ComputationalAdvantage,
27 SampleComplexityAdvantage,
29 CommunicationAdvantage,
31 QueryComplexityAdvantage,
33 MemoryAdvantage,
35 EnergyAdvantage,
37 NoiseResilienceAdvantage,
39}
40
41#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
43pub enum ProblemDomain {
44 RandomCircuitSampling,
46 BosonSampling,
48 IQPCircuits,
50 QAOA,
52 VQE,
54 QML,
56 QuantumSimulation,
58 QuantumCryptography,
60 QuantumSearch,
62 Factoring,
64 DiscreteLogarithm,
66 GraphProblems,
68 LinearAlgebra,
70 Optimization,
72 Custom,
74}
75
76#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
78pub enum ClassicalAlgorithmType {
79 BruteForce,
81 MonteCarlo,
83 MCMC,
85 SimulatedAnnealing,
87 GeneticAlgorithm,
89 BranchAndBound,
91 DynamicProgramming,
93 Approximation,
95 Heuristic,
97 MachineLearning,
99 TensorNetwork,
101 BestKnown,
103}
104
105#[derive(Debug, Clone, Serialize, Deserialize)]
107pub struct QuantumAdvantageMetrics {
108 pub quantum_time: Duration,
110 pub classical_time: Duration,
112 pub speedup_factor: f64,
114 pub quantum_accuracy: f64,
116 pub classical_accuracy: f64,
118 pub quantum_resources: QuantumResources,
120 pub classical_resources: ClassicalResources,
122 pub statistical_significance: f64,
124 pub confidence_interval: (f64, f64),
126 pub scaling_analysis: ScalingAnalysis,
128}
129
130#[derive(Debug, Clone, Serialize, Deserialize)]
132pub struct QuantumResources {
133 pub qubits: usize,
135 pub depth: usize,
137 pub gate_count: usize,
139 pub coherence_time: Duration,
141 pub gate_fidelity: f64,
143 pub shots: usize,
145 pub quantum_volume: usize,
147}
148
149#[derive(Debug, Clone, Serialize, Deserialize)]
151pub struct ClassicalResources {
152 pub cpu_time: Duration,
154 pub memory_usage: usize,
156 pub cores: usize,
158 pub energy_consumption: f64,
160 pub storage: usize,
162 pub network_bandwidth: f64,
164}
165
166#[derive(Debug, Clone, Serialize, Deserialize)]
168pub struct ScalingAnalysis {
169 pub problem_sizes: Vec<usize>,
171 pub quantum_scaling: f64,
173 pub classical_scaling: f64,
175 pub crossover_point: Option<usize>,
177 pub asymptotic_advantage: f64,
179}
180
181#[derive(Debug, Clone)]
183pub struct QuantumAdvantageConfig {
184 pub advantage_type: QuantumAdvantageType,
186 pub domain: ProblemDomain,
188 pub classical_algorithms: Vec<ClassicalAlgorithmType>,
190 pub problem_sizes: Vec<usize>,
192 pub num_trials: usize,
194 pub confidence_level: f64,
196 pub classical_timeout: Duration,
198 pub hardware_specs: HardwareSpecs,
200 pub enable_profiling: bool,
202 pub save_results: bool,
204}
205
206#[derive(Debug, Clone)]
208pub struct HardwareSpecs {
209 pub quantum_hardware: QuantumHardwareSpecs,
211 pub classical_hardware: ClassicalHardwareSpecs,
213}
214
215#[derive(Debug, Clone)]
217pub struct QuantumHardwareSpecs {
218 pub num_qubits: usize,
220 pub gate_fidelities: HashMap<String, f64>,
222 pub coherence_times: HashMap<String, Duration>,
224 pub connectivity: Vec<Vec<bool>>,
226 pub gate_times: HashMap<String, Duration>,
228 pub readout_fidelity: f64,
230}
231
232#[derive(Debug, Clone)]
234pub struct ClassicalHardwareSpecs {
235 pub cpu_cores: usize,
237 pub cpu_frequency: f64,
239 pub ram_size: usize,
241 pub cache_sizes: Vec<usize>,
243 pub gpu_specs: Option<GPUSpecs>,
245}
246
247#[derive(Debug, Clone)]
249pub struct GPUSpecs {
250 pub compute_units: usize,
252 pub memory_size: usize,
254 pub memory_bandwidth: f64,
256 pub peak_flops: f64,
258}
259
260#[derive(Debug, Clone, Serialize, Deserialize)]
262pub struct QuantumAdvantageResult {
263 pub advantage_demonstrated: bool,
265 pub metrics: QuantumAdvantageMetrics,
267 pub detailed_results: Vec<DetailedResult>,
269 pub statistical_analysis: StatisticalAnalysis,
271 pub verification: VerificationResult,
273 pub cost_analysis: CostAnalysis,
275 pub projections: FutureProjections,
277}
278
279#[derive(Debug, Clone, Serialize, Deserialize)]
281pub struct DetailedResult {
282 pub problem_size: usize,
284 pub quantum_results: AlgorithmResult,
286 pub classical_results: Vec<AlgorithmResult>,
288 pub comparison: ComparisonResult,
290}
291
292#[derive(Debug, Clone, Serialize, Deserialize)]
294pub struct AlgorithmResult {
295 pub algorithm_type: String,
297 pub execution_time: Duration,
299 pub solution_quality: f64,
301 pub resource_usage: ResourceUsage,
303 pub success_rate: f64,
305 pub output_distribution: Option<HashMap<String, f64>>,
307}
308
309#[derive(Debug, Clone, Serialize, Deserialize)]
311pub struct ResourceUsage {
312 pub peak_memory: usize,
314 pub energy: f64,
316 pub operations: usize,
318 pub communication: f64,
320}
321
322#[derive(Debug, Clone, Serialize, Deserialize)]
324pub struct ComparisonResult {
325 pub best_classical: String,
327 pub speedup: f64,
329 pub quality_improvement: f64,
331 pub resource_efficiency: f64,
333 pub significance: f64,
335}
336
337#[derive(Debug, Clone, Serialize, Deserialize)]
339pub struct StatisticalAnalysis {
340 pub hypothesis_tests: Vec<HypothesisTest>,
342 pub confidence_intervals: HashMap<String, (f64, f64)>,
344 pub effect_sizes: HashMap<String, f64>,
346 pub power_analysis: PowerAnalysis,
348}
349
350#[derive(Debug, Clone, Serialize, Deserialize)]
352pub struct HypothesisTest {
353 pub test_name: String,
355 pub null_hypothesis: String,
357 pub test_statistic: f64,
359 pub p_value: f64,
361 pub reject_null: bool,
363}
364
365#[derive(Debug, Clone, Serialize, Deserialize)]
367pub struct PowerAnalysis {
368 pub power: f64,
370 pub effect_size: f64,
372 pub required_sample_size: usize,
374}
375
376#[derive(Debug, Clone, Serialize, Deserialize)]
378pub struct VerificationResult {
379 pub verification_methods: Vec<String>,
381 pub verification_success_rate: f64,
383 pub spoofing_resistance: f64,
385 pub independent_verification: Option<IndependentVerification>,
387}
388
389#[derive(Debug, Clone, Serialize, Deserialize)]
391pub struct IndependentVerification {
392 pub verifiers: Vec<String>,
394 pub results: Vec<bool>,
396 pub consensus: f64,
398}
399
400#[derive(Debug, Clone, Serialize, Deserialize)]
402pub struct CostAnalysis {
403 pub quantum_hardware_cost: f64,
405 pub classical_hardware_cost: f64,
407 pub operational_costs: OperationalCosts,
409 pub total_cost_ownership: f64,
411 pub cost_per_solution: f64,
413}
414
415#[derive(Debug, Clone, Serialize, Deserialize)]
417pub struct OperationalCosts {
418 pub energy: f64,
420 pub maintenance: f64,
422 pub personnel: f64,
424 pub infrastructure: f64,
426}
427
428#[derive(Debug, Clone, Serialize, Deserialize)]
430pub struct FutureProjections {
431 pub quantum_improvements: TechnologyProjection,
433 pub classical_improvements: TechnologyProjection,
435 pub timeline: TimelineProjection,
437 pub market_impact: MarketImpact,
439}
440
441#[derive(Debug, Clone, Serialize, Deserialize)]
443pub struct TechnologyProjection {
444 pub performance_improvement: f64,
446 pub cost_reduction: f64,
448 pub reliability_improvement: f64,
450 pub scalability: Vec<(usize, f64)>, }
453
454#[derive(Debug, Clone, Serialize, Deserialize)]
456pub struct TimelineProjection {
457 pub milestones: Vec<(String, usize)>,
459 pub confidence: f64,
461 pub uncertainties: Vec<String>,
463}
464
465#[derive(Debug, Clone, Serialize, Deserialize)]
467pub struct MarketImpact {
468 pub affected_industries: Vec<String>,
470 pub economic_impact: f64,
472 pub employment_impact: EmploymentImpact,
474 pub investment_projections: Vec<(usize, f64)>, }
477
478#[derive(Debug, Clone, Serialize, Deserialize)]
480pub struct EmploymentImpact {
481 pub jobs_displaced: usize,
483 pub jobs_created: usize,
485 pub reskilling_needed: usize,
487}
488
489pub struct QuantumAdvantageDemonstrator {
491 config: QuantumAdvantageConfig,
493 quantum_algorithms: HashMap<ProblemDomain, Box<dyn QuantumAlgorithm + Send + Sync>>,
495 classical_algorithms:
497 HashMap<ClassicalAlgorithmType, Box<dyn ClassicalAlgorithm + Send + Sync>>,
498 results_database: Arc<Mutex<ResultsDatabase>>,
500 profiler: Arc<Mutex<PerformanceProfiler>>,
502}
503
504pub trait QuantumAlgorithm: Send + Sync {
506 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult>;
508
509 fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources;
511
512 fn get_theoretical_scaling(&self) -> f64;
514
515 fn name(&self) -> &str;
517}
518
519pub trait ClassicalAlgorithm: Send + Sync {
521 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult>;
523
524 fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources;
526
527 fn get_theoretical_scaling(&self) -> f64;
529
530 fn name(&self) -> &str;
532}
533
534#[derive(Debug, Clone)]
536pub struct ProblemInstance {
537 pub domain: ProblemDomain,
539 pub size: usize,
541 pub data: ProblemData,
543 pub difficulty: DifficultyParameters,
545}
546
547#[derive(Debug, Clone)]
549pub enum ProblemData {
550 RandomCircuit {
552 circuit: InterfaceCircuit,
553 target_distribution: HashMap<String, f64>,
554 },
555 Graph {
557 adjacency_matrix: Array2<f64>,
558 vertex_weights: Vec<f64>,
559 edge_weights: HashMap<(usize, usize), f64>,
560 },
561 Optimization {
563 objective_function: Vec<f64>,
564 constraints: Vec<Vec<f64>>,
565 bounds: Vec<(f64, f64)>,
566 },
567 Search {
569 search_space: Vec<Vec<f64>>,
570 target_function: Vec<f64>,
571 oracle_queries: usize,
572 },
573 Simulation {
575 hamiltonian: Array2<Complex64>,
576 initial_state: Array1<Complex64>,
577 evolution_time: f64,
578 },
579 Custom { data: HashMap<String, Vec<f64>> },
581}
582
583#[derive(Debug, Clone)]
585pub struct DifficultyParameters {
586 pub hardness: f64,
588 pub noise_level: f64,
590 pub time_limit: Option<Duration>,
592 pub accuracy_threshold: f64,
594}
595
596#[derive(Debug, Clone)]
598pub struct ResultsDatabase {
599 pub results: HashMap<String, Vec<QuantumAdvantageResult>>,
601 pub metadata: HashMap<String, String>,
603}
604
605#[derive(Debug, Clone)]
607pub struct PerformanceProfiler {
608 pub timing_data: HashMap<String, Vec<Duration>>,
610 pub memory_data: HashMap<String, Vec<usize>>,
612 pub energy_data: HashMap<String, Vec<f64>>,
614}
615
616impl QuantumAdvantageDemonstrator {
617 pub fn new(config: QuantumAdvantageConfig) -> Self {
619 let mut demonstrator = Self {
620 config,
621 quantum_algorithms: HashMap::new(),
622 classical_algorithms: HashMap::new(),
623 results_database: Arc::new(Mutex::new(ResultsDatabase {
624 results: HashMap::new(),
625 metadata: HashMap::new(),
626 })),
627 profiler: Arc::new(Mutex::new(PerformanceProfiler {
628 timing_data: HashMap::new(),
629 memory_data: HashMap::new(),
630 energy_data: HashMap::new(),
631 })),
632 };
633
634 demonstrator.register_default_algorithms();
636 demonstrator
637 }
638
639 pub fn demonstrate_advantage(&mut self) -> Result<QuantumAdvantageResult> {
641 let mut detailed_results = Vec::new();
642 let mut all_speedups = Vec::new();
643 let mut all_accuracies = Vec::new();
644
645 println!(
646 "Starting quantum advantage demonstration for {:?} in {:?} domain",
647 self.config.advantage_type, self.config.domain
648 );
649
650 let problem_sizes = self.config.problem_sizes.clone();
652 for problem_size in problem_sizes {
653 println!("Testing problem size: {}", problem_size);
654
655 let detailed_result = self.test_problem_size(problem_size)?;
656
657 all_speedups.push(detailed_result.comparison.speedup);
658 all_accuracies.push(detailed_result.quantum_results.solution_quality);
659
660 detailed_results.push(detailed_result);
661 }
662
663 let scaling_analysis = self.analyze_scaling(&detailed_results)?;
665
666 let statistical_analysis = self.perform_statistical_analysis(&detailed_results)?;
668
669 let verification = self.verify_results(&detailed_results)?;
671
672 let cost_analysis = self.analyze_costs(&detailed_results)?;
674
675 let projections = self.generate_projections(&detailed_results)?;
677
678 let overall_speedup = all_speedups
680 .iter()
681 .fold(1.0, |acc, &x| acc * x)
682 .powf(1.0 / all_speedups.len() as f64);
683 let avg_accuracy = all_accuracies.iter().sum::<f64>() / all_accuracies.len() as f64;
684
685 let quantum_time = detailed_results
686 .iter()
687 .map(|r| r.quantum_results.execution_time)
688 .sum::<Duration>()
689 / detailed_results.len() as u32;
690
691 let best_classical_time = detailed_results
692 .iter()
693 .map(|r| {
694 r.classical_results
695 .iter()
696 .map(|c| c.execution_time)
697 .min()
698 .unwrap_or(Duration::new(0, 0))
699 })
700 .sum::<Duration>()
701 / detailed_results.len() as u32;
702
703 let metrics = QuantumAdvantageMetrics {
704 quantum_time,
705 classical_time: best_classical_time,
706 speedup_factor: overall_speedup,
707 quantum_accuracy: avg_accuracy,
708 classical_accuracy: detailed_results
709 .iter()
710 .map(|r| {
711 r.classical_results
712 .iter()
713 .map(|c| c.solution_quality)
714 .max_by(|a, b| a.partial_cmp(b).unwrap())
715 .unwrap_or(0.0)
716 })
717 .sum::<f64>()
718 / detailed_results.len() as f64,
719 quantum_resources: self.aggregate_quantum_resources(&detailed_results),
720 classical_resources: self.aggregate_classical_resources(&detailed_results),
721 statistical_significance: statistical_analysis
722 .hypothesis_tests
723 .iter()
724 .find(|t| t.test_name == "quantum_advantage")
725 .map(|t| 1.0 - t.p_value)
726 .unwrap_or(0.0),
727 confidence_interval: (overall_speedup * 0.9, overall_speedup * 1.1), scaling_analysis,
729 };
730
731 let advantage_demonstrated = overall_speedup > 1.0
732 && statistical_analysis
733 .hypothesis_tests
734 .iter()
735 .any(|t| t.test_name == "quantum_advantage" && t.reject_null);
736
737 let result = QuantumAdvantageResult {
738 advantage_demonstrated,
739 metrics,
740 detailed_results,
741 statistical_analysis,
742 verification,
743 cost_analysis,
744 projections,
745 };
746
747 self.store_results(&result)?;
749
750 Ok(result)
751 }
752
753 fn test_problem_size(&mut self, problem_size: usize) -> Result<DetailedResult> {
755 let problem_instance = self.generate_problem_instance(problem_size)?;
757
758 let quantum_start = Instant::now();
760 let quantum_algorithm = self
761 .quantum_algorithms
762 .get(&self.config.domain)
763 .ok_or_else(|| {
764 SimulatorError::UnsupportedOperation(format!(
765 "No quantum algorithm registered for domain {:?}",
766 self.config.domain
767 ))
768 })?;
769
770 let quantum_results = quantum_algorithm.execute(&problem_instance)?;
771 let quantum_time = quantum_start.elapsed();
772
773 let mut classical_results = Vec::new();
775 for &classical_type in &self.config.classical_algorithms {
776 if let Some(classical_algorithm) = self.classical_algorithms.get(&classical_type) {
777 let classical_start = Instant::now();
778
779 let result = if classical_start.elapsed() < self.config.classical_timeout {
781 classical_algorithm.execute(&problem_instance)?
782 } else {
783 AlgorithmResult {
785 algorithm_type: classical_algorithm.name().to_string(),
786 execution_time: self.config.classical_timeout,
787 solution_quality: 0.0,
788 resource_usage: ResourceUsage {
789 peak_memory: 0,
790 energy: 0.0,
791 operations: 0,
792 communication: 0.0,
793 },
794 success_rate: 0.0,
795 output_distribution: None,
796 }
797 };
798
799 classical_results.push(result);
800 }
801 }
802
803 let comparison = self.compare_results(&quantum_results, &classical_results)?;
805
806 Ok(DetailedResult {
807 problem_size,
808 quantum_results,
809 classical_results,
810 comparison,
811 })
812 }
813
814 fn generate_problem_instance(&self, size: usize) -> Result<ProblemInstance> {
816 let data = match self.config.domain {
817 ProblemDomain::RandomCircuitSampling => {
818 let circuit = self.generate_random_circuit(size)?;
819 ProblemData::RandomCircuit {
820 circuit,
821 target_distribution: HashMap::new(), }
823 }
824 ProblemDomain::GraphProblems => {
825 let adjacency_matrix = Array2::from_shape_fn((size, size), |(i, j)| {
826 if i != j && rand::random::<f64>() < 0.3 {
827 rand::random::<f64>()
828 } else {
829 0.0
830 }
831 });
832 ProblemData::Graph {
833 adjacency_matrix,
834 vertex_weights: (0..size).map(|_| rand::random::<f64>()).collect(),
835 edge_weights: HashMap::new(),
836 }
837 }
838 ProblemDomain::Optimization => {
839 ProblemData::Optimization {
840 objective_function: (0..size).map(|_| rand::random::<f64>()).collect(),
841 constraints: vec![vec![1.0; size]], bounds: vec![(0.0, 1.0); size],
843 }
844 }
845 ProblemDomain::QuantumSimulation => {
846 let hamiltonian = Array2::from_shape_fn((1 << size, 1 << size), |(i, j)| {
847 if i == j {
848 Complex64::new(rand::random::<f64>(), 0.0)
849 } else if (i ^ j).count_ones() == 1 {
850 Complex64::new(rand::random::<f64>() * 0.1, 0.0)
851 } else {
852 Complex64::new(0.0, 0.0)
853 }
854 });
855 let initial_state = {
856 let mut state = Array1::zeros(1 << size);
857 state[0] = Complex64::new(1.0, 0.0);
858 state
859 };
860 ProblemData::Simulation {
861 hamiltonian,
862 initial_state,
863 evolution_time: 1.0,
864 }
865 }
866 _ => ProblemData::Custom {
867 data: HashMap::new(),
868 },
869 };
870
871 Ok(ProblemInstance {
872 domain: self.config.domain,
873 size,
874 data,
875 difficulty: DifficultyParameters {
876 hardness: 0.5,
877 noise_level: 0.01,
878 time_limit: Some(Duration::from_secs(3600)),
879 accuracy_threshold: 0.95,
880 },
881 })
882 }
883
884 fn generate_random_circuit(&self, num_qubits: usize) -> Result<InterfaceCircuit> {
886 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
887 let depth = num_qubits * 10; for layer in 0..depth {
890 for qubit in 0..num_qubits {
892 let gate_type = match layer % 3 {
893 0 => InterfaceGateType::RX(rand::random::<f64>() * 2.0 * std::f64::consts::PI),
894 1 => InterfaceGateType::RY(rand::random::<f64>() * 2.0 * std::f64::consts::PI),
895 _ => InterfaceGateType::RZ(rand::random::<f64>() * 2.0 * std::f64::consts::PI),
896 };
897 circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
898 }
899
900 if layer % 2 == 1 {
902 for qubit in 0..num_qubits - 1 {
903 if rand::random::<f64>() < 0.5 {
904 circuit.add_gate(InterfaceGate::new(
905 InterfaceGateType::CNOT,
906 vec![qubit, qubit + 1],
907 ));
908 }
909 }
910 }
911 }
912
913 Ok(circuit)
914 }
915
916 fn compare_results(
918 &self,
919 quantum: &AlgorithmResult,
920 classical_results: &[AlgorithmResult],
921 ) -> Result<ComparisonResult> {
922 let best_classical = classical_results
923 .iter()
924 .min_by(|a, b| a.execution_time.cmp(&b.execution_time))
925 .ok_or_else(|| SimulatorError::InvalidInput("No classical results".to_string()))?;
926
927 let speedup =
928 best_classical.execution_time.as_secs_f64() / quantum.execution_time.as_secs_f64();
929 let quality_improvement = quantum.solution_quality / best_classical.solution_quality;
930 let resource_efficiency = (best_classical.resource_usage.peak_memory as f64)
931 / (quantum.resource_usage.peak_memory as f64);
932
933 let significance = if speedup > 1.0 { 0.95 } else { 0.05 };
935
936 Ok(ComparisonResult {
937 best_classical: best_classical.algorithm_type.clone(),
938 speedup,
939 quality_improvement,
940 resource_efficiency,
941 significance,
942 })
943 }
944
945 fn analyze_scaling(&self, results: &[DetailedResult]) -> Result<ScalingAnalysis> {
947 let problem_sizes: Vec<usize> = results.iter().map(|r| r.problem_size).collect();
948 let quantum_times: Vec<f64> = results
949 .iter()
950 .map(|r| r.quantum_results.execution_time.as_secs_f64())
951 .collect();
952 let classical_times: Vec<f64> = results
953 .iter()
954 .map(|r| {
955 r.classical_results
956 .iter()
957 .map(|c| c.execution_time.as_secs_f64())
958 .min_by(|a, b| a.partial_cmp(b).unwrap())
959 .unwrap_or(0.0)
960 })
961 .collect();
962
963 let quantum_scaling = self.fit_power_law(&problem_sizes, &quantum_times)?;
965 let classical_scaling = self.fit_power_law(&problem_sizes, &classical_times)?;
966
967 let crossover_point =
969 self.find_crossover_point(&problem_sizes, &quantum_times, &classical_times);
970
971 let asymptotic_advantage = if classical_scaling > quantum_scaling {
973 f64::INFINITY
974 } else {
975 classical_scaling / quantum_scaling
976 };
977
978 Ok(ScalingAnalysis {
979 problem_sizes,
980 quantum_scaling,
981 classical_scaling,
982 crossover_point,
983 asymptotic_advantage,
984 })
985 }
986
987 fn fit_power_law(&self, sizes: &[usize], times: &[f64]) -> Result<f64> {
989 if sizes.len() != times.len() || sizes.len() < 2 {
990 return Ok(1.0); }
992
993 let log_sizes: Vec<f64> = sizes.iter().map(|&s| (s as f64).ln()).collect();
995 let log_times: Vec<f64> = times.iter().map(|&t| (t.max(1e-10)).ln()).collect();
996
997 let n = log_sizes.len() as f64;
998 let sum_x = log_sizes.iter().sum::<f64>();
999 let sum_y = log_times.iter().sum::<f64>();
1000 let sum_xy = log_sizes
1001 .iter()
1002 .zip(&log_times)
1003 .map(|(x, y)| x * y)
1004 .sum::<f64>();
1005 let sum_x2 = log_sizes.iter().map(|x| x * x).sum::<f64>();
1006
1007 let slope = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - sum_x * sum_x);
1008 Ok(slope)
1009 }
1010
1011 fn find_crossover_point(
1013 &self,
1014 sizes: &[usize],
1015 quantum_times: &[f64],
1016 classical_times: &[f64],
1017 ) -> Option<usize> {
1018 for (i, (&size, (&qt, &ct))) in sizes
1019 .iter()
1020 .zip(quantum_times.iter().zip(classical_times.iter()))
1021 .enumerate()
1022 {
1023 if qt < ct {
1024 return Some(size);
1025 }
1026 }
1027 None
1028 }
1029
1030 fn perform_statistical_analysis(
1032 &self,
1033 results: &[DetailedResult],
1034 ) -> Result<StatisticalAnalysis> {
1035 let mut hypothesis_tests = Vec::new();
1036
1037 let speedups: Vec<f64> = results.iter().map(|r| r.comparison.speedup).collect();
1039 let avg_speedup = speedups.iter().sum::<f64>() / speedups.len() as f64;
1040 let speedup_variance = speedups
1041 .iter()
1042 .map(|s| (s - avg_speedup).powi(2))
1043 .sum::<f64>()
1044 / speedups.len() as f64;
1045
1046 let t_statistic =
1048 (avg_speedup - 1.0) / (speedup_variance.sqrt() / (speedups.len() as f64).sqrt());
1049 let p_value = self.compute_t_test_p_value(t_statistic, speedups.len() - 1);
1050
1051 hypothesis_tests.push(HypothesisTest {
1052 test_name: "quantum_advantage".to_string(),
1053 null_hypothesis: "No quantum speedup (speedup <= 1)".to_string(),
1054 test_statistic: t_statistic,
1055 p_value,
1056 reject_null: p_value < 0.05,
1057 });
1058
1059 let mut confidence_intervals = HashMap::new();
1061 let margin_of_error = 1.96 * speedup_variance.sqrt() / (speedups.len() as f64).sqrt();
1062 confidence_intervals.insert(
1063 "speedup".to_string(),
1064 (avg_speedup - margin_of_error, avg_speedup + margin_of_error),
1065 );
1066
1067 let mut effect_sizes = HashMap::new();
1069 effect_sizes.insert(
1070 "speedup_cohen_d".to_string(),
1071 (avg_speedup - 1.0) / speedup_variance.sqrt(),
1072 );
1073
1074 let power_analysis = PowerAnalysis {
1076 power: 0.8, effect_size: (avg_speedup - 1.0) / speedup_variance.sqrt(),
1078 required_sample_size: 30, };
1080
1081 Ok(StatisticalAnalysis {
1082 hypothesis_tests,
1083 confidence_intervals,
1084 effect_sizes,
1085 power_analysis,
1086 })
1087 }
1088
1089 fn compute_t_test_p_value(&self, t_statistic: f64, degrees_of_freedom: usize) -> f64 {
1091 if t_statistic.abs() > 2.0 {
1093 0.01
1094 } else if t_statistic.abs() > 1.0 {
1095 0.05
1096 } else {
1097 0.5
1098 }
1099 }
1100
1101 fn verify_results(&self, results: &[DetailedResult]) -> Result<VerificationResult> {
1103 let mut verification_methods = Vec::new();
1104 let mut verification_successes = 0;
1105 let total_verifications = results.len();
1106
1107 for result in results {
1108 if matches!(self.config.domain, ProblemDomain::RandomCircuitSampling) {
1110 verification_methods.push("Cross-entropy benchmarking".to_string());
1111 if result.quantum_results.solution_quality > 0.9 {
1113 verification_successes += 1;
1114 }
1115 }
1116
1117 verification_methods.push("Linear XEB".to_string());
1119 if result.quantum_results.solution_quality > 0.8 {
1120 verification_successes += 1;
1121 }
1122 }
1123
1124 let verification_success_rate = verification_successes as f64 / total_verifications as f64;
1125 let spoofing_resistance = 0.95; Ok(VerificationResult {
1128 verification_methods,
1129 verification_success_rate,
1130 spoofing_resistance,
1131 independent_verification: None, })
1133 }
1134
1135 fn analyze_costs(&self, results: &[DetailedResult]) -> Result<CostAnalysis> {
1137 let quantum_hardware_cost = 10_000_000.0; let classical_hardware_cost = 100_000.0; let operational_costs = OperationalCosts {
1142 energy: 1000.0, maintenance: 5000.0, personnel: 2000.0, infrastructure: 1000.0, };
1147
1148 let daily_operational_cost = operational_costs.energy
1149 + operational_costs.maintenance
1150 + operational_costs.personnel
1151 + operational_costs.infrastructure;
1152
1153 let total_cost_ownership = quantum_hardware_cost + daily_operational_cost * 365.0;
1154
1155 let num_solutions = results.len() as f64;
1156 let cost_per_solution = total_cost_ownership / num_solutions;
1157
1158 Ok(CostAnalysis {
1159 quantum_hardware_cost,
1160 classical_hardware_cost,
1161 operational_costs,
1162 total_cost_ownership,
1163 cost_per_solution,
1164 })
1165 }
1166
1167 fn generate_projections(&self, _results: &[DetailedResult]) -> Result<FutureProjections> {
1169 let quantum_improvements = TechnologyProjection {
1171 performance_improvement: 1.5, cost_reduction: 0.8, reliability_improvement: 1.2, scalability: vec![(2024, 100.0), (2025, 200.0), (2030, 1000.0)],
1175 };
1176
1177 let classical_improvements = TechnologyProjection {
1179 performance_improvement: 1.1, cost_reduction: 0.95, reliability_improvement: 1.05, scalability: vec![(2024, 1000.0), (2025, 1100.0), (2030, 1500.0)],
1183 };
1184
1185 let timeline = TimelineProjection {
1187 milestones: vec![
1188 ("Fault-tolerant quantum computers".to_string(), 2030),
1189 (
1190 "Practical quantum advantage in optimization".to_string(),
1191 2026,
1192 ),
1193 ("Quantum supremacy in machine learning".to_string(), 2028),
1194 ("Commercial quantum advantage".to_string(), 2032),
1195 ],
1196 confidence: 0.7,
1197 uncertainties: vec![
1198 "Error correction overhead".to_string(),
1199 "Classical algorithm improvements".to_string(),
1200 "Hardware manufacturing challenges".to_string(),
1201 ],
1202 };
1203
1204 let market_impact = MarketImpact {
1206 affected_industries: vec![
1207 "Finance".to_string(),
1208 "Pharmaceuticals".to_string(),
1209 "Logistics".to_string(),
1210 "Energy".to_string(),
1211 "Cybersecurity".to_string(),
1212 ],
1213 economic_impact: 1_000_000_000_000.0, employment_impact: EmploymentImpact {
1215 jobs_displaced: 100_000,
1216 jobs_created: 500_000,
1217 reskilling_needed: 1_000_000,
1218 },
1219 investment_projections: vec![
1220 (2024, 10_000_000_000.0),
1221 (2025, 20_000_000_000.0),
1222 (2030, 100_000_000_000.0),
1223 ],
1224 };
1225
1226 Ok(FutureProjections {
1227 quantum_improvements,
1228 classical_improvements,
1229 timeline,
1230 market_impact,
1231 })
1232 }
1233
1234 fn register_default_algorithms(&mut self) {
1236 self.quantum_algorithms.insert(
1238 ProblemDomain::RandomCircuitSampling,
1239 Box::new(RandomCircuitSamplingAlgorithm),
1240 );
1241 self.quantum_algorithms
1242 .insert(ProblemDomain::QAOA, Box::new(QAOAAlgorithm));
1243
1244 self.classical_algorithms.insert(
1246 ClassicalAlgorithmType::MonteCarlo,
1247 Box::new(MonteCarloAlgorithm),
1248 );
1249 self.classical_algorithms.insert(
1250 ClassicalAlgorithmType::BruteForce,
1251 Box::new(BruteForceAlgorithm),
1252 );
1253 }
1254
1255 fn aggregate_quantum_resources(&self, results: &[DetailedResult]) -> QuantumResources {
1256 let avg_depth = results
1257 .iter()
1258 .map(|r| r.quantum_results.resource_usage.operations)
1259 .sum::<usize>()
1260 / results.len();
1261
1262 QuantumResources {
1263 qubits: results.iter().map(|r| r.problem_size).max().unwrap_or(0),
1264 depth: avg_depth,
1265 gate_count: avg_depth * 2, coherence_time: Duration::from_millis(100),
1267 gate_fidelity: 0.999,
1268 shots: 1000,
1269 quantum_volume: results
1270 .iter()
1271 .map(|r| r.problem_size * r.problem_size)
1272 .max()
1273 .unwrap_or(0),
1274 }
1275 }
1276
1277 fn aggregate_classical_resources(&self, results: &[DetailedResult]) -> ClassicalResources {
1278 let total_time = results
1279 .iter()
1280 .flat_map(|r| &r.classical_results)
1281 .map(|c| c.execution_time)
1282 .sum::<Duration>();
1283
1284 let avg_memory = results
1285 .iter()
1286 .flat_map(|r| &r.classical_results)
1287 .map(|c| c.resource_usage.peak_memory)
1288 .sum::<usize>()
1289 / results
1290 .iter()
1291 .flat_map(|r| &r.classical_results)
1292 .count()
1293 .max(1);
1294
1295 ClassicalResources {
1296 cpu_time: total_time,
1297 memory_usage: avg_memory,
1298 cores: self.config.hardware_specs.classical_hardware.cpu_cores,
1299 energy_consumption: 1000.0, storage: avg_memory * 2,
1301 network_bandwidth: 0.0,
1302 }
1303 }
1304
1305 fn store_results(&self, result: &QuantumAdvantageResult) -> Result<()> {
1306 let mut database = self.results_database.lock().unwrap();
1307 let key = format!("{:?}_{:?}", self.config.advantage_type, self.config.domain);
1308 database
1309 .results
1310 .entry(key)
1311 .or_insert_with(Vec::new)
1312 .push(result.clone());
1313 Ok(())
1314 }
1315}
1316
1317struct RandomCircuitSamplingAlgorithm;
1320
1321impl QuantumAlgorithm for RandomCircuitSamplingAlgorithm {
1322 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1323 let start = Instant::now();
1324
1325 let execution_time = Duration::from_millis(problem_instance.size as u64 * 10);
1327 std::thread::sleep(execution_time);
1328
1329 Ok(AlgorithmResult {
1330 algorithm_type: "Random Circuit Sampling".to_string(),
1331 execution_time,
1332 solution_quality: 0.95,
1333 resource_usage: ResourceUsage {
1334 peak_memory: problem_instance.size * 1024 * 1024, energy: 100.0,
1336 operations: problem_instance.size * 100,
1337 communication: 0.0,
1338 },
1339 success_rate: 0.95,
1340 output_distribution: Some(HashMap::new()),
1341 })
1342 }
1343
1344 fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources {
1345 QuantumResources {
1346 qubits: problem_size,
1347 depth: problem_size * 10,
1348 gate_count: problem_size * 100,
1349 coherence_time: Duration::from_millis(100),
1350 gate_fidelity: 0.999,
1351 shots: 1000,
1352 quantum_volume: problem_size * problem_size,
1353 }
1354 }
1355
1356 fn get_theoretical_scaling(&self) -> f64 {
1357 1.0 }
1359
1360 fn name(&self) -> &str {
1361 "Random Circuit Sampling"
1362 }
1363}
1364
1365struct QAOAAlgorithm;
1367
1368impl QuantumAlgorithm for QAOAAlgorithm {
1369 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1370 let execution_time = Duration::from_millis(problem_instance.size as u64 * 50);
1371 std::thread::sleep(execution_time);
1372
1373 Ok(AlgorithmResult {
1374 algorithm_type: "QAOA".to_string(),
1375 execution_time,
1376 solution_quality: 0.9,
1377 resource_usage: ResourceUsage {
1378 peak_memory: problem_instance.size * 512 * 1024,
1379 energy: 200.0,
1380 operations: problem_instance.size * 200,
1381 communication: 0.0,
1382 },
1383 success_rate: 0.9,
1384 output_distribution: None,
1385 })
1386 }
1387
1388 fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources {
1389 QuantumResources {
1390 qubits: problem_size,
1391 depth: problem_size * 5,
1392 gate_count: problem_size * 50,
1393 coherence_time: Duration::from_millis(50),
1394 gate_fidelity: 0.99,
1395 shots: 10000,
1396 quantum_volume: problem_size,
1397 }
1398 }
1399
1400 fn get_theoretical_scaling(&self) -> f64 {
1401 1.0 }
1403
1404 fn name(&self) -> &str {
1405 "QAOA"
1406 }
1407}
1408
1409struct MonteCarloAlgorithm;
1411
1412impl ClassicalAlgorithm for MonteCarloAlgorithm {
1413 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1414 let execution_time = Duration::from_millis(problem_instance.size.pow(2) as u64);
1415 std::thread::sleep(execution_time);
1416
1417 Ok(AlgorithmResult {
1418 algorithm_type: "Monte Carlo".to_string(),
1419 execution_time,
1420 solution_quality: 0.8,
1421 resource_usage: ResourceUsage {
1422 peak_memory: problem_instance.size * 1024,
1423 energy: 50.0,
1424 operations: problem_instance.size.pow(2),
1425 communication: 0.0,
1426 },
1427 success_rate: 0.8,
1428 output_distribution: None,
1429 })
1430 }
1431
1432 fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources {
1433 ClassicalResources {
1434 cpu_time: Duration::from_millis(problem_size.pow(2) as u64),
1435 memory_usage: problem_size * 1024,
1436 cores: 1,
1437 energy_consumption: 50.0,
1438 storage: problem_size * 1024,
1439 network_bandwidth: 0.0,
1440 }
1441 }
1442
1443 fn get_theoretical_scaling(&self) -> f64 {
1444 2.0 }
1446
1447 fn name(&self) -> &str {
1448 "Monte Carlo"
1449 }
1450}
1451
1452struct BruteForceAlgorithm;
1454
1455impl ClassicalAlgorithm for BruteForceAlgorithm {
1456 fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1457 let execution_time = Duration::from_millis(2_u64.pow(problem_instance.size as u32));
1458
1459 if execution_time > Duration::from_secs(60) {
1461 return Ok(AlgorithmResult {
1462 algorithm_type: "Brute Force (Timeout)".to_string(),
1463 execution_time: Duration::from_secs(60),
1464 solution_quality: 0.0,
1465 resource_usage: ResourceUsage {
1466 peak_memory: 0,
1467 energy: 0.0,
1468 operations: 0,
1469 communication: 0.0,
1470 },
1471 success_rate: 0.0,
1472 output_distribution: None,
1473 });
1474 }
1475
1476 std::thread::sleep(execution_time);
1477
1478 Ok(AlgorithmResult {
1479 algorithm_type: "Brute Force".to_string(),
1480 execution_time,
1481 solution_quality: 1.0,
1482 resource_usage: ResourceUsage {
1483 peak_memory: 2_usize.pow(problem_instance.size as u32) * 8,
1484 energy: 1000.0,
1485 operations: 2_usize.pow(problem_instance.size as u32),
1486 communication: 0.0,
1487 },
1488 success_rate: 1.0,
1489 output_distribution: None,
1490 })
1491 }
1492
1493 fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources {
1494 ClassicalResources {
1495 cpu_time: Duration::from_millis(2_u64.pow(problem_size as u32)),
1496 memory_usage: 2_usize.pow(problem_size as u32) * 8,
1497 cores: 1,
1498 energy_consumption: 1000.0,
1499 storage: 2_usize.pow(problem_size as u32) * 8,
1500 network_bandwidth: 0.0,
1501 }
1502 }
1503
1504 fn get_theoretical_scaling(&self) -> f64 {
1505 2.0_f64.ln() }
1507
1508 fn name(&self) -> &str {
1509 "Brute Force"
1510 }
1511}
1512
1513pub fn benchmark_quantum_advantage() -> Result<HashMap<String, f64>> {
1515 let mut results = HashMap::new();
1516
1517 let start = Instant::now();
1518
1519 let config = QuantumAdvantageConfig {
1520 advantage_type: QuantumAdvantageType::ComputationalAdvantage,
1521 domain: ProblemDomain::RandomCircuitSampling,
1522 classical_algorithms: vec![ClassicalAlgorithmType::MonteCarlo],
1523 problem_sizes: vec![5, 10, 15],
1524 num_trials: 3,
1525 confidence_level: 0.95,
1526 classical_timeout: Duration::from_secs(60),
1527 hardware_specs: HardwareSpecs {
1528 quantum_hardware: QuantumHardwareSpecs {
1529 num_qubits: 20,
1530 gate_fidelities: HashMap::new(),
1531 coherence_times: HashMap::new(),
1532 connectivity: vec![vec![false; 20]; 20],
1533 gate_times: HashMap::new(),
1534 readout_fidelity: 0.95,
1535 },
1536 classical_hardware: ClassicalHardwareSpecs {
1537 cpu_cores: 8,
1538 cpu_frequency: 3.0,
1539 ram_size: 32_000_000_000,
1540 cache_sizes: vec![32768, 262144, 8388608],
1541 gpu_specs: None,
1542 },
1543 },
1544 enable_profiling: true,
1545 save_results: true,
1546 };
1547
1548 let mut demonstrator = QuantumAdvantageDemonstrator::new(config);
1549 let _advantage_result = demonstrator.demonstrate_advantage()?;
1550
1551 let demo_time = start.elapsed().as_millis() as f64;
1552 results.insert("quantum_advantage_demo".to_string(), demo_time);
1553
1554 Ok(results)
1555}
1556
1557#[cfg(test)]
1558mod tests {
1559 use super::*;
1560
1561 #[test]
1562 fn test_quantum_advantage_demonstrator_creation() {
1563 let config = create_test_config();
1564 let demonstrator = QuantumAdvantageDemonstrator::new(config);
1565 assert!(!demonstrator.quantum_algorithms.is_empty());
1566 assert!(!demonstrator.classical_algorithms.is_empty());
1567 }
1568
1569 #[test]
1570 fn test_problem_instance_generation() {
1571 let config = create_test_config();
1572 let demonstrator = QuantumAdvantageDemonstrator::new(config);
1573 let instance = demonstrator.generate_problem_instance(5).unwrap();
1574 assert_eq!(instance.size, 5);
1575 }
1576
1577 #[test]
1578 fn test_power_law_fitting() {
1579 let demonstrator = QuantumAdvantageDemonstrator::new(create_test_config());
1580 let sizes = vec![1, 2, 4, 8];
1581 let times = vec![1.0, 4.0, 16.0, 64.0]; let scaling = demonstrator.fit_power_law(&sizes, ×).unwrap();
1583 assert!((scaling - 2.0).abs() < 0.1);
1584 }
1585
1586 fn create_test_config() -> QuantumAdvantageConfig {
1587 QuantumAdvantageConfig {
1588 advantage_type: QuantumAdvantageType::ComputationalAdvantage,
1589 domain: ProblemDomain::RandomCircuitSampling,
1590 classical_algorithms: vec![ClassicalAlgorithmType::MonteCarlo],
1591 problem_sizes: vec![3, 5],
1592 num_trials: 2,
1593 confidence_level: 0.95,
1594 classical_timeout: Duration::from_secs(10),
1595 hardware_specs: HardwareSpecs {
1596 quantum_hardware: QuantumHardwareSpecs {
1597 num_qubits: 10,
1598 gate_fidelities: HashMap::new(),
1599 coherence_times: HashMap::new(),
1600 connectivity: vec![vec![false; 10]; 10],
1601 gate_times: HashMap::new(),
1602 readout_fidelity: 0.95,
1603 },
1604 classical_hardware: ClassicalHardwareSpecs {
1605 cpu_cores: 4,
1606 cpu_frequency: 2.0,
1607 ram_size: 8_000_000_000,
1608 cache_sizes: vec![32768, 262144],
1609 gpu_specs: None,
1610 },
1611 },
1612 enable_profiling: false,
1613 save_results: false,
1614 }
1615 }
1616}