quantrs2_sim/
quantum_advantage_demonstration.rs

1//! Quantum Advantage Demonstration Framework
2//!
3//! This module provides comprehensive tools for demonstrating and verifying
4//! quantum computational advantages across various problem domains, including
5//! quantum supremacy tests, quantum advantage benchmarks, and comparative
6//! analysis with classical algorithms.
7
8use crate::prelude::SimulatorError;
9use ndarray::{Array1, Array2};
10use num_complex::Complex64;
11use scirs2_core::parallel_ops::*;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::sync::{Arc, Mutex};
15use std::time::{Duration, Instant};
16
17use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
18use crate::error::Result;
19
20/// Types of quantum advantage demonstrations
21#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
22pub enum QuantumAdvantageType {
23    /// Quantum supremacy (computational task impossible for classical computers)
24    QuantumSupremacy,
25    /// Quantum advantage (speedup over best known classical algorithm)
26    ComputationalAdvantage,
27    /// Sample complexity advantage
28    SampleComplexityAdvantage,
29    /// Communication complexity advantage
30    CommunicationAdvantage,
31    /// Query complexity advantage
32    QueryComplexityAdvantage,
33    /// Memory advantage
34    MemoryAdvantage,
35    /// Energy efficiency advantage
36    EnergyAdvantage,
37    /// Noise resilience advantage
38    NoiseResilienceAdvantage,
39}
40
41/// Quantum advantage problem domains
42#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
43pub enum ProblemDomain {
44    /// Random circuit sampling
45    RandomCircuitSampling,
46    /// Boson sampling
47    BosonSampling,
48    /// IQP (Instantaneous Quantum Polynomial-time) circuits
49    IQPCircuits,
50    /// Quantum approximate optimization
51    QAOA,
52    /// Variational quantum algorithms
53    VQE,
54    /// Quantum machine learning
55    QML,
56    /// Quantum simulation
57    QuantumSimulation,
58    /// Quantum cryptography
59    QuantumCryptography,
60    /// Quantum search
61    QuantumSearch,
62    /// Factor decomposition
63    Factoring,
64    /// Discrete logarithm
65    DiscreteLogarithm,
66    /// Graph problems
67    GraphProblems,
68    /// Linear algebra
69    LinearAlgebra,
70    /// Optimization
71    Optimization,
72    /// Custom domain
73    Custom,
74}
75
76/// Classical algorithm types for comparison
77#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
78pub enum ClassicalAlgorithmType {
79    /// Brute force search
80    BruteForce,
81    /// Monte Carlo sampling
82    MonteCarlo,
83    /// Markov chain Monte Carlo
84    MCMC,
85    /// Simulated annealing
86    SimulatedAnnealing,
87    /// Genetic algorithms
88    GeneticAlgorithm,
89    /// Branch and bound
90    BranchAndBound,
91    /// Dynamic programming
92    DynamicProgramming,
93    /// Approximation algorithms
94    Approximation,
95    /// Heuristic algorithms
96    Heuristic,
97    /// Machine learning
98    MachineLearning,
99    /// Tensor network methods
100    TensorNetwork,
101    /// Best known classical algorithm
102    BestKnown,
103}
104
105/// Quantum advantage metrics
106#[derive(Debug, Clone, Serialize, Deserialize)]
107pub struct QuantumAdvantageMetrics {
108    /// Quantum algorithm runtime
109    pub quantum_time: Duration,
110    /// Classical algorithm runtime
111    pub classical_time: Duration,
112    /// Speedup factor (classical_time / quantum_time)
113    pub speedup_factor: f64,
114    /// Quantum algorithm accuracy/fidelity
115    pub quantum_accuracy: f64,
116    /// Classical algorithm accuracy
117    pub classical_accuracy: f64,
118    /// Quantum resource requirements
119    pub quantum_resources: QuantumResources,
120    /// Classical resource requirements
121    pub classical_resources: ClassicalResources,
122    /// Statistical significance of advantage
123    pub statistical_significance: f64,
124    /// Confidence interval
125    pub confidence_interval: (f64, f64),
126    /// Problem size scaling
127    pub scaling_analysis: ScalingAnalysis,
128}
129
130/// Quantum resource requirements
131#[derive(Debug, Clone, Serialize, Deserialize)]
132pub struct QuantumResources {
133    /// Number of qubits required
134    pub qubits: usize,
135    /// Circuit depth
136    pub depth: usize,
137    /// Number of gates
138    pub gate_count: usize,
139    /// Coherence time required
140    pub coherence_time: Duration,
141    /// Gate fidelity required
142    pub gate_fidelity: f64,
143    /// Measurement shots
144    pub shots: usize,
145    /// Quantum volume required
146    pub quantum_volume: usize,
147}
148
149/// Classical resource requirements
150#[derive(Debug, Clone, Serialize, Deserialize)]
151pub struct ClassicalResources {
152    /// CPU time
153    pub cpu_time: Duration,
154    /// Memory usage (bytes)
155    pub memory_usage: usize,
156    /// Number of cores used
157    pub cores: usize,
158    /// Energy consumption (joules)
159    pub energy_consumption: f64,
160    /// Storage requirements (bytes)
161    pub storage: usize,
162    /// Network bandwidth (if distributed)
163    pub network_bandwidth: f64,
164}
165
166/// Scaling analysis
167#[derive(Debug, Clone, Serialize, Deserialize)]
168pub struct ScalingAnalysis {
169    /// Problem sizes tested
170    pub problem_sizes: Vec<usize>,
171    /// Quantum scaling exponent
172    pub quantum_scaling: f64,
173    /// Classical scaling exponent
174    pub classical_scaling: f64,
175    /// Crossover point where quantum becomes advantageous
176    pub crossover_point: Option<usize>,
177    /// Asymptotic advantage factor
178    pub asymptotic_advantage: f64,
179}
180
181/// Quantum advantage configuration
182#[derive(Debug, Clone)]
183pub struct QuantumAdvantageConfig {
184    /// Type of advantage to demonstrate
185    pub advantage_type: QuantumAdvantageType,
186    /// Problem domain
187    pub domain: ProblemDomain,
188    /// Classical algorithms to compare against
189    pub classical_algorithms: Vec<ClassicalAlgorithmType>,
190    /// Problem sizes to test
191    pub problem_sizes: Vec<usize>,
192    /// Number of trials for statistical analysis
193    pub num_trials: usize,
194    /// Confidence level for statistical tests
195    pub confidence_level: f64,
196    /// Maximum runtime for classical algorithms
197    pub classical_timeout: Duration,
198    /// Hardware specifications
199    pub hardware_specs: HardwareSpecs,
200    /// Enable detailed profiling
201    pub enable_profiling: bool,
202    /// Save intermediate results
203    pub save_results: bool,
204}
205
206/// Hardware specifications
207#[derive(Debug, Clone)]
208pub struct HardwareSpecs {
209    /// Quantum hardware specifications
210    pub quantum_hardware: QuantumHardwareSpecs,
211    /// Classical hardware specifications
212    pub classical_hardware: ClassicalHardwareSpecs,
213}
214
215/// Quantum hardware specifications
216#[derive(Debug, Clone)]
217pub struct QuantumHardwareSpecs {
218    /// Number of available qubits
219    pub num_qubits: usize,
220    /// Gate fidelities
221    pub gate_fidelities: HashMap<String, f64>,
222    /// Coherence times
223    pub coherence_times: HashMap<String, Duration>,
224    /// Connectivity graph
225    pub connectivity: Vec<Vec<bool>>,
226    /// Gate times
227    pub gate_times: HashMap<String, Duration>,
228    /// Readout fidelity
229    pub readout_fidelity: f64,
230}
231
232/// Classical hardware specifications
233#[derive(Debug, Clone)]
234pub struct ClassicalHardwareSpecs {
235    /// Number of CPU cores
236    pub cpu_cores: usize,
237    /// CPU frequency (GHz)
238    pub cpu_frequency: f64,
239    /// RAM size (bytes)
240    pub ram_size: usize,
241    /// Cache sizes
242    pub cache_sizes: Vec<usize>,
243    /// GPU specifications (if available)
244    pub gpu_specs: Option<GPUSpecs>,
245}
246
247/// GPU specifications
248#[derive(Debug, Clone)]
249pub struct GPUSpecs {
250    /// Number of compute units
251    pub compute_units: usize,
252    /// Memory size (bytes)
253    pub memory_size: usize,
254    /// Memory bandwidth (GB/s)
255    pub memory_bandwidth: f64,
256    /// Peak FLOPS
257    pub peak_flops: f64,
258}
259
260/// Quantum advantage demonstration result
261#[derive(Debug, Clone, Serialize, Deserialize)]
262pub struct QuantumAdvantageResult {
263    /// Whether quantum advantage was demonstrated
264    pub advantage_demonstrated: bool,
265    /// Advantage metrics
266    pub metrics: QuantumAdvantageMetrics,
267    /// Detailed results for each problem size
268    pub detailed_results: Vec<DetailedResult>,
269    /// Statistical analysis
270    pub statistical_analysis: StatisticalAnalysis,
271    /// Verification results
272    pub verification: VerificationResult,
273    /// Cost analysis
274    pub cost_analysis: CostAnalysis,
275    /// Future projections
276    pub projections: FutureProjections,
277}
278
279/// Detailed result for a specific problem size
280#[derive(Debug, Clone, Serialize, Deserialize)]
281pub struct DetailedResult {
282    /// Problem size
283    pub problem_size: usize,
284    /// Quantum results
285    pub quantum_results: AlgorithmResult,
286    /// Classical results
287    pub classical_results: Vec<AlgorithmResult>,
288    /// Comparative analysis
289    pub comparison: ComparisonResult,
290}
291
292/// Algorithm execution result
293#[derive(Debug, Clone, Serialize, Deserialize)]
294pub struct AlgorithmResult {
295    /// Algorithm type
296    pub algorithm_type: String,
297    /// Execution time
298    pub execution_time: Duration,
299    /// Solution quality/accuracy
300    pub solution_quality: f64,
301    /// Resource usage
302    pub resource_usage: ResourceUsage,
303    /// Success rate (for probabilistic algorithms)
304    pub success_rate: f64,
305    /// Output distribution (for sampling problems)
306    pub output_distribution: Option<HashMap<String, f64>>,
307}
308
309/// Resource usage tracking
310#[derive(Debug, Clone, Serialize, Deserialize)]
311pub struct ResourceUsage {
312    /// Memory peak usage
313    pub peak_memory: usize,
314    /// Energy consumption
315    pub energy: f64,
316    /// Number of operations
317    pub operations: usize,
318    /// Communication cost (for distributed algorithms)
319    pub communication: f64,
320}
321
322/// Comparison result between quantum and classical
323#[derive(Debug, Clone, Serialize, Deserialize)]
324pub struct ComparisonResult {
325    /// Best classical algorithm
326    pub best_classical: String,
327    /// Speedup vs best classical
328    pub speedup: f64,
329    /// Quality improvement
330    pub quality_improvement: f64,
331    /// Resource efficiency
332    pub resource_efficiency: f64,
333    /// Statistical significance
334    pub significance: f64,
335}
336
337/// Statistical analysis of results
338#[derive(Debug, Clone, Serialize, Deserialize)]
339pub struct StatisticalAnalysis {
340    /// Hypothesis test results
341    pub hypothesis_tests: Vec<HypothesisTest>,
342    /// Confidence intervals
343    pub confidence_intervals: HashMap<String, (f64, f64)>,
344    /// Effect sizes
345    pub effect_sizes: HashMap<String, f64>,
346    /// Power analysis
347    pub power_analysis: PowerAnalysis,
348}
349
350/// Hypothesis test result
351#[derive(Debug, Clone, Serialize, Deserialize)]
352pub struct HypothesisTest {
353    /// Test name
354    pub test_name: String,
355    /// Null hypothesis
356    pub null_hypothesis: String,
357    /// Test statistic
358    pub test_statistic: f64,
359    /// P-value
360    pub p_value: f64,
361    /// Reject null hypothesis
362    pub reject_null: bool,
363}
364
365/// Power analysis for statistical tests
366#[derive(Debug, Clone, Serialize, Deserialize)]
367pub struct PowerAnalysis {
368    /// Statistical power
369    pub power: f64,
370    /// Effect size
371    pub effect_size: f64,
372    /// Sample size required for desired power
373    pub required_sample_size: usize,
374}
375
376/// Verification of quantum advantage claims
377#[derive(Debug, Clone, Serialize, Deserialize)]
378pub struct VerificationResult {
379    /// Classical verification methods used
380    pub verification_methods: Vec<String>,
381    /// Verification success rate
382    pub verification_success_rate: f64,
383    /// Spoofing resistance
384    pub spoofing_resistance: f64,
385    /// Independent verification
386    pub independent_verification: Option<IndependentVerification>,
387}
388
389/// Independent verification by third parties
390#[derive(Debug, Clone, Serialize, Deserialize)]
391pub struct IndependentVerification {
392    /// Verifying institutions
393    pub verifiers: Vec<String>,
394    /// Verification results
395    pub results: Vec<bool>,
396    /// Consensus level
397    pub consensus: f64,
398}
399
400/// Cost analysis of quantum vs classical approaches
401#[derive(Debug, Clone, Serialize, Deserialize)]
402pub struct CostAnalysis {
403    /// Quantum hardware cost
404    pub quantum_hardware_cost: f64,
405    /// Classical hardware cost
406    pub classical_hardware_cost: f64,
407    /// Operational costs
408    pub operational_costs: OperationalCosts,
409    /// Total cost of ownership
410    pub total_cost_ownership: f64,
411    /// Cost per solution
412    pub cost_per_solution: f64,
413}
414
415/// Operational costs breakdown
416#[derive(Debug, Clone, Serialize, Deserialize)]
417pub struct OperationalCosts {
418    /// Energy costs
419    pub energy: f64,
420    /// Maintenance costs
421    pub maintenance: f64,
422    /// Personnel costs
423    pub personnel: f64,
424    /// Infrastructure costs
425    pub infrastructure: f64,
426}
427
428/// Future projections for quantum advantage
429#[derive(Debug, Clone, Serialize, Deserialize)]
430pub struct FutureProjections {
431    /// Projected quantum improvements
432    pub quantum_improvements: TechnologyProjection,
433    /// Projected classical improvements
434    pub classical_improvements: TechnologyProjection,
435    /// Timeline predictions
436    pub timeline: TimelineProjection,
437    /// Market impact assessment
438    pub market_impact: MarketImpact,
439}
440
441/// Technology improvement projections
442#[derive(Debug, Clone, Serialize, Deserialize)]
443pub struct TechnologyProjection {
444    /// Performance improvement factor per year
445    pub performance_improvement: f64,
446    /// Cost reduction factor per year
447    pub cost_reduction: f64,
448    /// Reliability improvement
449    pub reliability_improvement: f64,
450    /// Scalability projections
451    pub scalability: Vec<(usize, f64)>, // (year, capability)
452}
453
454/// Timeline for quantum advantage milestones
455#[derive(Debug, Clone, Serialize, Deserialize)]
456pub struct TimelineProjection {
457    /// Milestones and expected years
458    pub milestones: Vec<(String, usize)>,
459    /// Confidence in projections
460    pub confidence: f64,
461    /// Key uncertainty factors
462    pub uncertainties: Vec<String>,
463}
464
465/// Market impact assessment
466#[derive(Debug, Clone, Serialize, Deserialize)]
467pub struct MarketImpact {
468    /// Industries affected
469    pub affected_industries: Vec<String>,
470    /// Economic impact estimates
471    pub economic_impact: f64,
472    /// Job displacement/creation
473    pub employment_impact: EmploymentImpact,
474    /// Investment projections
475    pub investment_projections: Vec<(usize, f64)>, // (year, investment)
476}
477
478/// Employment impact analysis
479#[derive(Debug, Clone, Serialize, Deserialize)]
480pub struct EmploymentImpact {
481    /// Jobs displaced
482    pub jobs_displaced: usize,
483    /// Jobs created
484    pub jobs_created: usize,
485    /// Reskilling requirements
486    pub reskilling_needed: usize,
487}
488
489/// Main quantum advantage demonstration framework
490pub struct QuantumAdvantageDemonstrator {
491    /// Configuration
492    config: QuantumAdvantageConfig,
493    /// Quantum algorithm implementations
494    quantum_algorithms: HashMap<ProblemDomain, Box<dyn QuantumAlgorithm + Send + Sync>>,
495    /// Classical algorithm implementations
496    classical_algorithms:
497        HashMap<ClassicalAlgorithmType, Box<dyn ClassicalAlgorithm + Send + Sync>>,
498    /// Results database
499    results_database: Arc<Mutex<ResultsDatabase>>,
500    /// Performance profiler
501    profiler: Arc<Mutex<PerformanceProfiler>>,
502}
503
504/// Quantum algorithm trait
505pub trait QuantumAlgorithm: Send + Sync {
506    /// Execute quantum algorithm
507    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult>;
508
509    /// Get resource requirements
510    fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources;
511
512    /// Get theoretical scaling
513    fn get_theoretical_scaling(&self) -> f64;
514
515    /// Algorithm name
516    fn name(&self) -> &str;
517}
518
519/// Classical algorithm trait
520pub trait ClassicalAlgorithm: Send + Sync {
521    /// Execute classical algorithm
522    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult>;
523
524    /// Get resource requirements
525    fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources;
526
527    /// Get theoretical scaling
528    fn get_theoretical_scaling(&self) -> f64;
529
530    /// Algorithm name
531    fn name(&self) -> &str;
532}
533
534/// Problem instance representation
535#[derive(Debug, Clone)]
536pub struct ProblemInstance {
537    /// Problem domain
538    pub domain: ProblemDomain,
539    /// Problem size
540    pub size: usize,
541    /// Problem-specific data
542    pub data: ProblemData,
543    /// Difficulty parameters
544    pub difficulty: DifficultyParameters,
545}
546
547/// Problem-specific data
548#[derive(Debug, Clone)]
549pub enum ProblemData {
550    /// Random circuit sampling data
551    RandomCircuit {
552        circuit: InterfaceCircuit,
553        target_distribution: HashMap<String, f64>,
554    },
555    /// Graph problem data
556    Graph {
557        adjacency_matrix: Array2<f64>,
558        vertex_weights: Vec<f64>,
559        edge_weights: HashMap<(usize, usize), f64>,
560    },
561    /// Optimization problem data
562    Optimization {
563        objective_function: Vec<f64>,
564        constraints: Vec<Vec<f64>>,
565        bounds: Vec<(f64, f64)>,
566    },
567    /// Search problem data
568    Search {
569        search_space: Vec<Vec<f64>>,
570        target_function: Vec<f64>,
571        oracle_queries: usize,
572    },
573    /// Simulation problem data
574    Simulation {
575        hamiltonian: Array2<Complex64>,
576        initial_state: Array1<Complex64>,
577        evolution_time: f64,
578    },
579    /// Custom problem data
580    Custom { data: HashMap<String, Vec<f64>> },
581}
582
583/// Difficulty parameters
584#[derive(Debug, Clone)]
585pub struct DifficultyParameters {
586    /// Instance hardness (0.0 = easy, 1.0 = hard)
587    pub hardness: f64,
588    /// Noise level
589    pub noise_level: f64,
590    /// Time constraints
591    pub time_limit: Option<Duration>,
592    /// Accuracy requirements
593    pub accuracy_threshold: f64,
594}
595
596/// Results database
597#[derive(Debug, Clone)]
598pub struct ResultsDatabase {
599    /// Stored results by configuration
600    pub results: HashMap<String, Vec<QuantumAdvantageResult>>,
601    /// Metadata
602    pub metadata: HashMap<String, String>,
603}
604
605/// Performance profiler
606#[derive(Debug, Clone)]
607pub struct PerformanceProfiler {
608    /// Timing data
609    pub timing_data: HashMap<String, Vec<Duration>>,
610    /// Memory usage data
611    pub memory_data: HashMap<String, Vec<usize>>,
612    /// Energy consumption data
613    pub energy_data: HashMap<String, Vec<f64>>,
614}
615
616impl QuantumAdvantageDemonstrator {
617    /// Create new quantum advantage demonstrator
618    pub fn new(config: QuantumAdvantageConfig) -> Self {
619        let mut demonstrator = Self {
620            config,
621            quantum_algorithms: HashMap::new(),
622            classical_algorithms: HashMap::new(),
623            results_database: Arc::new(Mutex::new(ResultsDatabase {
624                results: HashMap::new(),
625                metadata: HashMap::new(),
626            })),
627            profiler: Arc::new(Mutex::new(PerformanceProfiler {
628                timing_data: HashMap::new(),
629                memory_data: HashMap::new(),
630                energy_data: HashMap::new(),
631            })),
632        };
633
634        // Register default algorithms
635        demonstrator.register_default_algorithms();
636        demonstrator
637    }
638
639    /// Demonstrate quantum advantage
640    pub fn demonstrate_advantage(&mut self) -> Result<QuantumAdvantageResult> {
641        let mut detailed_results = Vec::new();
642        let mut all_speedups = Vec::new();
643        let mut all_accuracies = Vec::new();
644
645        println!(
646            "Starting quantum advantage demonstration for {:?} in {:?} domain",
647            self.config.advantage_type, self.config.domain
648        );
649
650        // Test each problem size
651        let problem_sizes = self.config.problem_sizes.clone();
652        for problem_size in problem_sizes {
653            println!("Testing problem size: {}", problem_size);
654
655            let detailed_result = self.test_problem_size(problem_size)?;
656
657            all_speedups.push(detailed_result.comparison.speedup);
658            all_accuracies.push(detailed_result.quantum_results.solution_quality);
659
660            detailed_results.push(detailed_result);
661        }
662
663        // Perform scaling analysis
664        let scaling_analysis = self.analyze_scaling(&detailed_results)?;
665
666        // Statistical analysis
667        let statistical_analysis = self.perform_statistical_analysis(&detailed_results)?;
668
669        // Verification
670        let verification = self.verify_results(&detailed_results)?;
671
672        // Cost analysis
673        let cost_analysis = self.analyze_costs(&detailed_results)?;
674
675        // Future projections
676        let projections = self.generate_projections(&detailed_results)?;
677
678        // Overall metrics
679        let overall_speedup = all_speedups
680            .iter()
681            .fold(1.0, |acc, &x| acc * x)
682            .powf(1.0 / all_speedups.len() as f64);
683        let avg_accuracy = all_accuracies.iter().sum::<f64>() / all_accuracies.len() as f64;
684
685        let quantum_time = detailed_results
686            .iter()
687            .map(|r| r.quantum_results.execution_time)
688            .sum::<Duration>()
689            / detailed_results.len() as u32;
690
691        let best_classical_time = detailed_results
692            .iter()
693            .map(|r| {
694                r.classical_results
695                    .iter()
696                    .map(|c| c.execution_time)
697                    .min()
698                    .unwrap_or(Duration::new(0, 0))
699            })
700            .sum::<Duration>()
701            / detailed_results.len() as u32;
702
703        let metrics = QuantumAdvantageMetrics {
704            quantum_time,
705            classical_time: best_classical_time,
706            speedup_factor: overall_speedup,
707            quantum_accuracy: avg_accuracy,
708            classical_accuracy: detailed_results
709                .iter()
710                .map(|r| {
711                    r.classical_results
712                        .iter()
713                        .map(|c| c.solution_quality)
714                        .max_by(|a, b| a.partial_cmp(b).unwrap())
715                        .unwrap_or(0.0)
716                })
717                .sum::<f64>()
718                / detailed_results.len() as f64,
719            quantum_resources: self.aggregate_quantum_resources(&detailed_results),
720            classical_resources: self.aggregate_classical_resources(&detailed_results),
721            statistical_significance: statistical_analysis
722                .hypothesis_tests
723                .iter()
724                .find(|t| t.test_name == "quantum_advantage")
725                .map(|t| 1.0 - t.p_value)
726                .unwrap_or(0.0),
727            confidence_interval: (overall_speedup * 0.9, overall_speedup * 1.1), // Simplified
728            scaling_analysis,
729        };
730
731        let advantage_demonstrated = overall_speedup > 1.0
732            && statistical_analysis
733                .hypothesis_tests
734                .iter()
735                .any(|t| t.test_name == "quantum_advantage" && t.reject_null);
736
737        let result = QuantumAdvantageResult {
738            advantage_demonstrated,
739            metrics,
740            detailed_results,
741            statistical_analysis,
742            verification,
743            cost_analysis,
744            projections,
745        };
746
747        // Store results
748        self.store_results(&result)?;
749
750        Ok(result)
751    }
752
753    /// Test a specific problem size
754    fn test_problem_size(&mut self, problem_size: usize) -> Result<DetailedResult> {
755        // Generate problem instance
756        let problem_instance = self.generate_problem_instance(problem_size)?;
757
758        // Execute quantum algorithm
759        let quantum_start = Instant::now();
760        let quantum_algorithm = self
761            .quantum_algorithms
762            .get(&self.config.domain)
763            .ok_or_else(|| {
764                SimulatorError::UnsupportedOperation(format!(
765                    "No quantum algorithm registered for domain {:?}",
766                    self.config.domain
767                ))
768            })?;
769
770        let quantum_results = quantum_algorithm.execute(&problem_instance)?;
771        let quantum_time = quantum_start.elapsed();
772
773        // Execute classical algorithms
774        let mut classical_results = Vec::new();
775        for &classical_type in &self.config.classical_algorithms {
776            if let Some(classical_algorithm) = self.classical_algorithms.get(&classical_type) {
777                let classical_start = Instant::now();
778
779                // Set timeout for classical algorithms
780                let result = if classical_start.elapsed() < self.config.classical_timeout {
781                    classical_algorithm.execute(&problem_instance)?
782                } else {
783                    // Timeout result
784                    AlgorithmResult {
785                        algorithm_type: classical_algorithm.name().to_string(),
786                        execution_time: self.config.classical_timeout,
787                        solution_quality: 0.0,
788                        resource_usage: ResourceUsage {
789                            peak_memory: 0,
790                            energy: 0.0,
791                            operations: 0,
792                            communication: 0.0,
793                        },
794                        success_rate: 0.0,
795                        output_distribution: None,
796                    }
797                };
798
799                classical_results.push(result);
800            }
801        }
802
803        // Compare results
804        let comparison = self.compare_results(&quantum_results, &classical_results)?;
805
806        Ok(DetailedResult {
807            problem_size,
808            quantum_results,
809            classical_results,
810            comparison,
811        })
812    }
813
814    /// Generate problem instance for given size
815    fn generate_problem_instance(&self, size: usize) -> Result<ProblemInstance> {
816        let data = match self.config.domain {
817            ProblemDomain::RandomCircuitSampling => {
818                let circuit = self.generate_random_circuit(size)?;
819                ProblemData::RandomCircuit {
820                    circuit,
821                    target_distribution: HashMap::new(), // Would compute actual distribution
822                }
823            }
824            ProblemDomain::GraphProblems => {
825                let adjacency_matrix = Array2::from_shape_fn((size, size), |(i, j)| {
826                    if i != j && rand::random::<f64>() < 0.3 {
827                        rand::random::<f64>()
828                    } else {
829                        0.0
830                    }
831                });
832                ProblemData::Graph {
833                    adjacency_matrix,
834                    vertex_weights: (0..size).map(|_| rand::random::<f64>()).collect(),
835                    edge_weights: HashMap::new(),
836                }
837            }
838            ProblemDomain::Optimization => {
839                ProblemData::Optimization {
840                    objective_function: (0..size).map(|_| rand::random::<f64>()).collect(),
841                    constraints: vec![vec![1.0; size]], // Sum constraint
842                    bounds: vec![(0.0, 1.0); size],
843                }
844            }
845            ProblemDomain::QuantumSimulation => {
846                let hamiltonian = Array2::from_shape_fn((1 << size, 1 << size), |(i, j)| {
847                    if i == j {
848                        Complex64::new(rand::random::<f64>(), 0.0)
849                    } else if (i ^ j).count_ones() == 1 {
850                        Complex64::new(rand::random::<f64>() * 0.1, 0.0)
851                    } else {
852                        Complex64::new(0.0, 0.0)
853                    }
854                });
855                let initial_state = {
856                    let mut state = Array1::zeros(1 << size);
857                    state[0] = Complex64::new(1.0, 0.0);
858                    state
859                };
860                ProblemData::Simulation {
861                    hamiltonian,
862                    initial_state,
863                    evolution_time: 1.0,
864                }
865            }
866            _ => ProblemData::Custom {
867                data: HashMap::new(),
868            },
869        };
870
871        Ok(ProblemInstance {
872            domain: self.config.domain,
873            size,
874            data,
875            difficulty: DifficultyParameters {
876                hardness: 0.5,
877                noise_level: 0.01,
878                time_limit: Some(Duration::from_secs(3600)),
879                accuracy_threshold: 0.95,
880            },
881        })
882    }
883
884    /// Generate random circuit for supremacy testing
885    fn generate_random_circuit(&self, num_qubits: usize) -> Result<InterfaceCircuit> {
886        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
887        let depth = num_qubits * 10; // Scaled depth
888
889        for layer in 0..depth {
890            // Single-qubit gates
891            for qubit in 0..num_qubits {
892                let gate_type = match layer % 3 {
893                    0 => InterfaceGateType::RX(rand::random::<f64>() * 2.0 * std::f64::consts::PI),
894                    1 => InterfaceGateType::RY(rand::random::<f64>() * 2.0 * std::f64::consts::PI),
895                    _ => InterfaceGateType::RZ(rand::random::<f64>() * 2.0 * std::f64::consts::PI),
896                };
897                circuit.add_gate(InterfaceGate::new(gate_type, vec![qubit]));
898            }
899
900            // Two-qubit gates
901            if layer % 2 == 1 {
902                for qubit in 0..num_qubits - 1 {
903                    if rand::random::<f64>() < 0.5 {
904                        circuit.add_gate(InterfaceGate::new(
905                            InterfaceGateType::CNOT,
906                            vec![qubit, qubit + 1],
907                        ));
908                    }
909                }
910            }
911        }
912
913        Ok(circuit)
914    }
915
916    /// Compare quantum and classical results
917    fn compare_results(
918        &self,
919        quantum: &AlgorithmResult,
920        classical_results: &[AlgorithmResult],
921    ) -> Result<ComparisonResult> {
922        let best_classical = classical_results
923            .iter()
924            .min_by(|a, b| a.execution_time.cmp(&b.execution_time))
925            .ok_or_else(|| SimulatorError::InvalidInput("No classical results".to_string()))?;
926
927        let speedup =
928            best_classical.execution_time.as_secs_f64() / quantum.execution_time.as_secs_f64();
929        let quality_improvement = quantum.solution_quality / best_classical.solution_quality;
930        let resource_efficiency = (best_classical.resource_usage.peak_memory as f64)
931            / (quantum.resource_usage.peak_memory as f64);
932
933        // Simplified statistical significance calculation
934        let significance = if speedup > 1.0 { 0.95 } else { 0.05 };
935
936        Ok(ComparisonResult {
937            best_classical: best_classical.algorithm_type.clone(),
938            speedup,
939            quality_improvement,
940            resource_efficiency,
941            significance,
942        })
943    }
944
945    /// Analyze scaling behavior
946    fn analyze_scaling(&self, results: &[DetailedResult]) -> Result<ScalingAnalysis> {
947        let problem_sizes: Vec<usize> = results.iter().map(|r| r.problem_size).collect();
948        let quantum_times: Vec<f64> = results
949            .iter()
950            .map(|r| r.quantum_results.execution_time.as_secs_f64())
951            .collect();
952        let classical_times: Vec<f64> = results
953            .iter()
954            .map(|r| {
955                r.classical_results
956                    .iter()
957                    .map(|c| c.execution_time.as_secs_f64())
958                    .min_by(|a, b| a.partial_cmp(b).unwrap())
959                    .unwrap_or(0.0)
960            })
961            .collect();
962
963        // Fit power law scaling: T = a * n^b
964        let quantum_scaling = self.fit_power_law(&problem_sizes, &quantum_times)?;
965        let classical_scaling = self.fit_power_law(&problem_sizes, &classical_times)?;
966
967        // Find crossover point
968        let crossover_point =
969            self.find_crossover_point(&problem_sizes, &quantum_times, &classical_times);
970
971        // Calculate asymptotic advantage
972        let asymptotic_advantage = if classical_scaling > quantum_scaling {
973            f64::INFINITY
974        } else {
975            classical_scaling / quantum_scaling
976        };
977
978        Ok(ScalingAnalysis {
979            problem_sizes,
980            quantum_scaling,
981            classical_scaling,
982            crossover_point,
983            asymptotic_advantage,
984        })
985    }
986
987    /// Fit power law to data
988    fn fit_power_law(&self, sizes: &[usize], times: &[f64]) -> Result<f64> {
989        if sizes.len() != times.len() || sizes.len() < 2 {
990            return Ok(1.0); // Default scaling
991        }
992
993        // Linear regression on log-log scale: log(T) = log(a) + b*log(n)
994        let log_sizes: Vec<f64> = sizes.iter().map(|&s| (s as f64).ln()).collect();
995        let log_times: Vec<f64> = times.iter().map(|&t| (t.max(1e-10)).ln()).collect();
996
997        let n = log_sizes.len() as f64;
998        let sum_x = log_sizes.iter().sum::<f64>();
999        let sum_y = log_times.iter().sum::<f64>();
1000        let sum_xy = log_sizes
1001            .iter()
1002            .zip(&log_times)
1003            .map(|(x, y)| x * y)
1004            .sum::<f64>();
1005        let sum_x2 = log_sizes.iter().map(|x| x * x).sum::<f64>();
1006
1007        let slope = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - sum_x * sum_x);
1008        Ok(slope)
1009    }
1010
1011    /// Find crossover point where quantum becomes faster
1012    fn find_crossover_point(
1013        &self,
1014        sizes: &[usize],
1015        quantum_times: &[f64],
1016        classical_times: &[f64],
1017    ) -> Option<usize> {
1018        for (i, (&size, (&qt, &ct))) in sizes
1019            .iter()
1020            .zip(quantum_times.iter().zip(classical_times.iter()))
1021            .enumerate()
1022        {
1023            if qt < ct {
1024                return Some(size);
1025            }
1026        }
1027        None
1028    }
1029
1030    /// Perform statistical analysis
1031    fn perform_statistical_analysis(
1032        &self,
1033        results: &[DetailedResult],
1034    ) -> Result<StatisticalAnalysis> {
1035        let mut hypothesis_tests = Vec::new();
1036
1037        // Test for quantum advantage (speedup > 1)
1038        let speedups: Vec<f64> = results.iter().map(|r| r.comparison.speedup).collect();
1039        let avg_speedup = speedups.iter().sum::<f64>() / speedups.len() as f64;
1040        let speedup_variance = speedups
1041            .iter()
1042            .map(|s| (s - avg_speedup).powi(2))
1043            .sum::<f64>()
1044            / speedups.len() as f64;
1045
1046        // One-sample t-test for speedup > 1
1047        let t_statistic =
1048            (avg_speedup - 1.0) / (speedup_variance.sqrt() / (speedups.len() as f64).sqrt());
1049        let p_value = self.compute_t_test_p_value(t_statistic, speedups.len() - 1);
1050
1051        hypothesis_tests.push(HypothesisTest {
1052            test_name: "quantum_advantage".to_string(),
1053            null_hypothesis: "No quantum speedup (speedup <= 1)".to_string(),
1054            test_statistic: t_statistic,
1055            p_value,
1056            reject_null: p_value < 0.05,
1057        });
1058
1059        // Confidence intervals
1060        let mut confidence_intervals = HashMap::new();
1061        let margin_of_error = 1.96 * speedup_variance.sqrt() / (speedups.len() as f64).sqrt();
1062        confidence_intervals.insert(
1063            "speedup".to_string(),
1064            (avg_speedup - margin_of_error, avg_speedup + margin_of_error),
1065        );
1066
1067        // Effect sizes
1068        let mut effect_sizes = HashMap::new();
1069        effect_sizes.insert(
1070            "speedup_cohen_d".to_string(),
1071            (avg_speedup - 1.0) / speedup_variance.sqrt(),
1072        );
1073
1074        // Power analysis
1075        let power_analysis = PowerAnalysis {
1076            power: 0.8, // Would calculate actual power
1077            effect_size: (avg_speedup - 1.0) / speedup_variance.sqrt(),
1078            required_sample_size: 30, // Would calculate required N for desired power
1079        };
1080
1081        Ok(StatisticalAnalysis {
1082            hypothesis_tests,
1083            confidence_intervals,
1084            effect_sizes,
1085            power_analysis,
1086        })
1087    }
1088
1089    /// Compute p-value for t-test
1090    fn compute_t_test_p_value(&self, t_statistic: f64, degrees_of_freedom: usize) -> f64 {
1091        // Simplified p-value calculation - would use proper statistical libraries
1092        if t_statistic.abs() > 2.0 {
1093            0.01
1094        } else if t_statistic.abs() > 1.0 {
1095            0.05
1096        } else {
1097            0.5
1098        }
1099    }
1100
1101    /// Verify quantum advantage results
1102    fn verify_results(&self, results: &[DetailedResult]) -> Result<VerificationResult> {
1103        let mut verification_methods = Vec::new();
1104        let mut verification_successes = 0;
1105        let total_verifications = results.len();
1106
1107        for result in results {
1108            // Cross-entropy benchmarking for sampling problems
1109            if matches!(self.config.domain, ProblemDomain::RandomCircuitSampling) {
1110                verification_methods.push("Cross-entropy benchmarking".to_string());
1111                // Simplified verification - would implement actual cross-entropy test
1112                if result.quantum_results.solution_quality > 0.9 {
1113                    verification_successes += 1;
1114                }
1115            }
1116
1117            // Linear XEB (Cross-Entropy Benchmarking)
1118            verification_methods.push("Linear XEB".to_string());
1119            if result.quantum_results.solution_quality > 0.8 {
1120                verification_successes += 1;
1121            }
1122        }
1123
1124        let verification_success_rate = verification_successes as f64 / total_verifications as f64;
1125        let spoofing_resistance = 0.95; // Would calculate based on complexity
1126
1127        Ok(VerificationResult {
1128            verification_methods,
1129            verification_success_rate,
1130            spoofing_resistance,
1131            independent_verification: None, // Would implement if available
1132        })
1133    }
1134
1135    /// Analyze costs
1136    fn analyze_costs(&self, results: &[DetailedResult]) -> Result<CostAnalysis> {
1137        // Simplified cost analysis
1138        let quantum_hardware_cost = 10_000_000.0; // $10M quantum computer
1139        let classical_hardware_cost = 100_000.0; // $100K classical computer
1140
1141        let operational_costs = OperationalCosts {
1142            energy: 1000.0,         // Daily energy cost
1143            maintenance: 5000.0,    // Daily maintenance
1144            personnel: 2000.0,      // Daily personnel cost
1145            infrastructure: 1000.0, // Daily infrastructure
1146        };
1147
1148        let daily_operational_cost = operational_costs.energy
1149            + operational_costs.maintenance
1150            + operational_costs.personnel
1151            + operational_costs.infrastructure;
1152
1153        let total_cost_ownership = quantum_hardware_cost + daily_operational_cost * 365.0;
1154
1155        let num_solutions = results.len() as f64;
1156        let cost_per_solution = total_cost_ownership / num_solutions;
1157
1158        Ok(CostAnalysis {
1159            quantum_hardware_cost,
1160            classical_hardware_cost,
1161            operational_costs,
1162            total_cost_ownership,
1163            cost_per_solution,
1164        })
1165    }
1166
1167    /// Generate future projections
1168    fn generate_projections(&self, _results: &[DetailedResult]) -> Result<FutureProjections> {
1169        // Quantum technology projections
1170        let quantum_improvements = TechnologyProjection {
1171            performance_improvement: 1.5, // 50% improvement per year
1172            cost_reduction: 0.8,          // 20% cost reduction per year
1173            reliability_improvement: 1.2, // 20% reliability improvement per year
1174            scalability: vec![(2024, 100.0), (2025, 200.0), (2030, 1000.0)],
1175        };
1176
1177        // Classical technology projections
1178        let classical_improvements = TechnologyProjection {
1179            performance_improvement: 1.1, // 10% improvement per year (Moore's law slowing)
1180            cost_reduction: 0.95,         // 5% cost reduction per year
1181            reliability_improvement: 1.05, // 5% reliability improvement per year
1182            scalability: vec![(2024, 1000.0), (2025, 1100.0), (2030, 1500.0)],
1183        };
1184
1185        // Timeline projections
1186        let timeline = TimelineProjection {
1187            milestones: vec![
1188                ("Fault-tolerant quantum computers".to_string(), 2030),
1189                (
1190                    "Practical quantum advantage in optimization".to_string(),
1191                    2026,
1192                ),
1193                ("Quantum supremacy in machine learning".to_string(), 2028),
1194                ("Commercial quantum advantage".to_string(), 2032),
1195            ],
1196            confidence: 0.7,
1197            uncertainties: vec![
1198                "Error correction overhead".to_string(),
1199                "Classical algorithm improvements".to_string(),
1200                "Hardware manufacturing challenges".to_string(),
1201            ],
1202        };
1203
1204        // Market impact
1205        let market_impact = MarketImpact {
1206            affected_industries: vec![
1207                "Finance".to_string(),
1208                "Pharmaceuticals".to_string(),
1209                "Logistics".to_string(),
1210                "Energy".to_string(),
1211                "Cybersecurity".to_string(),
1212            ],
1213            economic_impact: 1_000_000_000_000.0, // $1T by 2035
1214            employment_impact: EmploymentImpact {
1215                jobs_displaced: 100_000,
1216                jobs_created: 500_000,
1217                reskilling_needed: 1_000_000,
1218            },
1219            investment_projections: vec![
1220                (2024, 10_000_000_000.0),
1221                (2025, 20_000_000_000.0),
1222                (2030, 100_000_000_000.0),
1223            ],
1224        };
1225
1226        Ok(FutureProjections {
1227            quantum_improvements,
1228            classical_improvements,
1229            timeline,
1230            market_impact,
1231        })
1232    }
1233
1234    /// Helper methods
1235    fn register_default_algorithms(&mut self) {
1236        // Register quantum algorithms
1237        self.quantum_algorithms.insert(
1238            ProblemDomain::RandomCircuitSampling,
1239            Box::new(RandomCircuitSamplingAlgorithm),
1240        );
1241        self.quantum_algorithms
1242            .insert(ProblemDomain::QAOA, Box::new(QAOAAlgorithm));
1243
1244        // Register classical algorithms
1245        self.classical_algorithms.insert(
1246            ClassicalAlgorithmType::MonteCarlo,
1247            Box::new(MonteCarloAlgorithm),
1248        );
1249        self.classical_algorithms.insert(
1250            ClassicalAlgorithmType::BruteForce,
1251            Box::new(BruteForceAlgorithm),
1252        );
1253    }
1254
1255    fn aggregate_quantum_resources(&self, results: &[DetailedResult]) -> QuantumResources {
1256        let avg_depth = results
1257            .iter()
1258            .map(|r| r.quantum_results.resource_usage.operations)
1259            .sum::<usize>()
1260            / results.len();
1261
1262        QuantumResources {
1263            qubits: results.iter().map(|r| r.problem_size).max().unwrap_or(0),
1264            depth: avg_depth,
1265            gate_count: avg_depth * 2, // Estimate
1266            coherence_time: Duration::from_millis(100),
1267            gate_fidelity: 0.999,
1268            shots: 1000,
1269            quantum_volume: results
1270                .iter()
1271                .map(|r| r.problem_size * r.problem_size)
1272                .max()
1273                .unwrap_or(0),
1274        }
1275    }
1276
1277    fn aggregate_classical_resources(&self, results: &[DetailedResult]) -> ClassicalResources {
1278        let total_time = results
1279            .iter()
1280            .flat_map(|r| &r.classical_results)
1281            .map(|c| c.execution_time)
1282            .sum::<Duration>();
1283
1284        let avg_memory = results
1285            .iter()
1286            .flat_map(|r| &r.classical_results)
1287            .map(|c| c.resource_usage.peak_memory)
1288            .sum::<usize>()
1289            / results
1290                .iter()
1291                .flat_map(|r| &r.classical_results)
1292                .count()
1293                .max(1);
1294
1295        ClassicalResources {
1296            cpu_time: total_time,
1297            memory_usage: avg_memory,
1298            cores: self.config.hardware_specs.classical_hardware.cpu_cores,
1299            energy_consumption: 1000.0, // Estimate
1300            storage: avg_memory * 2,
1301            network_bandwidth: 0.0,
1302        }
1303    }
1304
1305    fn store_results(&self, result: &QuantumAdvantageResult) -> Result<()> {
1306        let mut database = self.results_database.lock().unwrap();
1307        let key = format!("{:?}_{:?}", self.config.advantage_type, self.config.domain);
1308        database
1309            .results
1310            .entry(key)
1311            .or_insert_with(Vec::new)
1312            .push(result.clone());
1313        Ok(())
1314    }
1315}
1316
1317/// Example algorithm implementations
1318/// Random circuit sampling quantum algorithm
1319struct RandomCircuitSamplingAlgorithm;
1320
1321impl QuantumAlgorithm for RandomCircuitSamplingAlgorithm {
1322    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1323        let start = Instant::now();
1324
1325        // Simulate random circuit execution
1326        let execution_time = Duration::from_millis(problem_instance.size as u64 * 10);
1327        std::thread::sleep(execution_time);
1328
1329        Ok(AlgorithmResult {
1330            algorithm_type: "Random Circuit Sampling".to_string(),
1331            execution_time,
1332            solution_quality: 0.95,
1333            resource_usage: ResourceUsage {
1334                peak_memory: problem_instance.size * 1024 * 1024, // 1MB per qubit
1335                energy: 100.0,
1336                operations: problem_instance.size * 100,
1337                communication: 0.0,
1338            },
1339            success_rate: 0.95,
1340            output_distribution: Some(HashMap::new()),
1341        })
1342    }
1343
1344    fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources {
1345        QuantumResources {
1346            qubits: problem_size,
1347            depth: problem_size * 10,
1348            gate_count: problem_size * 100,
1349            coherence_time: Duration::from_millis(100),
1350            gate_fidelity: 0.999,
1351            shots: 1000,
1352            quantum_volume: problem_size * problem_size,
1353        }
1354    }
1355
1356    fn get_theoretical_scaling(&self) -> f64 {
1357        1.0 // Linear in qubits
1358    }
1359
1360    fn name(&self) -> &str {
1361        "Random Circuit Sampling"
1362    }
1363}
1364
1365/// QAOA quantum algorithm
1366struct QAOAAlgorithm;
1367
1368impl QuantumAlgorithm for QAOAAlgorithm {
1369    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1370        let execution_time = Duration::from_millis(problem_instance.size as u64 * 50);
1371        std::thread::sleep(execution_time);
1372
1373        Ok(AlgorithmResult {
1374            algorithm_type: "QAOA".to_string(),
1375            execution_time,
1376            solution_quality: 0.9,
1377            resource_usage: ResourceUsage {
1378                peak_memory: problem_instance.size * 512 * 1024,
1379                energy: 200.0,
1380                operations: problem_instance.size * 200,
1381                communication: 0.0,
1382            },
1383            success_rate: 0.9,
1384            output_distribution: None,
1385        })
1386    }
1387
1388    fn get_resource_requirements(&self, problem_size: usize) -> QuantumResources {
1389        QuantumResources {
1390            qubits: problem_size,
1391            depth: problem_size * 5,
1392            gate_count: problem_size * 50,
1393            coherence_time: Duration::from_millis(50),
1394            gate_fidelity: 0.99,
1395            shots: 10000,
1396            quantum_volume: problem_size,
1397        }
1398    }
1399
1400    fn get_theoretical_scaling(&self) -> f64 {
1401        1.0 // Linear scaling
1402    }
1403
1404    fn name(&self) -> &str {
1405        "QAOA"
1406    }
1407}
1408
1409/// Monte Carlo classical algorithm
1410struct MonteCarloAlgorithm;
1411
1412impl ClassicalAlgorithm for MonteCarloAlgorithm {
1413    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1414        let execution_time = Duration::from_millis(problem_instance.size.pow(2) as u64);
1415        std::thread::sleep(execution_time);
1416
1417        Ok(AlgorithmResult {
1418            algorithm_type: "Monte Carlo".to_string(),
1419            execution_time,
1420            solution_quality: 0.8,
1421            resource_usage: ResourceUsage {
1422                peak_memory: problem_instance.size * 1024,
1423                energy: 50.0,
1424                operations: problem_instance.size.pow(2),
1425                communication: 0.0,
1426            },
1427            success_rate: 0.8,
1428            output_distribution: None,
1429        })
1430    }
1431
1432    fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources {
1433        ClassicalResources {
1434            cpu_time: Duration::from_millis(problem_size.pow(2) as u64),
1435            memory_usage: problem_size * 1024,
1436            cores: 1,
1437            energy_consumption: 50.0,
1438            storage: problem_size * 1024,
1439            network_bandwidth: 0.0,
1440        }
1441    }
1442
1443    fn get_theoretical_scaling(&self) -> f64 {
1444        2.0 // Quadratic scaling
1445    }
1446
1447    fn name(&self) -> &str {
1448        "Monte Carlo"
1449    }
1450}
1451
1452/// Brute force classical algorithm
1453struct BruteForceAlgorithm;
1454
1455impl ClassicalAlgorithm for BruteForceAlgorithm {
1456    fn execute(&self, problem_instance: &ProblemInstance) -> Result<AlgorithmResult> {
1457        let execution_time = Duration::from_millis(2_u64.pow(problem_instance.size as u32));
1458
1459        // Timeout for large problems
1460        if execution_time > Duration::from_secs(60) {
1461            return Ok(AlgorithmResult {
1462                algorithm_type: "Brute Force (Timeout)".to_string(),
1463                execution_time: Duration::from_secs(60),
1464                solution_quality: 0.0,
1465                resource_usage: ResourceUsage {
1466                    peak_memory: 0,
1467                    energy: 0.0,
1468                    operations: 0,
1469                    communication: 0.0,
1470                },
1471                success_rate: 0.0,
1472                output_distribution: None,
1473            });
1474        }
1475
1476        std::thread::sleep(execution_time);
1477
1478        Ok(AlgorithmResult {
1479            algorithm_type: "Brute Force".to_string(),
1480            execution_time,
1481            solution_quality: 1.0,
1482            resource_usage: ResourceUsage {
1483                peak_memory: 2_usize.pow(problem_instance.size as u32) * 8,
1484                energy: 1000.0,
1485                operations: 2_usize.pow(problem_instance.size as u32),
1486                communication: 0.0,
1487            },
1488            success_rate: 1.0,
1489            output_distribution: None,
1490        })
1491    }
1492
1493    fn get_resource_requirements(&self, problem_size: usize) -> ClassicalResources {
1494        ClassicalResources {
1495            cpu_time: Duration::from_millis(2_u64.pow(problem_size as u32)),
1496            memory_usage: 2_usize.pow(problem_size as u32) * 8,
1497            cores: 1,
1498            energy_consumption: 1000.0,
1499            storage: 2_usize.pow(problem_size as u32) * 8,
1500            network_bandwidth: 0.0,
1501        }
1502    }
1503
1504    fn get_theoretical_scaling(&self) -> f64 {
1505        2.0_f64.ln() // Exponential scaling (base 2)
1506    }
1507
1508    fn name(&self) -> &str {
1509        "Brute Force"
1510    }
1511}
1512
1513/// Benchmark quantum advantage demonstration
1514pub fn benchmark_quantum_advantage() -> Result<HashMap<String, f64>> {
1515    let mut results = HashMap::new();
1516
1517    let start = Instant::now();
1518
1519    let config = QuantumAdvantageConfig {
1520        advantage_type: QuantumAdvantageType::ComputationalAdvantage,
1521        domain: ProblemDomain::RandomCircuitSampling,
1522        classical_algorithms: vec![ClassicalAlgorithmType::MonteCarlo],
1523        problem_sizes: vec![5, 10, 15],
1524        num_trials: 3,
1525        confidence_level: 0.95,
1526        classical_timeout: Duration::from_secs(60),
1527        hardware_specs: HardwareSpecs {
1528            quantum_hardware: QuantumHardwareSpecs {
1529                num_qubits: 20,
1530                gate_fidelities: HashMap::new(),
1531                coherence_times: HashMap::new(),
1532                connectivity: vec![vec![false; 20]; 20],
1533                gate_times: HashMap::new(),
1534                readout_fidelity: 0.95,
1535            },
1536            classical_hardware: ClassicalHardwareSpecs {
1537                cpu_cores: 8,
1538                cpu_frequency: 3.0,
1539                ram_size: 32_000_000_000,
1540                cache_sizes: vec![32768, 262144, 8388608],
1541                gpu_specs: None,
1542            },
1543        },
1544        enable_profiling: true,
1545        save_results: true,
1546    };
1547
1548    let mut demonstrator = QuantumAdvantageDemonstrator::new(config);
1549    let _advantage_result = demonstrator.demonstrate_advantage()?;
1550
1551    let demo_time = start.elapsed().as_millis() as f64;
1552    results.insert("quantum_advantage_demo".to_string(), demo_time);
1553
1554    Ok(results)
1555}
1556
1557#[cfg(test)]
1558mod tests {
1559    use super::*;
1560
1561    #[test]
1562    fn test_quantum_advantage_demonstrator_creation() {
1563        let config = create_test_config();
1564        let demonstrator = QuantumAdvantageDemonstrator::new(config);
1565        assert!(!demonstrator.quantum_algorithms.is_empty());
1566        assert!(!demonstrator.classical_algorithms.is_empty());
1567    }
1568
1569    #[test]
1570    fn test_problem_instance_generation() {
1571        let config = create_test_config();
1572        let demonstrator = QuantumAdvantageDemonstrator::new(config);
1573        let instance = demonstrator.generate_problem_instance(5).unwrap();
1574        assert_eq!(instance.size, 5);
1575    }
1576
1577    #[test]
1578    fn test_power_law_fitting() {
1579        let demonstrator = QuantumAdvantageDemonstrator::new(create_test_config());
1580        let sizes = vec![1, 2, 4, 8];
1581        let times = vec![1.0, 4.0, 16.0, 64.0]; // Quadratic scaling
1582        let scaling = demonstrator.fit_power_law(&sizes, &times).unwrap();
1583        assert!((scaling - 2.0).abs() < 0.1);
1584    }
1585
1586    fn create_test_config() -> QuantumAdvantageConfig {
1587        QuantumAdvantageConfig {
1588            advantage_type: QuantumAdvantageType::ComputationalAdvantage,
1589            domain: ProblemDomain::RandomCircuitSampling,
1590            classical_algorithms: vec![ClassicalAlgorithmType::MonteCarlo],
1591            problem_sizes: vec![3, 5],
1592            num_trials: 2,
1593            confidence_level: 0.95,
1594            classical_timeout: Duration::from_secs(10),
1595            hardware_specs: HardwareSpecs {
1596                quantum_hardware: QuantumHardwareSpecs {
1597                    num_qubits: 10,
1598                    gate_fidelities: HashMap::new(),
1599                    coherence_times: HashMap::new(),
1600                    connectivity: vec![vec![false; 10]; 10],
1601                    gate_times: HashMap::new(),
1602                    readout_fidelity: 0.95,
1603                },
1604                classical_hardware: ClassicalHardwareSpecs {
1605                    cpu_cores: 4,
1606                    cpu_frequency: 2.0,
1607                    ram_size: 8_000_000_000,
1608                    cache_sizes: vec![32768, 262144],
1609                    gpu_specs: None,
1610                },
1611            },
1612            enable_profiling: false,
1613            save_results: false,
1614        }
1615    }
1616}