quantrs2_sim/qml/
trainer.rs

1//! Quantum machine learning trainer implementation.
2//!
3//! This module provides the main trainer class for quantum machine learning
4//! algorithms with hardware-aware optimization and adaptive training strategies.
5
6use crate::prelude::HardwareOptimizations;
7use ndarray::Array1;
8use scirs2_core::parallel_ops::*;
9use serde::{Deserialize, Serialize};
10
11use crate::circuit_interfaces::{CircuitInterface, InterfaceCircuit};
12use crate::device_noise_models::DeviceNoiseModel;
13use crate::error::Result;
14
15use super::circuit::ParameterizedQuantumCircuit;
16use super::config::{GradientMethod, HardwareArchitecture, OptimizerType, QMLConfig};
17
18/// Quantum machine learning trainer
19pub struct QuantumMLTrainer {
20    /// Configuration
21    config: QMLConfig,
22    /// Parameterized quantum circuit
23    pqc: ParameterizedQuantumCircuit,
24    /// Optimizer state
25    optimizer_state: OptimizerState,
26    /// Training history
27    training_history: TrainingHistory,
28    /// Device noise model
29    noise_model: Option<Box<dyn DeviceNoiseModel>>,
30    /// Circuit interface
31    circuit_interface: CircuitInterface,
32    /// Hardware-aware compiler
33    hardware_compiler: HardwareAwareCompiler,
34}
35
36/// Optimizer state
37#[derive(Debug, Clone)]
38pub struct OptimizerState {
39    /// Current parameter values
40    pub parameters: Array1<f64>,
41    /// Gradient estimate
42    pub gradient: Array1<f64>,
43    /// Momentum terms (for Adam, etc.)
44    pub momentum: Array1<f64>,
45    /// Velocity terms (for Adam, etc.)
46    pub velocity: Array1<f64>,
47    /// Learning rate schedule
48    pub learning_rate: f64,
49    /// Iteration counter
50    pub iteration: usize,
51}
52
53/// Training history
54#[derive(Debug, Clone, Default, Serialize, Deserialize)]
55pub struct TrainingHistory {
56    /// Loss values over epochs
57    pub loss_history: Vec<f64>,
58    /// Gradient norms
59    pub gradient_norms: Vec<f64>,
60    /// Parameter norms
61    pub parameter_norms: Vec<f64>,
62    /// Training times per epoch
63    pub epoch_times: Vec<f64>,
64    /// Hardware utilization metrics
65    pub hardware_metrics: Vec<HardwareMetrics>,
66}
67
68/// Hardware utilization metrics
69#[derive(Debug, Clone, Default, Serialize, Deserialize)]
70pub struct HardwareMetrics {
71    /// Circuit depth after compilation
72    pub compiled_depth: usize,
73    /// Number of two-qubit gates
74    pub two_qubit_gates: usize,
75    /// Total execution time
76    pub execution_time: f64,
77    /// Estimated fidelity
78    pub estimated_fidelity: f64,
79    /// Shot overhead
80    pub shot_overhead: f64,
81}
82
83/// Hardware-aware compiler
84#[derive(Debug, Clone)]
85pub struct HardwareAwareCompiler {
86    /// Target hardware architecture
87    hardware_arch: HardwareArchitecture,
88    /// Hardware optimizations
89    hardware_opts: HardwareOptimizations,
90    /// Compilation statistics
91    compilation_stats: CompilationStats,
92}
93
94/// Compilation statistics
95#[derive(Debug, Clone, Default)]
96pub struct CompilationStats {
97    /// Original circuit depth
98    pub original_depth: usize,
99    /// Compiled circuit depth
100    pub compiled_depth: usize,
101    /// Number of SWAP gates added
102    pub swap_gates_added: usize,
103    /// Compilation time
104    pub compilation_time: f64,
105    /// Estimated execution time
106    pub estimated_execution_time: f64,
107}
108
109/// Training result
110#[derive(Debug, Clone, Serialize, Deserialize)]
111pub struct TrainingResult {
112    /// Final parameter values
113    pub final_parameters: Array1<f64>,
114    /// Final loss value
115    pub final_loss: f64,
116    /// Number of epochs completed
117    pub epochs_completed: usize,
118    /// Training history
119    pub training_history: TrainingHistory,
120    /// Convergence achieved
121    pub converged: bool,
122}
123
124impl QuantumMLTrainer {
125    /// Create a new quantum ML trainer
126    pub fn new(
127        config: QMLConfig,
128        pqc: ParameterizedQuantumCircuit,
129        noise_model: Option<Box<dyn DeviceNoiseModel>>,
130    ) -> Result<Self> {
131        let num_params = pqc.num_parameters();
132
133        let optimizer_state = OptimizerState {
134            parameters: pqc.parameters.clone(),
135            gradient: Array1::zeros(num_params),
136            momentum: Array1::zeros(num_params),
137            velocity: Array1::zeros(num_params),
138            learning_rate: config.learning_rate,
139            iteration: 0,
140        };
141
142        let training_history = TrainingHistory::default();
143        let circuit_interface = CircuitInterface::new(Default::default())?;
144        let hardware_compiler = HardwareAwareCompiler::new(
145            config.hardware_architecture,
146            pqc.hardware_optimizations.clone(),
147        );
148
149        Ok(Self {
150            config,
151            pqc,
152            optimizer_state,
153            training_history,
154            noise_model,
155            circuit_interface,
156            hardware_compiler,
157        })
158    }
159
160    /// Train the quantum ML model
161    pub fn train<F>(&mut self, loss_function: F) -> Result<TrainingResult>
162    where
163        F: Fn(&Array1<f64>) -> Result<f64> + Send + Sync,
164    {
165        let start_time = std::time::Instant::now();
166
167        for epoch in 0..self.config.max_epochs {
168            let epoch_start = std::time::Instant::now();
169
170            // Compute gradient
171            let gradient = self.compute_gradient(&loss_function)?;
172            self.optimizer_state.gradient = gradient;
173
174            // Update parameters
175            self.update_parameters()?;
176
177            // Evaluate loss
178            let current_loss = loss_function(&self.optimizer_state.parameters)?;
179
180            // Update training history
181            let epoch_time = epoch_start.elapsed().as_secs_f64();
182            self.training_history.loss_history.push(current_loss);
183            self.training_history.gradient_norms.push(
184                self.optimizer_state
185                    .gradient
186                    .iter()
187                    .map(|x| x * x)
188                    .sum::<f64>()
189                    .sqrt(),
190            );
191            self.training_history.parameter_norms.push(
192                self.optimizer_state
193                    .parameters
194                    .iter()
195                    .map(|x| x * x)
196                    .sum::<f64>()
197                    .sqrt(),
198            );
199            self.training_history.epoch_times.push(epoch_time);
200
201            // Check convergence
202            if self.check_convergence(current_loss)? {
203                return Ok(TrainingResult {
204                    final_parameters: self.optimizer_state.parameters.clone(),
205                    final_loss: current_loss,
206                    epochs_completed: epoch + 1,
207                    training_history: self.training_history.clone(),
208                    converged: true,
209                });
210            }
211
212            self.optimizer_state.iteration += 1;
213        }
214
215        // Training completed without convergence
216        let final_loss = loss_function(&self.optimizer_state.parameters)?;
217        Ok(TrainingResult {
218            final_parameters: self.optimizer_state.parameters.clone(),
219            final_loss,
220            epochs_completed: self.config.max_epochs,
221            training_history: self.training_history.clone(),
222            converged: false,
223        })
224    }
225
226    /// Compute gradient using the specified method
227    fn compute_gradient<F>(&mut self, loss_function: &F) -> Result<Array1<f64>>
228    where
229        F: Fn(&Array1<f64>) -> Result<f64> + Send + Sync,
230    {
231        match self.config.gradient_method {
232            GradientMethod::ParameterShift => self.compute_parameter_shift_gradient(loss_function),
233            GradientMethod::FiniteDifferences => {
234                self.compute_finite_difference_gradient(loss_function)
235            }
236            GradientMethod::AutomaticDifferentiation => {
237                self.compute_autodiff_gradient(loss_function)
238            }
239            GradientMethod::NaturalGradients => self.compute_natural_gradient(loss_function),
240            GradientMethod::StochasticParameterShift => {
241                self.compute_stochastic_parameter_shift_gradient(loss_function)
242            }
243        }
244    }
245
246    /// Compute gradient using parameter shift rule
247    fn compute_parameter_shift_gradient<F>(&self, loss_function: &F) -> Result<Array1<f64>>
248    where
249        F: Fn(&Array1<f64>) -> Result<f64> + Send + Sync,
250    {
251        let num_params = self.optimizer_state.parameters.len();
252        let mut gradient = Array1::zeros(num_params);
253        let shift = std::f64::consts::PI / 2.0;
254
255        for i in 0..num_params {
256            let mut params_plus = self.optimizer_state.parameters.clone();
257            let mut params_minus = self.optimizer_state.parameters.clone();
258
259            params_plus[i] += shift;
260            params_minus[i] -= shift;
261
262            let loss_plus = loss_function(&params_plus)?;
263            let loss_minus = loss_function(&params_minus)?;
264
265            gradient[i] = (loss_plus - loss_minus) / 2.0;
266        }
267
268        Ok(gradient)
269    }
270
271    /// Compute gradient using finite differences
272    fn compute_finite_difference_gradient<F>(&self, loss_function: &F) -> Result<Array1<f64>>
273    where
274        F: Fn(&Array1<f64>) -> Result<f64> + Send + Sync,
275    {
276        let num_params = self.optimizer_state.parameters.len();
277        let mut gradient = Array1::zeros(num_params);
278        let eps = 1e-8;
279
280        for i in 0..num_params {
281            let mut params_plus = self.optimizer_state.parameters.clone();
282            params_plus[i] += eps;
283
284            let loss_plus = loss_function(&params_plus)?;
285            let loss_current = loss_function(&self.optimizer_state.parameters)?;
286
287            gradient[i] = (loss_plus - loss_current) / eps;
288        }
289
290        Ok(gradient)
291    }
292
293    /// Compute gradient using automatic differentiation
294    fn compute_autodiff_gradient<F>(&self, loss_function: &F) -> Result<Array1<f64>>
295    where
296        F: Fn(&Array1<f64>) -> Result<f64> + Send + Sync,
297    {
298        // Simplified automatic differentiation implementation
299        // In practice, this would use a proper autodiff library
300        self.compute_parameter_shift_gradient(loss_function)
301    }
302
303    /// Compute natural gradient
304    fn compute_natural_gradient<F>(&self, loss_function: &F) -> Result<Array1<f64>>
305    where
306        F: Fn(&Array1<f64>) -> Result<f64> + Send + Sync,
307    {
308        // Simplified natural gradient implementation
309        let gradient = self.compute_parameter_shift_gradient(loss_function)?;
310
311        // For simplicity, return regular gradient
312        // In practice, this would compute the Fisher information matrix
313        Ok(gradient)
314    }
315
316    /// Compute stochastic parameter shift gradient
317    fn compute_stochastic_parameter_shift_gradient<F>(
318        &self,
319        loss_function: &F,
320    ) -> Result<Array1<f64>>
321    where
322        F: Fn(&Array1<f64>) -> Result<f64> + Send + Sync,
323    {
324        // Simplified stochastic version
325        self.compute_parameter_shift_gradient(loss_function)
326    }
327
328    /// Update parameters using the optimizer
329    fn update_parameters(&mut self) -> Result<()> {
330        match self.config.optimizer_type {
331            OptimizerType::Adam => self.update_parameters_adam(),
332            OptimizerType::SGD => self.update_parameters_sgd(),
333            OptimizerType::RMSprop => self.update_parameters_rmsprop(),
334            OptimizerType::LBFGS => self.update_parameters_lbfgs(),
335            OptimizerType::QuantumNaturalGradient => self.update_parameters_qng(),
336            OptimizerType::SPSA => self.update_parameters_spsa(),
337        }
338    }
339
340    /// Update parameters using Adam optimizer
341    fn update_parameters_adam(&mut self) -> Result<()> {
342        let beta1 = 0.9;
343        let beta2 = 0.999;
344        let eps = 1e-8;
345
346        // Update momentum and velocity
347        for i in 0..self.optimizer_state.parameters.len() {
348            self.optimizer_state.momentum[i] = beta1 * self.optimizer_state.momentum[i]
349                + (1.0 - beta1) * self.optimizer_state.gradient[i];
350            self.optimizer_state.velocity[i] = beta2 * self.optimizer_state.velocity[i]
351                + (1.0 - beta2) * self.optimizer_state.gradient[i].powi(2);
352
353            // Bias correction
354            let m_hat = self.optimizer_state.momentum[i]
355                / (1.0 - beta1.powi(self.optimizer_state.iteration as i32 + 1));
356            let v_hat = self.optimizer_state.velocity[i]
357                / (1.0 - beta2.powi(self.optimizer_state.iteration as i32 + 1));
358
359            // Update parameter
360            self.optimizer_state.parameters[i] -=
361                self.optimizer_state.learning_rate * m_hat / (v_hat.sqrt() + eps);
362        }
363
364        Ok(())
365    }
366
367    /// Update parameters using SGD
368    fn update_parameters_sgd(&mut self) -> Result<()> {
369        for i in 0..self.optimizer_state.parameters.len() {
370            self.optimizer_state.parameters[i] -=
371                self.optimizer_state.learning_rate * self.optimizer_state.gradient[i];
372        }
373        Ok(())
374    }
375
376    /// Update parameters using RMSprop
377    fn update_parameters_rmsprop(&mut self) -> Result<()> {
378        let alpha = 0.99;
379        let eps = 1e-8;
380
381        for i in 0..self.optimizer_state.parameters.len() {
382            self.optimizer_state.velocity[i] = alpha * self.optimizer_state.velocity[i]
383                + (1.0 - alpha) * self.optimizer_state.gradient[i].powi(2);
384            self.optimizer_state.parameters[i] -= self.optimizer_state.learning_rate
385                * self.optimizer_state.gradient[i]
386                / (self.optimizer_state.velocity[i].sqrt() + eps);
387        }
388
389        Ok(())
390    }
391
392    /// Update parameters using L-BFGS (simplified)
393    fn update_parameters_lbfgs(&mut self) -> Result<()> {
394        // Simplified L-BFGS - in practice would maintain history
395        self.update_parameters_sgd()
396    }
397
398    /// Update parameters using Quantum Natural Gradient
399    fn update_parameters_qng(&mut self) -> Result<()> {
400        // Simplified QNG - in practice would compute metric tensor
401        self.update_parameters_sgd()
402    }
403
404    /// Update parameters using SPSA
405    fn update_parameters_spsa(&mut self) -> Result<()> {
406        // Simplified SPSA
407        self.update_parameters_sgd()
408    }
409
410    /// Check convergence criteria
411    fn check_convergence(&self, current_loss: f64) -> Result<bool> {
412        if self.training_history.loss_history.len() < 2 {
413            return Ok(false);
414        }
415
416        let prev_loss =
417            self.training_history.loss_history[self.training_history.loss_history.len() - 1];
418        let loss_change = (current_loss - prev_loss).abs();
419
420        Ok(loss_change < self.config.convergence_tolerance)
421    }
422
423    /// Get current parameters
424    pub fn get_parameters(&self) -> &Array1<f64> {
425        &self.optimizer_state.parameters
426    }
427
428    /// Get training history
429    pub fn get_training_history(&self) -> &TrainingHistory {
430        &self.training_history
431    }
432
433    /// Set learning rate
434    pub fn set_learning_rate(&mut self, lr: f64) {
435        self.optimizer_state.learning_rate = lr;
436    }
437
438    /// Reset optimizer state
439    pub fn reset_optimizer(&mut self) {
440        let num_params = self.optimizer_state.parameters.len();
441        self.optimizer_state.gradient = Array1::zeros(num_params);
442        self.optimizer_state.momentum = Array1::zeros(num_params);
443        self.optimizer_state.velocity = Array1::zeros(num_params);
444        self.optimizer_state.iteration = 0;
445        self.training_history = TrainingHistory::default();
446    }
447}
448
449impl HardwareAwareCompiler {
450    /// Create a new hardware-aware compiler
451    pub fn new(hardware_arch: HardwareArchitecture, hardware_opts: HardwareOptimizations) -> Self {
452        Self {
453            hardware_arch,
454            hardware_opts,
455            compilation_stats: CompilationStats::default(),
456        }
457    }
458
459    /// Compile circuit for target hardware
460    pub fn compile_circuit(&mut self, circuit: &InterfaceCircuit) -> Result<InterfaceCircuit> {
461        let start_time = std::time::Instant::now();
462        self.compilation_stats.original_depth = circuit.gates.len();
463
464        // For now, return the same circuit
465        // In practice, this would perform hardware-specific optimizations
466        let compiled_circuit = circuit.clone();
467
468        self.compilation_stats.compiled_depth = compiled_circuit.gates.len();
469        self.compilation_stats.compilation_time = start_time.elapsed().as_secs_f64();
470
471        Ok(compiled_circuit)
472    }
473
474    /// Get compilation statistics
475    pub fn get_stats(&self) -> &CompilationStats {
476        &self.compilation_stats
477    }
478}
479
480impl OptimizerState {
481    /// Create new optimizer state
482    pub fn new(num_parameters: usize, learning_rate: f64) -> Self {
483        Self {
484            parameters: Array1::zeros(num_parameters),
485            gradient: Array1::zeros(num_parameters),
486            momentum: Array1::zeros(num_parameters),
487            velocity: Array1::zeros(num_parameters),
488            learning_rate,
489            iteration: 0,
490        }
491    }
492}
493
494impl TrainingHistory {
495    /// Get the latest loss value
496    pub fn latest_loss(&self) -> Option<f64> {
497        self.loss_history.last().copied()
498    }
499
500    /// Get the best (minimum) loss value
501    pub fn best_loss(&self) -> Option<f64> {
502        self.loss_history
503            .iter()
504            .min_by(|a, b| a.partial_cmp(b).unwrap())
505            .copied()
506    }
507
508    /// Get average epoch time
509    pub fn average_epoch_time(&self) -> f64 {
510        if self.epoch_times.is_empty() {
511            0.0
512        } else {
513            self.epoch_times.iter().sum::<f64>() / self.epoch_times.len() as f64
514        }
515    }
516}