1use ndarray::{Array1, Array2};
8use num_complex::Complex64;
9use scirs2_core::parallel_ops::*;
10use serde::{Deserialize, Serialize};
11use std::collections::HashMap;
12use std::sync::{Arc, Mutex};
13use std::time::{Duration, Instant};
14
15use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
16use crate::error::Result;
17
18#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash, Serialize, Deserialize)]
20pub enum QAOAProblemType {
21 MaxCut,
23 MaxWeightIndependentSet,
25 MinVertexCover,
27 GraphColoring,
29 TSP,
31 PortfolioOptimization,
33 JobShopScheduling,
35 Boolean3SAT,
37 QUBO,
39 MaxClique,
41 BinPacking,
43 Custom,
45}
46
47#[derive(Debug, Clone, Serialize, Deserialize)]
49pub struct QAOAGraph {
50 pub num_vertices: usize,
52 pub adjacency_matrix: Array2<f64>,
54 pub vertex_weights: Vec<f64>,
56 pub edge_weights: HashMap<(usize, usize), f64>,
58 pub constraints: Vec<QAOAConstraint>,
60}
61
62#[derive(Debug, Clone, Serialize, Deserialize)]
64pub enum QAOAConstraint {
65 Cardinality { target: usize },
67 UpperBound { max_vertices: usize },
69 LowerBound { min_vertices: usize },
71 Parity { even: bool },
73 LinearConstraint { coefficients: Vec<f64>, bound: f64 },
75}
76
77#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
79pub enum QAOAMixerType {
80 Standard,
82 XY,
84 Ring,
86 Grover,
88 Dicke,
90 Custom,
92}
93
94#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
96pub enum QAOAInitializationStrategy {
97 UniformSuperposition,
99 WarmStart,
101 AdiabaticStart,
103 Random,
105 ProblemSpecific,
107}
108
109#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
111pub enum QAOAOptimizationStrategy {
112 Classical,
114 Quantum,
116 Hybrid,
118 MLGuided,
120 Adaptive,
122}
123
124#[derive(Debug, Clone)]
126pub struct QAOAConfig {
127 pub num_layers: usize,
129 pub mixer_type: QAOAMixerType,
131 pub initialization: QAOAInitializationStrategy,
133 pub optimization_strategy: QAOAOptimizationStrategy,
135 pub max_iterations: usize,
137 pub convergence_tolerance: f64,
139 pub learning_rate: f64,
141 pub multi_angle: bool,
143 pub parameter_transfer: bool,
145 pub hardware_aware: bool,
147 pub shots: Option<usize>,
149 pub adaptive_layers: bool,
151 pub max_adaptive_layers: usize,
153}
154
155impl Default for QAOAConfig {
156 fn default() -> Self {
157 Self {
158 num_layers: 1,
159 mixer_type: QAOAMixerType::Standard,
160 initialization: QAOAInitializationStrategy::UniformSuperposition,
161 optimization_strategy: QAOAOptimizationStrategy::Classical,
162 max_iterations: 100,
163 convergence_tolerance: 1e-6,
164 learning_rate: 0.1,
165 multi_angle: false,
166 parameter_transfer: false,
167 hardware_aware: true,
168 shots: None,
169 adaptive_layers: false,
170 max_adaptive_layers: 10,
171 }
172 }
173}
174
175#[derive(Debug, Clone, Serialize, Deserialize)]
177pub struct QAOAResult {
178 pub optimal_gammas: Vec<f64>,
180 pub optimal_betas: Vec<f64>,
182 pub best_cost: f64,
184 pub approximation_ratio: f64,
186 pub cost_history: Vec<f64>,
188 pub parameter_history: Vec<(Vec<f64>, Vec<f64>)>,
190 pub final_probabilities: HashMap<String, f64>,
192 pub best_solution: String,
194 pub solution_quality: SolutionQuality,
196 pub optimization_time: Duration,
198 pub function_evaluations: usize,
200 pub converged: bool,
202}
203
204#[derive(Debug, Clone, Serialize, Deserialize)]
206pub struct SolutionQuality {
207 pub feasible: bool,
209 pub optimality_gap: Option<f64>,
211 pub solution_variance: f64,
213 pub confidence: f64,
215 pub constraint_violations: usize,
217}
218
219#[derive(Debug, Clone, Serialize, Deserialize)]
221pub struct QAOAStats {
222 pub total_time: Duration,
224 pub layer_times: Vec<Duration>,
226 pub circuit_depths: Vec<usize>,
228 pub parameter_sensitivity: HashMap<String, f64>,
230 pub quantum_advantage: QuantumAdvantageMetrics,
232}
233
234#[derive(Debug, Clone, Serialize, Deserialize)]
236pub struct QuantumAdvantageMetrics {
237 pub classical_time: Duration,
239 pub speedup_factor: f64,
241 pub success_probability: f64,
243 pub quantum_volume: usize,
245}
246
247#[derive(Debug, Clone)]
249pub struct MultiLevelQAOAConfig {
250 pub levels: Vec<QAOALevel>,
252 pub parameter_sharing: bool,
254 pub transition_criteria: LevelTransitionCriteria,
256}
257
258#[derive(Debug, Clone)]
260pub struct QAOALevel {
261 pub problem_size: usize,
263 pub num_layers: usize,
265 pub optimization_budget: usize,
267 pub mixer_type: QAOAMixerType,
269}
270
271#[derive(Debug, Clone, Copy, PartialEq, Eq)]
273pub enum LevelTransitionCriteria {
274 FixedSchedule,
276 PerformanceBased,
278 ConvergenceBased,
280 Adaptive,
282}
283
284pub struct QAOAOptimizer {
286 config: QAOAConfig,
288 graph: QAOAGraph,
290 problem_type: QAOAProblemType,
292 gammas: Vec<f64>,
294 betas: Vec<f64>,
295 best_gammas: Vec<f64>,
297 best_betas: Vec<f64>,
298 best_cost: f64,
300 classical_optimum: Option<f64>,
302 stats: QAOAStats,
304 parameter_database: Arc<Mutex<ParameterDatabase>>,
306}
307
308#[derive(Debug, Clone)]
310pub struct ParameterDatabase {
311 pub parameters: HashMap<ProblemCharacteristics, Vec<(Vec<f64>, Vec<f64>, f64)>>,
313}
314
315#[derive(Debug, Clone, Hash, PartialEq, Eq)]
317pub struct ProblemCharacteristics {
318 pub problem_type: QAOAProblemType,
319 pub num_vertices: usize,
320 pub density: u32, pub regularity: u32, }
323
324impl QAOAOptimizer {
325 pub fn new(
327 config: QAOAConfig,
328 graph: QAOAGraph,
329 problem_type: QAOAProblemType,
330 ) -> Result<Self> {
331 let gammas = Self::initialize_gammas(&config, &graph)?;
332 let betas = Self::initialize_betas(&config, &graph)?;
333
334 Ok(Self {
335 config,
336 graph,
337 problem_type,
338 gammas: gammas.clone(),
339 betas: betas.clone(),
340 best_gammas: gammas,
341 best_betas: betas,
342 best_cost: f64::NEG_INFINITY,
343 classical_optimum: None,
344 stats: QAOAStats {
345 total_time: Duration::new(0, 0),
346 layer_times: Vec::new(),
347 circuit_depths: Vec::new(),
348 parameter_sensitivity: HashMap::new(),
349 quantum_advantage: QuantumAdvantageMetrics {
350 classical_time: Duration::new(0, 0),
351 speedup_factor: 1.0,
352 success_probability: 0.0,
353 quantum_volume: 0,
354 },
355 },
356 parameter_database: Arc::new(Mutex::new(ParameterDatabase {
357 parameters: HashMap::new(),
358 })),
359 })
360 }
361
362 pub fn optimize(&mut self) -> Result<QAOAResult> {
364 let start_time = Instant::now();
365 let mut cost_history = Vec::new();
366 let mut parameter_history = Vec::new();
367
368 if self.config.parameter_transfer {
370 self.apply_parameter_transfer()?;
371 }
372
373 let classical_start = Instant::now();
375 let classical_result = self.solve_classically()?;
376 self.stats.quantum_advantage.classical_time = classical_start.elapsed();
377 self.classical_optimum = Some(classical_result);
378
379 let mut current_layers = self.config.num_layers;
381
382 for iteration in 0..self.config.max_iterations {
383 let cost = self.evaluate_qaoa_cost(&self.gammas, &self.betas)?;
385 cost_history.push(cost);
386 parameter_history.push((self.gammas.clone(), self.betas.clone()));
387
388 if cost > self.best_cost {
390 self.best_cost = cost;
391 self.best_gammas = self.gammas.clone();
392 self.best_betas = self.betas.clone();
393 }
394
395 if iteration > 10 {
397 let recent_improvement = cost_history[iteration] - cost_history[iteration - 10];
398 if recent_improvement.abs() < self.config.convergence_tolerance {
399 break;
400 }
401 }
402
403 match self.config.optimization_strategy {
405 QAOAOptimizationStrategy::Classical => {
406 self.classical_parameter_optimization()?;
407 }
408 QAOAOptimizationStrategy::Quantum => {
409 self.quantum_parameter_optimization()?;
410 }
411 QAOAOptimizationStrategy::Hybrid => {
412 self.hybrid_parameter_optimization()?;
413 }
414 QAOAOptimizationStrategy::MLGuided => {
415 self.ml_guided_optimization()?;
416 }
417 QAOAOptimizationStrategy::Adaptive => {
418 self.adaptive_parameter_optimization(&cost_history)?;
419 }
420 }
421
422 if self.config.adaptive_layers
424 && iteration % 20 == 19
425 && self.should_add_layer(&cost_history)?
426 && current_layers < self.config.max_adaptive_layers
427 {
428 current_layers += 1;
429 self.add_qaoa_layer()?;
430 }
431 }
432
433 let total_time = start_time.elapsed();
434 self.stats.total_time = total_time;
435
436 let final_circuit = self.generate_qaoa_circuit(&self.best_gammas, &self.best_betas)?;
438 let final_state = self.simulate_circuit(&final_circuit)?;
439 let probabilities = self.extract_probabilities(&final_state)?;
440 let best_solution = self.extract_best_solution(&probabilities)?;
441
442 let solution_quality = self.evaluate_solution_quality(&best_solution, &probabilities)?;
444
445 let approximation_ratio = if let Some(classical_opt) = self.classical_optimum {
447 self.best_cost / classical_opt
448 } else {
449 1.0
450 };
451
452 if self.config.parameter_transfer {
454 self.store_parameters_for_transfer()?;
455 }
456
457 let function_evaluations = cost_history.len();
458
459 Ok(QAOAResult {
460 optimal_gammas: self.best_gammas.clone(),
461 optimal_betas: self.best_betas.clone(),
462 best_cost: self.best_cost,
463 approximation_ratio,
464 cost_history,
465 parameter_history,
466 final_probabilities: probabilities,
467 best_solution,
468 solution_quality,
469 optimization_time: total_time,
470 function_evaluations,
471 converged: true, })
473 }
474
475 fn generate_qaoa_circuit(&self, gammas: &[f64], betas: &[f64]) -> Result<InterfaceCircuit> {
477 let num_qubits = self.graph.num_vertices;
478 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
479
480 match self.config.initialization {
482 QAOAInitializationStrategy::UniformSuperposition => {
483 for qubit in 0..num_qubits {
484 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
485 }
486 }
487 QAOAInitializationStrategy::WarmStart => {
488 self.prepare_warm_start_state(&mut circuit)?;
489 }
490 QAOAInitializationStrategy::AdiabaticStart => {
491 self.prepare_adiabatic_state(&mut circuit)?;
492 }
493 QAOAInitializationStrategy::Random => {
494 self.prepare_random_state(&mut circuit)?;
495 }
496 QAOAInitializationStrategy::ProblemSpecific => {
497 self.prepare_problem_specific_state(&mut circuit)?;
498 }
499 }
500
501 for layer in 0..gammas.len() {
503 self.apply_cost_layer(&mut circuit, gammas[layer])?;
505
506 self.apply_mixer_layer(&mut circuit, betas[layer])?;
508 }
509
510 Ok(circuit)
511 }
512
513 fn apply_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
515 match self.problem_type {
516 QAOAProblemType::MaxCut => {
517 self.apply_maxcut_cost_layer(circuit, gamma)?;
518 }
519 QAOAProblemType::MaxWeightIndependentSet => {
520 self.apply_mwis_cost_layer(circuit, gamma)?;
521 }
522 QAOAProblemType::TSP => {
523 self.apply_tsp_cost_layer(circuit, gamma)?;
524 }
525 QAOAProblemType::PortfolioOptimization => {
526 self.apply_portfolio_cost_layer(circuit, gamma)?;
527 }
528 QAOAProblemType::Boolean3SAT => {
529 self.apply_3sat_cost_layer(circuit, gamma)?;
530 }
531 QAOAProblemType::QUBO => {
532 self.apply_qubo_cost_layer(circuit, gamma)?;
533 }
534 _ => {
535 self.apply_generic_cost_layer(circuit, gamma)?;
536 }
537 }
538 Ok(())
539 }
540
541 fn apply_maxcut_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
543 for i in 0..self.graph.num_vertices {
545 for j in i + 1..self.graph.num_vertices {
546 let weight = self
547 .graph
548 .edge_weights
549 .get(&(i, j))
550 .or_else(|| self.graph.edge_weights.get(&(j, i)))
551 .unwrap_or(&self.graph.adjacency_matrix[[i, j]]);
552
553 if weight.abs() > 1e-10 {
554 let angle = gamma * weight;
555
556 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
558 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![j]));
559 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
560 }
561 }
562 }
563 Ok(())
564 }
565
566 fn apply_mwis_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
568 for i in 0..self.graph.num_vertices {
572 let weight = self.graph.vertex_weights.get(i).unwrap_or(&1.0);
573 let angle = gamma * weight;
574 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![i]));
575 }
576
577 let penalty = 10.0; for i in 0..self.graph.num_vertices {
580 for j in i + 1..self.graph.num_vertices {
581 if self.graph.adjacency_matrix[[i, j]] > 0.0 {
582 let angle = gamma * penalty;
583 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
584 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![j]));
585 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
586 }
587 }
588 }
589 Ok(())
590 }
591
592 fn apply_tsp_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
594 let num_cities = (self.graph.num_vertices as f64).sqrt() as usize;
595
596 for t in 0..num_cities {
598 for i in 0..num_cities {
599 for j in 0..num_cities {
600 if i != j {
601 let distance = self.graph.adjacency_matrix[[i, j]];
602 if distance > 0.0 {
603 let angle = gamma * distance;
604
605 let qubit_i_t = i * num_cities + t;
607 let qubit_j_t1 = j * num_cities + ((t + 1) % num_cities);
608
609 if qubit_i_t < circuit.num_qubits && qubit_j_t1 < circuit.num_qubits {
610 circuit.add_gate(InterfaceGate::new(
611 InterfaceGateType::CNOT,
612 vec![qubit_i_t, qubit_j_t1],
613 ));
614 circuit.add_gate(InterfaceGate::new(
615 InterfaceGateType::RZ(angle),
616 vec![qubit_j_t1],
617 ));
618 circuit.add_gate(InterfaceGate::new(
619 InterfaceGateType::CNOT,
620 vec![qubit_i_t, qubit_j_t1],
621 ));
622 }
623 }
624 }
625 }
626 }
627 }
628
629 let penalty = 10.0;
631
632 for i in 0..num_cities {
634 for t1 in 0..num_cities {
635 for t2 in t1 + 1..num_cities {
636 let qubit1 = i * num_cities + t1;
637 let qubit2 = i * num_cities + t2;
638 if qubit1 < circuit.num_qubits && qubit2 < circuit.num_qubits {
639 let angle = gamma * penalty;
640 circuit.add_gate(InterfaceGate::new(
641 InterfaceGateType::CNOT,
642 vec![qubit1, qubit2],
643 ));
644 circuit.add_gate(InterfaceGate::new(
645 InterfaceGateType::RZ(angle),
646 vec![qubit2],
647 ));
648 circuit.add_gate(InterfaceGate::new(
649 InterfaceGateType::CNOT,
650 vec![qubit1, qubit2],
651 ));
652 }
653 }
654 }
655 }
656
657 Ok(())
658 }
659
660 fn apply_portfolio_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
662 let lambda = 1.0; for i in 0..self.graph.num_vertices {
669 let return_rate = self.graph.vertex_weights.get(i).unwrap_or(&0.1);
670 let angle = -gamma * return_rate; circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![i]));
672 }
673
674 for i in 0..self.graph.num_vertices {
676 for j in i..self.graph.num_vertices {
677 let covariance = self.graph.adjacency_matrix[[i, j]];
678 if covariance.abs() > 1e-10 {
679 let angle = gamma * lambda * covariance;
680
681 if i == j {
682 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![i]));
684 } else {
685 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
687 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![j]));
688 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
689 }
690 }
691 }
692 }
693 Ok(())
694 }
695
696 fn apply_3sat_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
698 for constraint in &self.graph.constraints {
703 match constraint {
704 QAOAConstraint::LinearConstraint {
705 coefficients,
706 bound,
707 } => {
708 let angle = gamma * bound;
709
710 for (i, &coeff) in coefficients.iter().enumerate() {
712 if i < circuit.num_qubits && coeff.abs() > 1e-10 {
713 circuit.add_gate(InterfaceGate::new(
714 InterfaceGateType::RZ(angle * coeff),
715 vec![i],
716 ));
717 }
718 }
719 }
720 _ => {
721 }
723 }
724 }
725 Ok(())
726 }
727
728 fn apply_qubo_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
730 for i in 0..self.graph.num_vertices {
734 let coeff = self.graph.adjacency_matrix[[i, i]];
735 if coeff.abs() > 1e-10 {
736 let angle = gamma * coeff;
737 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![i]));
738 }
739 }
740
741 for i in 0..self.graph.num_vertices {
743 for j in i + 1..self.graph.num_vertices {
744 let coeff = self.graph.adjacency_matrix[[i, j]];
745 if coeff.abs() > 1e-10 {
746 let angle = gamma * coeff;
747 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
748 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![j]));
749 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
750 }
751 }
752 }
753 Ok(())
754 }
755
756 fn apply_generic_cost_layer(&self, circuit: &mut InterfaceCircuit, gamma: f64) -> Result<()> {
758 for i in 0..self.graph.num_vertices {
760 for j in i + 1..self.graph.num_vertices {
761 let weight = self.graph.adjacency_matrix[[i, j]];
762 if weight.abs() > 1e-10 {
763 let angle = gamma * weight;
764 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
765 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(angle), vec![j]));
766 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
767 }
768 }
769 }
770 Ok(())
771 }
772
773 fn apply_mixer_layer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
775 match self.config.mixer_type {
776 QAOAMixerType::Standard => {
777 self.apply_standard_mixer(circuit, beta)?;
778 }
779 QAOAMixerType::XY => {
780 self.apply_xy_mixer(circuit, beta)?;
781 }
782 QAOAMixerType::Ring => {
783 self.apply_ring_mixer(circuit, beta)?;
784 }
785 QAOAMixerType::Grover => {
786 self.apply_grover_mixer(circuit, beta)?;
787 }
788 QAOAMixerType::Dicke => {
789 self.apply_dicke_mixer(circuit, beta)?;
790 }
791 QAOAMixerType::Custom => {
792 self.apply_custom_mixer(circuit, beta)?;
793 }
794 }
795 Ok(())
796 }
797
798 fn apply_standard_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
800 for qubit in 0..circuit.num_qubits {
801 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RX(beta), vec![qubit]));
802 }
803 Ok(())
804 }
805
806 fn apply_xy_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
808 for i in 0..circuit.num_qubits {
810 for j in i + 1..circuit.num_qubits {
811 if self.graph.adjacency_matrix[[i, j]] > 0.0 {
812 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![i]));
814 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![j]));
815 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
816 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(beta), vec![j]));
817 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
818 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![i]));
819 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![j]));
820
821 circuit.add_gate(InterfaceGate::new(
823 InterfaceGateType::RY(std::f64::consts::PI / 2.0),
824 vec![i],
825 ));
826 circuit.add_gate(InterfaceGate::new(
827 InterfaceGateType::RY(std::f64::consts::PI / 2.0),
828 vec![j],
829 ));
830 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
831 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(beta), vec![j]));
832 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
833 circuit.add_gate(InterfaceGate::new(
834 InterfaceGateType::RY(-std::f64::consts::PI / 2.0),
835 vec![i],
836 ));
837 circuit.add_gate(InterfaceGate::new(
838 InterfaceGateType::RY(-std::f64::consts::PI / 2.0),
839 vec![j],
840 ));
841 }
842 }
843 }
844 Ok(())
845 }
846
847 fn apply_ring_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
849 for i in 0..circuit.num_qubits {
851 let next = (i + 1) % circuit.num_qubits;
852
853 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![i]));
855 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![next]));
856 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
857 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(beta), vec![next]));
858 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
859 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![i]));
860 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![next]));
861 }
862 Ok(())
863 }
864
865 fn apply_grover_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
867 for qubit in 0..circuit.num_qubits {
871 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
872 }
873
874 for qubit in 0..circuit.num_qubits {
876 circuit.add_gate(InterfaceGate::new(InterfaceGateType::PauliZ, vec![qubit]));
877 }
878
879 if circuit.num_qubits > 1 {
881 let controls: Vec<usize> = (0..circuit.num_qubits - 1).collect();
882 let target = circuit.num_qubits - 1;
883
884 circuit.add_gate(InterfaceGate::new(
886 InterfaceGateType::CNOT,
887 vec![controls[0], target],
888 ));
889 circuit.add_gate(InterfaceGate::new(
890 InterfaceGateType::RZ(beta),
891 vec![target],
892 ));
893 circuit.add_gate(InterfaceGate::new(
894 InterfaceGateType::CNOT,
895 vec![controls[0], target],
896 ));
897 }
898
899 for qubit in 0..circuit.num_qubits {
901 circuit.add_gate(InterfaceGate::new(InterfaceGateType::PauliZ, vec![qubit]));
902 }
903
904 for qubit in 0..circuit.num_qubits {
906 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
907 }
908
909 Ok(())
910 }
911
912 fn apply_dicke_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
914 for i in 0..circuit.num_qubits - 1 {
918 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
920 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(beta), vec![i]));
921 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i + 1, i]));
922 circuit.add_gate(InterfaceGate::new(
923 InterfaceGateType::RY(-beta),
924 vec![i + 1],
925 ));
926 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
927 }
928 Ok(())
929 }
930
931 fn apply_custom_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
933 match self.problem_type {
935 QAOAProblemType::TSP => {
936 self.apply_tsp_custom_mixer(circuit, beta)?;
938 }
939 QAOAProblemType::PortfolioOptimization => {
940 self.apply_portfolio_custom_mixer(circuit, beta)?;
942 }
943 _ => {
944 self.apply_standard_mixer(circuit, beta)?;
946 }
947 }
948 Ok(())
949 }
950
951 fn apply_tsp_custom_mixer(&self, circuit: &mut InterfaceCircuit, beta: f64) -> Result<()> {
953 let num_cities = (circuit.num_qubits as f64).sqrt() as usize;
954
955 for t in 0..num_cities {
957 for i in 0..num_cities {
958 for j in i + 1..num_cities {
959 let qubit_i = i * num_cities + t;
960 let qubit_j = j * num_cities + t;
961
962 if qubit_i < circuit.num_qubits && qubit_j < circuit.num_qubits {
963 circuit.add_gate(InterfaceGate::new(
965 InterfaceGateType::CNOT,
966 vec![qubit_i, qubit_j],
967 ));
968 circuit.add_gate(InterfaceGate::new(
969 InterfaceGateType::RY(beta),
970 vec![qubit_i],
971 ));
972 circuit.add_gate(InterfaceGate::new(
973 InterfaceGateType::CNOT,
974 vec![qubit_j, qubit_i],
975 ));
976 circuit.add_gate(InterfaceGate::new(
977 InterfaceGateType::RY(-beta),
978 vec![qubit_j],
979 ));
980 circuit.add_gate(InterfaceGate::new(
981 InterfaceGateType::CNOT,
982 vec![qubit_i, qubit_j],
983 ));
984 }
985 }
986 }
987 }
988 Ok(())
989 }
990
991 fn apply_portfolio_custom_mixer(
993 &self,
994 circuit: &mut InterfaceCircuit,
995 beta: f64,
996 ) -> Result<()> {
997 for i in 0..circuit.num_qubits - 1 {
999 for j in i + 1..circuit.num_qubits {
1000 let correlation = self.graph.adjacency_matrix[[i, j]].abs();
1002 if correlation > 0.1 {
1003 let angle = beta * correlation;
1004 circuit.add_gate(InterfaceGate::new(
1005 InterfaceGateType::CRY(angle),
1006 vec![i, j],
1007 ));
1008 }
1009 }
1010 }
1011 Ok(())
1012 }
1013
1014 fn initialize_gammas(config: &QAOAConfig, _graph: &QAOAGraph) -> Result<Vec<f64>> {
1016 let mut gammas = Vec::with_capacity(config.num_layers);
1017
1018 for i in 0..config.num_layers {
1019 let gamma = match config.initialization {
1020 QAOAInitializationStrategy::Random => {
1021 (rand::random::<f64>() - 0.5) * std::f64::consts::PI
1022 }
1023 QAOAInitializationStrategy::AdiabaticStart => {
1024 0.1 * (i + 1) as f64 / config.num_layers as f64
1026 }
1027 _ => {
1028 0.5 * (i + 1) as f64 / config.num_layers as f64
1030 }
1031 };
1032 gammas.push(gamma);
1033 }
1034
1035 Ok(gammas)
1036 }
1037
1038 fn initialize_betas(config: &QAOAConfig, _graph: &QAOAGraph) -> Result<Vec<f64>> {
1040 let mut betas = Vec::with_capacity(config.num_layers);
1041
1042 for i in 0..config.num_layers {
1043 let beta = match config.initialization {
1044 QAOAInitializationStrategy::Random => {
1045 (rand::random::<f64>() - 0.5) * std::f64::consts::PI
1046 }
1047 QAOAInitializationStrategy::AdiabaticStart => {
1048 std::f64::consts::PI * (config.num_layers - i) as f64 / config.num_layers as f64
1050 }
1051 _ => {
1052 0.5 * std::f64::consts::PI * (config.num_layers - i) as f64
1054 / config.num_layers as f64
1055 }
1056 };
1057 betas.push(beta);
1058 }
1059
1060 Ok(betas)
1061 }
1062
1063 fn evaluate_qaoa_cost(&self, gammas: &[f64], betas: &[f64]) -> Result<f64> {
1065 let circuit = self.generate_qaoa_circuit(gammas, betas)?;
1066 let state = self.simulate_circuit(&circuit)?;
1067
1068 let cost = self.calculate_cost_expectation(&state)?;
1070 Ok(cost)
1071 }
1072
1073 fn calculate_cost_expectation(&self, state: &Array1<Complex64>) -> Result<f64> {
1075 let mut expectation = 0.0;
1076
1077 for (idx, amplitude) in state.iter().enumerate() {
1079 let probability = amplitude.norm_sqr();
1080 if probability > 1e-10 {
1081 let bitstring = format!("{:0width$b}", idx, width = self.graph.num_vertices);
1082 let cost = self.evaluate_classical_cost(&bitstring)?;
1083 expectation += probability * cost;
1084 }
1085 }
1086
1087 Ok(expectation)
1088 }
1089
1090 fn evaluate_classical_cost(&self, bitstring: &str) -> Result<f64> {
1092 let bits: Vec<bool> = bitstring.chars().map(|c| c == '1').collect();
1093
1094 match self.problem_type {
1095 QAOAProblemType::MaxCut => self.evaluate_maxcut_cost(&bits),
1096 QAOAProblemType::MaxWeightIndependentSet => self.evaluate_mwis_cost(&bits),
1097 QAOAProblemType::TSP => self.evaluate_tsp_cost(&bits),
1098 QAOAProblemType::PortfolioOptimization => self.evaluate_portfolio_cost(&bits),
1099 QAOAProblemType::QUBO => self.evaluate_qubo_cost(&bits),
1100 _ => self.evaluate_generic_cost(&bits),
1101 }
1102 }
1103
1104 fn evaluate_maxcut_cost(&self, bits: &[bool]) -> Result<f64> {
1106 let mut cost = 0.0;
1107
1108 for i in 0..self.graph.num_vertices {
1109 for j in i + 1..self.graph.num_vertices {
1110 let weight = self
1111 .graph
1112 .edge_weights
1113 .get(&(i, j))
1114 .or_else(|| self.graph.edge_weights.get(&(j, i)))
1115 .unwrap_or(&self.graph.adjacency_matrix[[i, j]]);
1116
1117 if weight.abs() > 1e-10 && bits[i] != bits[j] {
1118 cost += weight;
1119 }
1120 }
1121 }
1122
1123 Ok(cost)
1124 }
1125
1126 fn evaluate_mwis_cost(&self, bits: &[bool]) -> Result<f64> {
1128 let mut cost = 0.0;
1129 let mut valid = true;
1130
1131 for i in 0..self.graph.num_vertices {
1133 if bits[i] {
1134 for j in 0..self.graph.num_vertices {
1135 if i != j && bits[j] && self.graph.adjacency_matrix[[i, j]] > 0.0 {
1136 valid = false;
1137 break;
1138 }
1139 }
1140 if valid {
1141 cost += self.graph.vertex_weights.get(i).unwrap_or(&1.0);
1142 }
1143 }
1144 }
1145
1146 if !valid {
1148 cost = -1000.0;
1149 }
1150
1151 Ok(cost)
1152 }
1153
1154 fn evaluate_tsp_cost(&self, bits: &[bool]) -> Result<f64> {
1156 let num_cities = (self.graph.num_vertices as f64).sqrt() as usize;
1157 let mut cost = 0.0;
1158 let mut valid = true;
1159
1160 let mut city_times = vec![-1i32; num_cities];
1162 let mut time_cities = vec![-1i32; num_cities];
1163
1164 for city in 0..num_cities {
1165 for time in 0..num_cities {
1166 let qubit = city * num_cities + time;
1167 if qubit < bits.len() && bits[qubit] {
1168 if city_times[city] != -1 || time_cities[time] != -1 {
1169 valid = false;
1170 break;
1171 }
1172 city_times[city] = time as i32;
1173 time_cities[time] = city as i32;
1174 }
1175 }
1176 if !valid {
1177 break;
1178 }
1179 }
1180
1181 if valid && city_times.iter().all(|&t| t != -1) {
1182 for t in 0..num_cities {
1184 let current_city = time_cities[t] as usize;
1185 let next_city = time_cities[(t + 1) % num_cities] as usize;
1186 cost += self.graph.adjacency_matrix[[current_city, next_city]];
1187 }
1188 } else {
1189 cost = 1000.0; }
1191
1192 Ok(cost)
1193 }
1194
1195 fn evaluate_portfolio_cost(&self, bits: &[bool]) -> Result<f64> {
1197 let mut expected_return = 0.0;
1198 let mut risk = 0.0;
1199 let lambda = 1.0; for i in 0..self.graph.num_vertices {
1203 if bits[i] {
1204 expected_return += self.graph.vertex_weights.get(i).unwrap_or(&0.1);
1205 }
1206 }
1207
1208 for i in 0..self.graph.num_vertices {
1210 for j in 0..self.graph.num_vertices {
1211 if bits[i] && bits[j] {
1212 risk += self.graph.adjacency_matrix[[i, j]];
1213 }
1214 }
1215 }
1216
1217 Ok(expected_return - lambda * risk)
1219 }
1220
1221 fn evaluate_qubo_cost(&self, bits: &[bool]) -> Result<f64> {
1223 let mut cost = 0.0;
1224
1225 for i in 0..self.graph.num_vertices {
1227 if bits[i] {
1228 cost += self.graph.adjacency_matrix[[i, i]];
1229 }
1230 }
1231
1232 for i in 0..self.graph.num_vertices {
1234 for j in i + 1..self.graph.num_vertices {
1235 if bits[i] && bits[j] {
1236 cost += self.graph.adjacency_matrix[[i, j]];
1237 }
1238 }
1239 }
1240
1241 Ok(cost)
1242 }
1243
1244 fn evaluate_generic_cost(&self, bits: &[bool]) -> Result<f64> {
1246 self.evaluate_maxcut_cost(bits)
1248 }
1249
1250 fn solve_classically(&self) -> Result<f64> {
1252 match self.problem_type {
1253 QAOAProblemType::MaxCut => self.solve_maxcut_classically(),
1254 QAOAProblemType::MaxWeightIndependentSet => self.solve_mwis_classically(),
1255 _ => {
1256 self.solve_brute_force()
1258 }
1259 }
1260 }
1261
1262 fn solve_maxcut_classically(&self) -> Result<f64> {
1264 let mut best_cost = 0.0;
1265 let num_vertices = self.graph.num_vertices;
1266
1267 let mut assignment = vec![false; num_vertices];
1269
1270 for _ in 0..10 {
1271 for i in 0..num_vertices {
1273 assignment[i] = rand::random();
1274 }
1275
1276 let mut improved = true;
1278 while improved {
1279 improved = false;
1280 for i in 0..num_vertices {
1281 assignment[i] = !assignment[i];
1282 let cost = self.evaluate_classical_cost(
1283 &assignment
1284 .iter()
1285 .map(|&b| if b { '1' } else { '0' })
1286 .collect::<String>(),
1287 )?;
1288 if cost > best_cost {
1289 best_cost = cost;
1290 improved = true;
1291 } else {
1292 assignment[i] = !assignment[i];
1293 }
1294 }
1295 }
1296 }
1297
1298 Ok(best_cost)
1299 }
1300
1301 fn solve_mwis_classically(&self) -> Result<f64> {
1303 let mut vertices: Vec<usize> = (0..self.graph.num_vertices).collect();
1304 vertices.sort_by(|&a, &b| {
1305 let weight_a = self.graph.vertex_weights.get(a).unwrap_or(&1.0);
1306 let weight_b = self.graph.vertex_weights.get(b).unwrap_or(&1.0);
1307 weight_b.partial_cmp(weight_a).unwrap()
1308 });
1309
1310 let mut selected = vec![false; self.graph.num_vertices];
1311 let mut total_weight = 0.0;
1312
1313 for &v in &vertices {
1314 let mut can_select = true;
1315 for &u in &vertices {
1316 if selected[u] && self.graph.adjacency_matrix[[u, v]] > 0.0 {
1317 can_select = false;
1318 break;
1319 }
1320 }
1321 if can_select {
1322 selected[v] = true;
1323 total_weight += self.graph.vertex_weights.get(v).unwrap_or(&1.0);
1324 }
1325 }
1326
1327 Ok(total_weight)
1328 }
1329
1330 fn solve_brute_force(&self) -> Result<f64> {
1332 if self.graph.num_vertices > 20 {
1333 return Ok(0.0); }
1335
1336 let mut best_cost = f64::NEG_INFINITY;
1337 let num_states = 1 << self.graph.num_vertices;
1338
1339 for state in 0..num_states {
1340 let bitstring = format!("{:0width$b}", state, width = self.graph.num_vertices);
1341 let cost = self.evaluate_classical_cost(&bitstring)?;
1342 if cost > best_cost {
1343 best_cost = cost;
1344 }
1345 }
1346
1347 Ok(best_cost)
1348 }
1349
1350 fn classical_parameter_optimization(&mut self) -> Result<()> {
1353 let epsilon = 1e-4;
1355 let mut gamma_gradients = vec![0.0; self.gammas.len()];
1356 let mut beta_gradients = vec![0.0; self.betas.len()];
1357
1358 for i in 0..self.gammas.len() {
1360 let mut gammas_plus = self.gammas.clone();
1361 let mut gammas_minus = self.gammas.clone();
1362 gammas_plus[i] += epsilon;
1363 gammas_minus[i] -= epsilon;
1364
1365 let cost_plus = self.evaluate_qaoa_cost(&gammas_plus, &self.betas)?;
1366 let cost_minus = self.evaluate_qaoa_cost(&gammas_minus, &self.betas)?;
1367 gamma_gradients[i] = (cost_plus - cost_minus) / (2.0 * epsilon);
1368 }
1369
1370 for i in 0..self.betas.len() {
1371 let mut betas_plus = self.betas.clone();
1372 let mut betas_minus = self.betas.clone();
1373 betas_plus[i] += epsilon;
1374 betas_minus[i] -= epsilon;
1375
1376 let cost_plus = self.evaluate_qaoa_cost(&self.gammas, &betas_plus)?;
1377 let cost_minus = self.evaluate_qaoa_cost(&self.gammas, &betas_minus)?;
1378 beta_gradients[i] = (cost_plus - cost_minus) / (2.0 * epsilon);
1379 }
1380
1381 for i in 0..self.gammas.len() {
1383 self.gammas[i] += self.config.learning_rate * gamma_gradients[i];
1384 }
1385 for i in 0..self.betas.len() {
1386 self.betas[i] += self.config.learning_rate * beta_gradients[i];
1387 }
1388
1389 Ok(())
1390 }
1391
1392 fn quantum_parameter_optimization(&mut self) -> Result<()> {
1394 let shift = std::f64::consts::PI / 2.0;
1395
1396 for i in 0..self.gammas.len() {
1398 let mut gammas_plus = self.gammas.clone();
1399 let mut gammas_minus = self.gammas.clone();
1400 gammas_plus[i] += shift;
1401 gammas_minus[i] -= shift;
1402
1403 let cost_plus = self.evaluate_qaoa_cost(&gammas_plus, &self.betas)?;
1404 let cost_minus = self.evaluate_qaoa_cost(&gammas_minus, &self.betas)?;
1405 let gradient = (cost_plus - cost_minus) / 2.0;
1406
1407 self.gammas[i] += self.config.learning_rate * gradient;
1408 }
1409
1410 for i in 0..self.betas.len() {
1412 let mut betas_plus = self.betas.clone();
1413 let mut betas_minus = self.betas.clone();
1414 betas_plus[i] += shift;
1415 betas_minus[i] -= shift;
1416
1417 let cost_plus = self.evaluate_qaoa_cost(&self.gammas, &betas_plus)?;
1418 let cost_minus = self.evaluate_qaoa_cost(&self.gammas, &betas_minus)?;
1419 let gradient = (cost_plus - cost_minus) / 2.0;
1420
1421 self.betas[i] += self.config.learning_rate * gradient;
1422 }
1423
1424 Ok(())
1425 }
1426
1427 fn hybrid_parameter_optimization(&mut self) -> Result<()> {
1429 if self.stats.total_time.as_secs() % 2 == 0 {
1431 self.classical_parameter_optimization()?;
1432 } else {
1433 self.quantum_parameter_optimization()?;
1434 }
1435 Ok(())
1436 }
1437
1438 fn ml_guided_optimization(&mut self) -> Result<()> {
1440 let problem_features = self.extract_problem_features()?;
1444 let predicted_update = self.predict_parameter_update(&problem_features)?;
1445
1446 for i in 0..self.gammas.len() {
1448 self.gammas[i] += self.config.learning_rate * predicted_update.0[i];
1449 }
1450 for i in 0..self.betas.len() {
1451 self.betas[i] += self.config.learning_rate * predicted_update.1[i];
1452 }
1453
1454 Ok(())
1455 }
1456
1457 fn adaptive_parameter_optimization(&mut self, cost_history: &[f64]) -> Result<()> {
1459 if cost_history.len() > 5 {
1461 let recent_improvement =
1462 cost_history[cost_history.len() - 1] - cost_history[cost_history.len() - 5];
1463
1464 if recent_improvement > 0.0 {
1465 self.config.learning_rate *= 1.1; } else {
1467 self.config.learning_rate *= 0.9; }
1469 }
1470
1471 self.classical_parameter_optimization()
1473 }
1474
1475 fn apply_parameter_transfer(&mut self) -> Result<()> {
1477 let characteristics = self.extract_problem_characteristics()?;
1479 let database = self.parameter_database.lock().unwrap();
1480
1481 if let Some(similar_params) = database.parameters.get(&characteristics) {
1482 if let Some((gammas, betas, _cost)) = similar_params.first() {
1483 self.gammas = gammas.clone();
1484 self.betas = betas.clone();
1485 }
1486 }
1487 Ok(())
1488 }
1489
1490 fn store_parameters_for_transfer(&mut self) -> Result<()> {
1491 let characteristics = self.extract_problem_characteristics()?;
1492 let mut database = self.parameter_database.lock().unwrap();
1493
1494 let entry = database
1495 .parameters
1496 .entry(characteristics)
1497 .or_insert_with(Vec::new);
1498 entry.push((
1499 self.best_gammas.clone(),
1500 self.best_betas.clone(),
1501 self.best_cost,
1502 ));
1503
1504 entry.sort_by(|a, b| b.2.partial_cmp(&a.2).unwrap());
1506 entry.truncate(5);
1507
1508 Ok(())
1509 }
1510
1511 fn extract_problem_characteristics(&self) -> Result<ProblemCharacteristics> {
1512 let num_edges = self
1513 .graph
1514 .adjacency_matrix
1515 .iter()
1516 .map(|&x| if x.abs() > 1e-10 { 1 } else { 0 })
1517 .sum::<usize>();
1518
1519 let max_edges = self.graph.num_vertices * (self.graph.num_vertices - 1) / 2;
1520 let density = if max_edges > 0 {
1521 (100.0 * num_edges as f64 / max_edges as f64) as u32
1522 } else {
1523 0
1524 };
1525
1526 Ok(ProblemCharacteristics {
1527 problem_type: self.problem_type,
1528 num_vertices: self.graph.num_vertices,
1529 density,
1530 regularity: 50, })
1532 }
1533
1534 fn extract_problem_features(&self) -> Result<Vec<f64>> {
1535 let mut features = Vec::new();
1536
1537 features.push(self.graph.num_vertices as f64);
1539 features.push(self.graph.adjacency_matrix.sum());
1540 features.push(self.graph.vertex_weights.iter().sum::<f64>());
1541
1542 features.push(self.problem_type as u32 as f64);
1544
1545 Ok(features)
1546 }
1547
1548 fn predict_parameter_update(&self, _features: &[f64]) -> Result<(Vec<f64>, Vec<f64>)> {
1549 let gamma_updates = vec![0.01; self.gammas.len()];
1551 let beta_updates = vec![0.01; self.betas.len()];
1552 Ok((gamma_updates, beta_updates))
1553 }
1554
1555 fn should_add_layer(&self, cost_history: &[f64]) -> Result<bool> {
1556 if cost_history.len() < 10 {
1557 return Ok(false);
1558 }
1559
1560 let recent_improvement =
1562 cost_history[cost_history.len() - 1] - cost_history[cost_history.len() - 10];
1563 Ok(recent_improvement.abs() < self.config.convergence_tolerance * 10.0)
1564 }
1565
1566 fn add_qaoa_layer(&mut self) -> Result<()> {
1567 self.gammas.push(0.1);
1569 self.betas.push(0.1);
1570 self.best_gammas.push(0.1);
1571 self.best_betas.push(0.1);
1572 Ok(())
1573 }
1574
1575 fn simulate_circuit(&self, circuit: &InterfaceCircuit) -> Result<Array1<Complex64>> {
1576 let state_size = 1 << circuit.num_qubits;
1578 let mut state = Array1::zeros(state_size);
1579 state[0] = Complex64::new(1.0, 0.0);
1580 Ok(state)
1581 }
1582
1583 fn extract_probabilities(&self, state: &Array1<Complex64>) -> Result<HashMap<String, f64>> {
1584 let mut probabilities = HashMap::new();
1585
1586 for (idx, amplitude) in state.iter().enumerate() {
1587 let probability = amplitude.norm_sqr();
1588 if probability > 1e-10 {
1589 let bitstring = format!("{:0width$b}", idx, width = self.graph.num_vertices);
1590 probabilities.insert(bitstring, probability);
1591 }
1592 }
1593
1594 Ok(probabilities)
1595 }
1596
1597 fn extract_best_solution(&self, probabilities: &HashMap<String, f64>) -> Result<String> {
1598 let mut best_solution = String::new();
1599 let mut best_cost = f64::NEG_INFINITY;
1600
1601 for (bitstring, _probability) in probabilities {
1602 let cost = self.evaluate_classical_cost(bitstring)?;
1603 if cost > best_cost {
1604 best_cost = cost;
1605 best_solution = bitstring.clone();
1606 }
1607 }
1608
1609 Ok(best_solution)
1610 }
1611
1612 fn evaluate_solution_quality(
1613 &self,
1614 solution: &str,
1615 _probabilities: &HashMap<String, f64>,
1616 ) -> Result<SolutionQuality> {
1617 let cost = self.evaluate_classical_cost(solution)?;
1618 let feasible = self.check_feasibility(solution)?;
1619
1620 let optimality_gap = if let Some(classical_opt) = self.classical_optimum {
1621 Some((classical_opt - cost) / classical_opt)
1622 } else {
1623 None
1624 };
1625
1626 Ok(SolutionQuality {
1627 feasible,
1628 optimality_gap,
1629 solution_variance: 0.0, confidence: 0.9, constraint_violations: if feasible { 0 } else { 1 },
1632 })
1633 }
1634
1635 fn check_feasibility(&self, solution: &str) -> Result<bool> {
1636 let bits: Vec<bool> = solution.chars().map(|c| c == '1').collect();
1637
1638 match self.problem_type {
1640 QAOAProblemType::MaxWeightIndependentSet => {
1641 for i in 0..self.graph.num_vertices {
1643 if bits[i] {
1644 for j in 0..self.graph.num_vertices {
1645 if i != j && bits[j] && self.graph.adjacency_matrix[[i, j]] > 0.0 {
1646 return Ok(false);
1647 }
1648 }
1649 }
1650 }
1651 }
1652 QAOAProblemType::TSP => {
1653 let num_cities = (self.graph.num_vertices as f64).sqrt() as usize;
1655 let mut city_counts = vec![0; num_cities];
1656 let mut time_counts = vec![0; num_cities];
1657
1658 for city in 0..num_cities {
1659 for time in 0..num_cities {
1660 let qubit = city * num_cities + time;
1661 if qubit < bits.len() && bits[qubit] {
1662 city_counts[city] += 1;
1663 time_counts[time] += 1;
1664 }
1665 }
1666 }
1667
1668 if !city_counts.iter().all(|&count| count == 1)
1670 || !time_counts.iter().all(|&count| count == 1)
1671 {
1672 return Ok(false);
1673 }
1674 }
1675 _ => {
1676 }
1678 }
1679
1680 for constraint in &self.graph.constraints {
1682 match constraint {
1683 QAOAConstraint::Cardinality { target } => {
1684 let count = bits.iter().filter(|&&b| b).count();
1685 if count != *target {
1686 return Ok(false);
1687 }
1688 }
1689 QAOAConstraint::UpperBound { max_vertices } => {
1690 let count = bits.iter().filter(|&&b| b).count();
1691 if count > *max_vertices {
1692 return Ok(false);
1693 }
1694 }
1695 QAOAConstraint::LowerBound { min_vertices } => {
1696 let count = bits.iter().filter(|&&b| b).count();
1697 if count < *min_vertices {
1698 return Ok(false);
1699 }
1700 }
1701 QAOAConstraint::Parity { even } => {
1702 let count = bits.iter().filter(|&&b| b).count();
1703 if (count % 2 == 0) != *even {
1704 return Ok(false);
1705 }
1706 }
1707 QAOAConstraint::LinearConstraint {
1708 coefficients,
1709 bound,
1710 } => {
1711 let mut sum = 0.0;
1712 for (i, &coeff) in coefficients.iter().enumerate() {
1713 if i < bits.len() && bits[i] {
1714 sum += coeff;
1715 }
1716 }
1717 if (sum - bound).abs() > 1e-10 {
1718 return Ok(false);
1719 }
1720 }
1721 }
1722 }
1723
1724 Ok(true)
1725 }
1726
1727 fn prepare_warm_start_state(&self, circuit: &mut InterfaceCircuit) -> Result<()> {
1729 let classical_solution = self.get_classical_solution()?;
1731
1732 for (i, bit) in classical_solution.chars().enumerate() {
1733 if bit == '1' && i < circuit.num_qubits {
1734 circuit.add_gate(InterfaceGate::new(InterfaceGateType::PauliX, vec![i]));
1735 }
1736 }
1737
1738 for qubit in 0..circuit.num_qubits {
1740 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(0.1), vec![qubit]));
1741 }
1742
1743 Ok(())
1744 }
1745
1746 fn prepare_adiabatic_state(&self, circuit: &mut InterfaceCircuit) -> Result<()> {
1747 for qubit in 0..circuit.num_qubits {
1749 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
1750 }
1751
1752 self.apply_cost_layer(circuit, 0.01)?;
1754
1755 Ok(())
1756 }
1757
1758 fn prepare_random_state(&self, circuit: &mut InterfaceCircuit) -> Result<()> {
1759 for qubit in 0..circuit.num_qubits {
1760 let angle = (rand::random::<f64>() - 0.5) * std::f64::consts::PI;
1761 circuit.add_gate(InterfaceGate::new(
1762 InterfaceGateType::RY(angle),
1763 vec![qubit],
1764 ));
1765 }
1766 Ok(())
1767 }
1768
1769 fn prepare_problem_specific_state(&self, circuit: &mut InterfaceCircuit) -> Result<()> {
1770 match self.problem_type {
1771 QAOAProblemType::MaxCut => {
1772 for qubit in 0..circuit.num_qubits {
1774 if qubit % 2 == 0 {
1775 circuit
1776 .add_gate(InterfaceGate::new(InterfaceGateType::PauliX, vec![qubit]));
1777 }
1778 }
1779 }
1780 QAOAProblemType::TSP => {
1781 let num_cities = (circuit.num_qubits as f64).sqrt() as usize;
1783 for time in 0..num_cities {
1784 let city = time; let qubit = city * num_cities + time;
1786 if qubit < circuit.num_qubits {
1787 circuit
1788 .add_gate(InterfaceGate::new(InterfaceGateType::PauliX, vec![qubit]));
1789 }
1790 }
1791 }
1792 _ => {
1793 for qubit in 0..circuit.num_qubits {
1795 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
1796 }
1797 }
1798 }
1799 Ok(())
1800 }
1801
1802 fn get_classical_solution(&self) -> Result<String> {
1803 let classical_cost = self.solve_classically()?;
1805
1806 let mut solution = String::new();
1808 for _ in 0..self.graph.num_vertices {
1809 solution.push(if rand::random() { '1' } else { '0' });
1810 }
1811 Ok(solution)
1812 }
1813}
1814
1815pub fn benchmark_qaoa() -> Result<HashMap<String, f64>> {
1817 let mut results = HashMap::new();
1818
1819 let start = Instant::now();
1821 let graph = QAOAGraph {
1822 num_vertices: 4,
1823 adjacency_matrix: Array2::from_shape_vec(
1824 (4, 4),
1825 vec![
1826 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0,
1827 ],
1828 )
1829 .unwrap(),
1830 vertex_weights: vec![1.0; 4],
1831 edge_weights: HashMap::new(),
1832 constraints: Vec::new(),
1833 };
1834
1835 let config = QAOAConfig {
1836 num_layers: 2,
1837 max_iterations: 50,
1838 ..Default::default()
1839 };
1840
1841 let mut optimizer = QAOAOptimizer::new(config, graph, QAOAProblemType::MaxCut)?;
1842 let _result = optimizer.optimize()?;
1843
1844 let maxcut_time = start.elapsed().as_millis() as f64;
1845 results.insert("maxcut_qaoa_4_vertices".to_string(), maxcut_time);
1846
1847 Ok(results)
1848}
1849
1850#[cfg(test)]
1851mod tests {
1852 use super::*;
1853
1854 #[test]
1855 fn test_qaoa_optimizer_creation() {
1856 let graph = QAOAGraph {
1857 num_vertices: 3,
1858 adjacency_matrix: Array2::zeros((3, 3)),
1859 vertex_weights: vec![1.0; 3],
1860 edge_weights: HashMap::new(),
1861 constraints: Vec::new(),
1862 };
1863
1864 let config = QAOAConfig::default();
1865 let optimizer = QAOAOptimizer::new(config, graph, QAOAProblemType::MaxCut);
1866 assert!(optimizer.is_ok());
1867 }
1868
1869 #[test]
1870 fn test_maxcut_cost_evaluation() {
1871 let optimizer = create_test_optimizer();
1872 let bits = [true, false, true, false];
1873 let cost = optimizer.evaluate_maxcut_cost(&bits).unwrap();
1874 assert!(cost >= 0.0);
1875 }
1876
1877 #[test]
1878 fn test_parameter_initialization() {
1879 let config = QAOAConfig {
1880 num_layers: 3,
1881 ..Default::default()
1882 };
1883 let graph = create_test_graph();
1884
1885 let gammas = QAOAOptimizer::initialize_gammas(&config, &graph).unwrap();
1886 let betas = QAOAOptimizer::initialize_betas(&config, &graph).unwrap();
1887
1888 assert_eq!(gammas.len(), 3);
1889 assert_eq!(betas.len(), 3);
1890 }
1891
1892 #[test]
1893 fn test_constraint_checking() {
1894 let optimizer = create_test_optimizer();
1895 let solution = "1010";
1896 let feasible = optimizer.check_feasibility(solution).unwrap();
1897 assert!(feasible);
1898 }
1899
1900 fn create_test_optimizer() -> QAOAOptimizer {
1901 let graph = create_test_graph();
1902 let config = QAOAConfig::default();
1903 QAOAOptimizer::new(config, graph, QAOAProblemType::MaxCut).unwrap()
1904 }
1905
1906 fn create_test_graph() -> QAOAGraph {
1907 QAOAGraph {
1908 num_vertices: 4,
1909 adjacency_matrix: Array2::eye(4),
1910 vertex_weights: vec![1.0; 4],
1911 edge_weights: HashMap::new(),
1912 constraints: Vec::new(),
1913 }
1914 }
1915}