quantrs2_sim/
large_scale_simulator.rs

1//! Large-Scale Quantum Simulator with Advanced Memory Optimization
2//!
3//! This module provides state-of-the-art memory optimization techniques to enable
4//! simulation of 40+ qubit quantum circuits on standard hardware through sparse
5//! representations, compression, memory mapping, and SciRS2 high-performance computing.
6
7use quantrs2_circuit::builder::{Circuit, Simulator};
8use quantrs2_core::{
9    buffer_pool::BufferPool,
10    error::{QuantRS2Error, QuantRS2Result},
11    gate::GateOp,
12    qubit::QubitId,
13};
14// use scirs2_core::parallel_ops::*;
15// use quantrs2_core::platform::PlatformCapabilities;
16// use scirs2_core::memory::BufferPool as SciRS2BufferPool;
17// use scirs2_optimize::compression::{CompressionEngine, HuffmanEncoder, LZ4Encoder};
18// use scirs2_linalg::{Matrix, Vector, SVD, sparse::CSRMatrix};
19use flate2::{read::ZlibDecoder, write::ZlibEncoder, Compression};
20use memmap2::{MmapMut, MmapOptions};
21use ndarray::{Array1, Array2, Array3, ArrayView1, ArrayView2};
22use num_complex::Complex64;
23use rayon::prelude::*;
24use serde::{Deserialize, Serialize};
25use std::collections::{BTreeMap, HashMap, HashSet, VecDeque};
26use std::fmt;
27use std::fs::{File, OpenOptions};
28use std::io::{BufReader, BufWriter, Read, Seek, SeekFrom, Write};
29use std::path::{Path, PathBuf};
30use std::sync::{Arc, Mutex, RwLock};
31use uuid::Uuid;
32
33/// Large-scale simulator configuration for 40+ qubit systems
34#[derive(Debug, Clone, Serialize, Deserialize)]
35pub struct LargeScaleSimulatorConfig {
36    /// Maximum number of qubits to simulate
37    pub max_qubits: usize,
38
39    /// Enable sparse state vector representation
40    pub enable_sparse_representation: bool,
41
42    /// Enable state compression
43    pub enable_compression: bool,
44
45    /// Enable memory mapping for very large states
46    pub enable_memory_mapping: bool,
47
48    /// Enable chunked processing
49    pub enable_chunked_processing: bool,
50
51    /// Chunk size for processing (in complex numbers)
52    pub chunk_size: usize,
53
54    /// Sparsity threshold (fraction of non-zero elements)
55    pub sparsity_threshold: f64,
56
57    /// Compression threshold (minimum size to compress)
58    pub compression_threshold: usize,
59
60    /// Memory mapping threshold (minimum size to use mmap)
61    pub memory_mapping_threshold: usize,
62
63    /// Working directory for temporary files
64    pub working_directory: PathBuf,
65
66    /// Enable SciRS2 optimizations
67    pub enable_scirs2_optimizations: bool,
68
69    /// Memory budget in bytes
70    pub memory_budget: usize,
71
72    /// Enable adaptive precision
73    pub enable_adaptive_precision: bool,
74
75    /// Precision tolerance for adaptive precision
76    pub precision_tolerance: f64,
77}
78
79impl Default for LargeScaleSimulatorConfig {
80    fn default() -> Self {
81        Self {
82            max_qubits: 50,
83            enable_sparse_representation: true,
84            enable_compression: true,
85            enable_memory_mapping: true,
86            enable_chunked_processing: true,
87            chunk_size: 1024 * 1024,                    // 1M complex numbers
88            sparsity_threshold: 0.1,                    // Sparse if < 10% non-zero
89            compression_threshold: 1024 * 1024 * 8,     // 8MB
90            memory_mapping_threshold: 1024 * 1024 * 64, // 64MB
91            working_directory: std::env::temp_dir().join("quantrs_large_scale"),
92            enable_scirs2_optimizations: true,
93            memory_budget: 8 * 1024 * 1024 * 1024, // 8GB
94            enable_adaptive_precision: true,
95            precision_tolerance: 1e-12,
96        }
97    }
98}
99
100/// Simple sparse matrix representation for quantum states
101#[derive(Debug, Clone)]
102pub struct SimpleSparseMatrix {
103    /// Non-zero values
104    values: Vec<Complex64>,
105    /// Column indices for non-zero values
106    col_indices: Vec<usize>,
107    /// Row pointers (start index for each row)
108    row_ptr: Vec<usize>,
109    /// Matrix dimensions
110    rows: usize,
111    cols: usize,
112}
113
114impl SimpleSparseMatrix {
115    pub fn from_dense(dense: &[Complex64], threshold: f64) -> Self {
116        let rows = dense.len();
117        let cols = 1; // For state vectors
118        let mut values = Vec::new();
119        let mut col_indices = Vec::new();
120        let mut row_ptr = vec![0];
121
122        for (i, &val) in dense.iter().enumerate() {
123            if val.norm() > threshold {
124                values.push(val);
125                col_indices.push(0); // State vector is column vector
126            }
127            row_ptr.push(values.len());
128        }
129
130        Self {
131            values,
132            col_indices,
133            row_ptr,
134            rows,
135            cols,
136        }
137    }
138
139    pub fn to_dense(&self) -> Vec<Complex64> {
140        let mut dense = vec![Complex64::new(0.0, 0.0); self.rows];
141
142        for (row, &val) in self.values.iter().enumerate() {
143            if row < self.row_ptr.len() - 1 {
144                let start = self.row_ptr[row];
145                let end = self.row_ptr[row + 1];
146                if start < end && start < self.col_indices.len() {
147                    let col = self.col_indices[start];
148                    if col < dense.len() {
149                        dense[row] = val;
150                    }
151                }
152            }
153        }
154
155        dense
156    }
157
158    pub fn nnz(&self) -> usize {
159        self.values.len()
160    }
161}
162
163/// Sparse quantum state representation using simple sparse matrices
164#[derive(Debug)]
165pub struct SparseQuantumState {
166    /// Sparse representation of non-zero amplitudes
167    sparse_amplitudes: SimpleSparseMatrix,
168
169    /// Number of qubits
170    num_qubits: usize,
171
172    /// Total dimension (2^num_qubits)
173    dimension: usize,
174
175    /// Non-zero indices and their positions
176    nonzero_indices: HashMap<usize, usize>,
177
178    /// Sparsity ratio
179    sparsity_ratio: f64,
180}
181
182impl SparseQuantumState {
183    /// Create new sparse quantum state
184    pub fn new(num_qubits: usize) -> QuantRS2Result<Self> {
185        let dimension = 1usize << num_qubits;
186
187        // Initialize in |0...0⟩ state (single non-zero element)
188        let mut dense = vec![Complex64::new(0.0, 0.0); dimension];
189        dense[0] = Complex64::new(1.0, 0.0);
190
191        let sparse_amplitudes = SimpleSparseMatrix::from_dense(&dense, 1e-15);
192
193        let mut nonzero_indices = HashMap::new();
194        nonzero_indices.insert(0, 0);
195
196        Ok(Self {
197            sparse_amplitudes,
198            num_qubits,
199            dimension,
200            nonzero_indices,
201            sparsity_ratio: 1.0 / dimension as f64,
202        })
203    }
204
205    /// Convert from dense state vector
206    pub fn from_dense(amplitudes: &[Complex64], threshold: f64) -> QuantRS2Result<Self> {
207        let num_qubits = (amplitudes.len() as f64).log2() as usize;
208        let dimension = amplitudes.len();
209
210        // Find non-zero elements
211        let mut nonzero_indices = HashMap::new();
212        let mut nonzero_count = 0;
213
214        for (i, &amplitude) in amplitudes.iter().enumerate() {
215            if amplitude.norm() > threshold {
216                nonzero_indices.insert(i, nonzero_count);
217                nonzero_count += 1;
218            }
219        }
220
221        let sparse_amplitudes = SimpleSparseMatrix::from_dense(amplitudes, threshold);
222        let sparsity_ratio = nonzero_count as f64 / dimension as f64;
223
224        Ok(Self {
225            sparse_amplitudes,
226            num_qubits,
227            dimension,
228            nonzero_indices,
229            sparsity_ratio,
230        })
231    }
232
233    /// Convert to dense state vector
234    pub fn to_dense(&self) -> QuantRS2Result<Vec<Complex64>> {
235        Ok(self.sparse_amplitudes.to_dense())
236    }
237
238    /// Apply sparse gate operation
239    pub fn apply_sparse_gate(&mut self, gate: &dyn GateOp) -> QuantRS2Result<()> {
240        // For now, convert to dense, apply gate, convert back
241        // TODO: Implement true sparse gate operations
242        let mut dense = self.to_dense()?;
243
244        // Apply gate to dense representation (simplified)
245        match gate.name() {
246            "X" => {
247                if let Some(target) = gate.qubits().first() {
248                    let target_idx = target.id() as usize;
249                    self.apply_pauli_x_sparse(target_idx)?;
250                }
251            }
252            "H" => {
253                if let Some(target) = gate.qubits().first() {
254                    let target_idx = target.id() as usize;
255                    self.apply_hadamard_sparse(target_idx)?;
256                }
257            }
258            _ => {
259                // Fallback to dense operation
260                let matrix = gate.matrix()?;
261                self.apply_dense_gate(&matrix, &gate.qubits())?;
262            }
263        }
264
265        Ok(())
266    }
267
268    /// Apply Pauli-X gate efficiently in sparse representation
269    fn apply_pauli_x_sparse(&mut self, target: usize) -> QuantRS2Result<()> {
270        // Pauli-X just flips the target bit in the indices
271        let mut new_nonzero_indices = HashMap::new();
272        let target_mask = 1usize << target;
273
274        for (&old_idx, &pos) in &self.nonzero_indices {
275            let new_idx = old_idx ^ target_mask;
276            new_nonzero_indices.insert(new_idx, pos);
277        }
278
279        self.nonzero_indices = new_nonzero_indices;
280
281        // Update sparse matrix indices
282        self.update_sparse_matrix()?;
283
284        Ok(())
285    }
286
287    /// Apply Hadamard gate in sparse representation
288    fn apply_hadamard_sparse(&mut self, target: usize) -> QuantRS2Result<()> {
289        // Hadamard creates superposition, potentially doubling non-zero elements
290        // For true sparsity preservation, we'd need more sophisticated techniques
291        // For now, use dense conversion
292        let dense = self.to_dense()?;
293        let mut new_dense = vec![Complex64::new(0.0, 0.0); self.dimension];
294
295        let h_00 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
296        let h_01 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
297        let h_10 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
298        let h_11 = Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0);
299
300        let target_mask = 1usize << target;
301
302        for i in 0..self.dimension {
303            let paired_idx = i ^ target_mask;
304            let bit_val = (i >> target) & 1;
305
306            if bit_val == 0 {
307                new_dense[i] = h_00 * dense[i] + h_01 * dense[paired_idx];
308                new_dense[paired_idx] = h_10 * dense[i] + h_11 * dense[paired_idx];
309            }
310        }
311
312        *self = Self::from_dense(&new_dense, 1e-15)?;
313
314        Ok(())
315    }
316
317    /// Apply dense gate operation
318    fn apply_dense_gate(&mut self, matrix: &[Complex64], qubits: &[QubitId]) -> QuantRS2Result<()> {
319        // Convert to dense, apply gate, convert back if still sparse enough
320        let mut dense = self.to_dense()?;
321
322        // Apply gate operation (simplified single-qubit case)
323        if qubits.len() == 1 {
324            let target = qubits[0].id() as usize;
325            let target_mask = 1usize << target;
326
327            for i in 0..self.dimension {
328                if (i & target_mask) == 0 {
329                    let paired_idx = i | target_mask;
330                    let old_0 = dense[i];
331                    let old_1 = dense[paired_idx];
332
333                    dense[i] = matrix[0] * old_0 + matrix[1] * old_1;
334                    dense[paired_idx] = matrix[2] * old_0 + matrix[3] * old_1;
335                }
336            }
337        }
338
339        // Check if result is still sparse enough
340        let nonzero_count = dense.iter().filter(|&&x| x.norm() > 1e-15).count();
341        let new_sparsity = nonzero_count as f64 / self.dimension as f64;
342
343        if new_sparsity < 0.5 {
344            // If still reasonably sparse
345            *self = Self::from_dense(&dense, 1e-15)?;
346        } else {
347            // Convert to dense representation if no longer sparse
348            return Err(QuantRS2Error::ComputationError(
349                "State no longer sparse".to_string(),
350            ));
351        }
352
353        Ok(())
354    }
355
356    /// Update sparse matrix after index changes
357    fn update_sparse_matrix(&mut self) -> QuantRS2Result<()> {
358        // Rebuild sparse matrix from current nonzero_indices
359        let mut dense = vec![Complex64::new(0.0, 0.0); self.dimension];
360
361        for (&idx, _) in &self.nonzero_indices {
362            if idx < dense.len() {
363                // Set normalized amplitude (simplified)
364                dense[idx] = Complex64::new(1.0 / (self.nonzero_indices.len() as f64).sqrt(), 0.0);
365            }
366        }
367
368        self.sparse_amplitudes = SimpleSparseMatrix::from_dense(&dense, 1e-15);
369        self.sparsity_ratio = self.nonzero_indices.len() as f64 / self.dimension as f64;
370
371        Ok(())
372    }
373
374    /// Get current sparsity ratio
375    pub fn sparsity_ratio(&self) -> f64 {
376        self.sparsity_ratio
377    }
378
379    /// Get memory usage in bytes
380    pub fn memory_usage(&self) -> usize {
381        self.nonzero_indices.len()
382            * (std::mem::size_of::<usize>() + std::mem::size_of::<Complex64>())
383    }
384}
385
386/// Simple compression engine for quantum states
387#[derive(Debug)]
388pub struct SimpleCompressionEngine {
389    /// Internal buffer for compression operations
390    buffer: Vec<u8>,
391}
392
393impl SimpleCompressionEngine {
394    pub fn new() -> Self {
395        Self { buffer: Vec::new() }
396    }
397
398    /// Simple LZ-style compression
399    pub fn compress_lz4(&self, data: &[u8]) -> Result<Vec<u8>, String> {
400        // Simplified compression - just use zlib/deflate
401        use std::io::Write;
402        let mut encoder =
403            flate2::write::ZlibEncoder::new(Vec::new(), flate2::Compression::default());
404        encoder
405            .write_all(data)
406            .map_err(|e| format!("Compression failed: {}", e))?;
407        encoder
408            .finish()
409            .map_err(|e| format!("Compression finish failed: {}", e))
410    }
411
412    /// Simple decompression
413    pub fn decompress_lz4(&self, data: &[u8]) -> Result<Vec<u8>, String> {
414        use std::io::Read;
415        let mut decoder = flate2::read::ZlibDecoder::new(data);
416        let mut decompressed = Vec::new();
417        decoder
418            .read_to_end(&mut decompressed)
419            .map_err(|e| format!("Decompression failed: {}", e))?;
420        Ok(decompressed)
421    }
422
423    /// Huffman compression placeholder
424    pub fn compress_huffman(&self, data: &[u8]) -> Result<Vec<u8>, String> {
425        // For now, just use the LZ4 method
426        self.compress_lz4(data)
427    }
428
429    /// Huffman decompression placeholder
430    pub fn decompress_huffman(&self, data: &[u8]) -> Result<Vec<u8>, String> {
431        // For now, just use the LZ4 method
432        self.decompress_lz4(data)
433    }
434}
435
436/// Compressed quantum state using simple compression
437#[derive(Debug)]
438pub struct CompressedQuantumState {
439    /// Compressed amplitude data
440    compressed_data: Vec<u8>,
441
442    /// Compression metadata
443    compression_metadata: CompressionMetadata,
444
445    /// Compression engine
446    compression_engine: SimpleCompressionEngine,
447
448    /// Number of qubits
449    num_qubits: usize,
450
451    /// Original size in bytes
452    original_size: usize,
453}
454
455/// Compression metadata
456#[derive(Debug, Clone, Serialize, Deserialize)]
457pub struct CompressionMetadata {
458    /// Compression algorithm used
459    pub algorithm: CompressionAlgorithm,
460
461    /// Compression ratio achieved
462    pub compression_ratio: f64,
463
464    /// Original data size
465    pub original_size: usize,
466
467    /// Compressed data size
468    pub compressed_size: usize,
469
470    /// Checksum for integrity verification
471    pub checksum: u64,
472}
473
474/// Supported compression algorithms
475#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
476pub enum CompressionAlgorithm {
477    /// Huffman encoding for sparse data
478    Huffman,
479    /// LZ4 for general compression
480    LZ4,
481    /// Quantum-specific amplitude compression
482    QuantumAmplitude,
483    /// No compression
484    None,
485}
486
487impl CompressedQuantumState {
488    /// Create new compressed state from dense amplitudes
489    pub fn from_dense(
490        amplitudes: &[Complex64],
491        algorithm: CompressionAlgorithm,
492    ) -> QuantRS2Result<Self> {
493        let num_qubits = (amplitudes.len() as f64).log2() as usize;
494        let original_size = amplitudes.len() * std::mem::size_of::<Complex64>();
495
496        // Convert to bytes
497        let amplitude_bytes: &[u8] =
498            unsafe { std::slice::from_raw_parts(amplitudes.as_ptr() as *const u8, original_size) };
499
500        // Initialize compression engine
501        let compression_engine = SimpleCompressionEngine::new();
502
503        let (compressed_data, metadata) = match algorithm {
504            CompressionAlgorithm::Huffman => {
505                let compressed = compression_engine
506                    .compress_huffman(amplitude_bytes)
507                    .map_err(|e| {
508                        QuantRS2Error::ComputationError(format!(
509                            "Huffman compression failed: {}",
510                            e
511                        ))
512                    })?;
513
514                let metadata = CompressionMetadata {
515                    algorithm: CompressionAlgorithm::Huffman,
516                    compression_ratio: original_size as f64 / compressed.len() as f64,
517                    original_size,
518                    compressed_size: compressed.len(),
519                    checksum: Self::calculate_checksum(amplitude_bytes),
520                };
521
522                (compressed, metadata)
523            }
524            CompressionAlgorithm::LZ4 => {
525                let compressed = compression_engine
526                    .compress_lz4(amplitude_bytes)
527                    .map_err(|e| {
528                        QuantRS2Error::ComputationError(format!("LZ4 compression failed: {}", e))
529                    })?;
530
531                let metadata = CompressionMetadata {
532                    algorithm: CompressionAlgorithm::LZ4,
533                    compression_ratio: original_size as f64 / compressed.len() as f64,
534                    original_size,
535                    compressed_size: compressed.len(),
536                    checksum: Self::calculate_checksum(amplitude_bytes),
537                };
538
539                (compressed, metadata)
540            }
541            CompressionAlgorithm::QuantumAmplitude => {
542                // Custom quantum amplitude compression
543                let compressed = Self::compress_quantum_amplitudes(amplitudes)?;
544
545                let metadata = CompressionMetadata {
546                    algorithm: CompressionAlgorithm::QuantumAmplitude,
547                    compression_ratio: original_size as f64 / compressed.len() as f64,
548                    original_size,
549                    compressed_size: compressed.len(),
550                    checksum: Self::calculate_checksum(amplitude_bytes),
551                };
552
553                (compressed, metadata)
554            }
555            CompressionAlgorithm::None => {
556                let metadata = CompressionMetadata {
557                    algorithm: CompressionAlgorithm::None,
558                    compression_ratio: 1.0,
559                    original_size,
560                    compressed_size: original_size,
561                    checksum: Self::calculate_checksum(amplitude_bytes),
562                };
563
564                (amplitude_bytes.to_vec(), metadata)
565            }
566        };
567
568        Ok(Self {
569            compressed_data,
570            compression_metadata: metadata,
571            compression_engine,
572            num_qubits,
573            original_size,
574        })
575    }
576
577    /// Decompress to dense amplitudes
578    pub fn to_dense(&self) -> QuantRS2Result<Vec<Complex64>> {
579        let decompressed_bytes = match self.compression_metadata.algorithm {
580            CompressionAlgorithm::Huffman => self
581                .compression_engine
582                .decompress_huffman(&self.compressed_data)
583                .map_err(|e| {
584                    QuantRS2Error::ComputationError(format!("Huffman decompression failed: {}", e))
585                })?,
586            CompressionAlgorithm::LZ4 => self
587                .compression_engine
588                .decompress_lz4(&self.compressed_data)
589                .map_err(|e| {
590                    QuantRS2Error::ComputationError(format!("LZ4 decompression failed: {}", e))
591                })?,
592            CompressionAlgorithm::QuantumAmplitude => {
593                Self::decompress_quantum_amplitudes(&self.compressed_data, self.num_qubits)?
594            }
595            CompressionAlgorithm::None => self.compressed_data.clone(),
596        };
597
598        // Verify checksum
599        let checksum = Self::calculate_checksum(&decompressed_bytes);
600        if checksum != self.compression_metadata.checksum {
601            return Err(QuantRS2Error::ComputationError(
602                "Checksum verification failed".to_string(),
603            ));
604        }
605
606        // Convert bytes back to complex numbers
607        let amplitudes = unsafe {
608            std::slice::from_raw_parts(
609                decompressed_bytes.as_ptr() as *const Complex64,
610                decompressed_bytes.len() / std::mem::size_of::<Complex64>(),
611            )
612        }
613        .to_vec();
614
615        Ok(amplitudes)
616    }
617
618    /// Custom quantum amplitude compression
619    fn compress_quantum_amplitudes(amplitudes: &[Complex64]) -> QuantRS2Result<Vec<u8>> {
620        // Quantum-specific compression using magnitude-phase representation
621        let mut compressed = Vec::new();
622
623        for &amplitude in amplitudes {
624            let magnitude = amplitude.norm();
625            let phase = amplitude.arg();
626
627            // Quantize magnitude and phase for better compression
628            let quantized_magnitude = (magnitude * 65535.0) as u16;
629            let quantized_phase =
630                ((phase + std::f64::consts::PI) / (2.0 * std::f64::consts::PI) * 65535.0) as u16;
631
632            compressed.extend_from_slice(&quantized_magnitude.to_le_bytes());
633            compressed.extend_from_slice(&quantized_phase.to_le_bytes());
634        }
635
636        Ok(compressed)
637    }
638
639    /// Custom quantum amplitude decompression
640    fn decompress_quantum_amplitudes(data: &[u8], num_qubits: usize) -> QuantRS2Result<Vec<u8>> {
641        let dimension = 1usize << num_qubits;
642        let mut amplitudes = Vec::with_capacity(dimension);
643
644        for i in 0..dimension {
645            let offset = i * 4; // 2 bytes magnitude + 2 bytes phase
646            if offset + 4 <= data.len() {
647                let magnitude_bytes = [data[offset], data[offset + 1]];
648                let phase_bytes = [data[offset + 2], data[offset + 3]];
649
650                let quantized_magnitude = u16::from_le_bytes(magnitude_bytes);
651                let quantized_phase = u16::from_le_bytes(phase_bytes);
652
653                let magnitude = quantized_magnitude as f64 / 65535.0;
654                let phase = (quantized_phase as f64 / 65535.0) * 2.0 * std::f64::consts::PI
655                    - std::f64::consts::PI;
656
657                let amplitude = Complex64::new(magnitude * phase.cos(), magnitude * phase.sin());
658                amplitudes.push(amplitude);
659            }
660        }
661
662        // Convert back to bytes
663        let amplitude_bytes = unsafe {
664            std::slice::from_raw_parts(
665                amplitudes.as_ptr() as *const u8,
666                amplitudes.len() * std::mem::size_of::<Complex64>(),
667            )
668        };
669
670        Ok(amplitude_bytes.to_vec())
671    }
672
673    /// Calculate checksum for integrity verification
674    fn calculate_checksum(data: &[u8]) -> u64 {
675        // Simple checksum implementation
676        data.iter()
677            .enumerate()
678            .map(|(i, &b)| (i as u64).wrapping_mul(b as u64))
679            .sum()
680    }
681
682    /// Get compression ratio
683    pub fn compression_ratio(&self) -> f64 {
684        self.compression_metadata.compression_ratio
685    }
686
687    /// Get memory usage in bytes
688    pub fn memory_usage(&self) -> usize {
689        self.compressed_data.len()
690    }
691}
692
693/// Memory-mapped quantum state for very large simulations
694#[derive(Debug)]
695pub struct MemoryMappedQuantumState {
696    /// Memory-mapped file
697    mmap: MmapMut,
698
699    /// File path
700    file_path: PathBuf,
701
702    /// Number of qubits
703    num_qubits: usize,
704
705    /// State dimension
706    dimension: usize,
707
708    /// Chunk size for processing
709    chunk_size: usize,
710}
711
712impl MemoryMappedQuantumState {
713    /// Create new memory-mapped state
714    pub fn new(num_qubits: usize, chunk_size: usize, working_dir: &Path) -> QuantRS2Result<Self> {
715        let dimension = 1usize << num_qubits;
716        let file_size = dimension * std::mem::size_of::<Complex64>();
717
718        // Create temporary file
719        std::fs::create_dir_all(working_dir).map_err(|e| {
720            QuantRS2Error::InvalidInput(format!("Failed to create working directory: {}", e))
721        })?;
722
723        let file_path = working_dir.join(format!("quantum_state_{}.tmp", Uuid::new_v4()));
724
725        let file = OpenOptions::new()
726            .read(true)
727            .write(true)
728            .create(true)
729            .open(&file_path)
730            .map_err(|e| {
731                QuantRS2Error::InvalidInput(format!("Failed to create temp file: {}", e))
732            })?;
733
734        file.set_len(file_size as u64)
735            .map_err(|e| QuantRS2Error::InvalidInput(format!("Failed to set file size: {}", e)))?;
736
737        let mmap = unsafe {
738            MmapOptions::new().map_mut(&file).map_err(|e| {
739                QuantRS2Error::InvalidInput(format!("Failed to create memory map: {}", e))
740            })?
741        };
742
743        let mut state = Self {
744            mmap,
745            file_path,
746            num_qubits,
747            dimension,
748            chunk_size,
749        };
750
751        // Initialize to |0...0⟩ state
752        state.initialize_zero_state()?;
753
754        Ok(state)
755    }
756
757    /// Initialize state to |0...0⟩
758    fn initialize_zero_state(&mut self) -> QuantRS2Result<()> {
759        let amplitudes = self.get_amplitudes_mut();
760
761        // Clear all amplitudes
762        for amplitude in amplitudes.iter_mut() {
763            *amplitude = Complex64::new(0.0, 0.0);
764        }
765
766        // Set first amplitude to 1.0 (|0...0⟩ state)
767        if !amplitudes.is_empty() {
768            amplitudes[0] = Complex64::new(1.0, 0.0);
769        }
770
771        Ok(())
772    }
773
774    /// Get amplitudes as mutable slice
775    fn get_amplitudes_mut(&mut self) -> &mut [Complex64] {
776        unsafe {
777            std::slice::from_raw_parts_mut(self.mmap.as_mut_ptr() as *mut Complex64, self.dimension)
778        }
779    }
780
781    /// Get amplitudes as slice
782    fn get_amplitudes(&self) -> &[Complex64] {
783        unsafe {
784            std::slice::from_raw_parts(self.mmap.as_ptr() as *const Complex64, self.dimension)
785        }
786    }
787
788    /// Apply gate operation using chunked processing
789    pub fn apply_gate_chunked(&mut self, gate: &dyn GateOp) -> QuantRS2Result<()> {
790        let num_chunks = (self.dimension + self.chunk_size - 1) / self.chunk_size;
791
792        for chunk_idx in 0..num_chunks {
793            let start = chunk_idx * self.chunk_size;
794            let end = (start + self.chunk_size).min(self.dimension);
795
796            self.apply_gate_to_chunk(gate, start, end)?;
797        }
798
799        Ok(())
800    }
801
802    /// Apply gate to specific chunk
803    fn apply_gate_to_chunk(
804        &mut self,
805        gate: &dyn GateOp,
806        start: usize,
807        end: usize,
808    ) -> QuantRS2Result<()> {
809        // Cache dimension to avoid borrowing issues
810        let dimension = self.dimension;
811        let amplitudes = self.get_amplitudes_mut();
812
813        match gate.name() {
814            "X" => {
815                if let Some(target) = gate.qubits().first() {
816                    let target_idx = target.id() as usize;
817                    let target_mask = 1usize << target_idx;
818
819                    for i in start..end {
820                        if (i & target_mask) == 0 {
821                            let paired_idx = i | target_mask;
822                            if paired_idx < dimension {
823                                amplitudes.swap(i, paired_idx);
824                            }
825                        }
826                    }
827                }
828            }
829            "H" => {
830                if let Some(target) = gate.qubits().first() {
831                    let target_idx = target.id() as usize;
832                    let target_mask = 1usize << target_idx;
833                    let inv_sqrt2 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
834
835                    // Create temporary buffer to avoid borrowing issues
836                    let mut temp_buffer = vec![Complex64::new(0.0, 0.0); end - start];
837                    for (i, &val) in amplitudes[start..end].iter().enumerate() {
838                        temp_buffer[i] = val;
839                    }
840
841                    for i in start..end {
842                        if (i & target_mask) == 0 {
843                            let paired_idx = i | target_mask;
844                            if paired_idx < dimension && paired_idx >= start && paired_idx < end {
845                                let old_0 = temp_buffer[i - start];
846                                let old_1 = temp_buffer[paired_idx - start];
847
848                                amplitudes[i] = inv_sqrt2 * (old_0 + old_1);
849                                amplitudes[paired_idx] = inv_sqrt2 * (old_0 - old_1);
850                            }
851                        }
852                    }
853                }
854            }
855            _ => {
856                return Err(QuantRS2Error::UnsupportedOperation(format!(
857                    "Chunked operation not implemented for gate {}",
858                    gate.name()
859                )));
860            }
861        }
862
863        Ok(())
864    }
865
866    /// Get memory usage (just metadata, actual state is in file)
867    pub fn memory_usage(&self) -> usize {
868        std::mem::size_of::<Self>()
869    }
870
871    /// Get file size
872    pub fn file_size(&self) -> usize {
873        self.dimension * std::mem::size_of::<Complex64>()
874    }
875}
876
877impl Drop for MemoryMappedQuantumState {
878    fn drop(&mut self) {
879        // Clean up temporary file
880        let _ = std::fs::remove_file(&self.file_path);
881    }
882}
883
884/// Large-scale quantum simulator supporting 40+ qubits
885#[derive(Debug)]
886pub struct LargeScaleQuantumSimulator {
887    /// Configuration
888    config: LargeScaleSimulatorConfig,
889
890    /// Current quantum state representation
891    state: QuantumStateRepresentation,
892
893    /// Buffer pool for optimizations
894    buffer_pool: Arc<Mutex<Vec<Vec<Complex64>>>>,
895
896    /// Memory usage statistics
897    memory_stats: Arc<Mutex<MemoryStatistics>>,
898}
899
900/// Different quantum state representations
901#[derive(Debug)]
902pub enum QuantumStateRepresentation {
903    /// Dense state vector (traditional)
904    Dense(Vec<Complex64>),
905
906    /// Sparse state representation
907    Sparse(SparseQuantumState),
908
909    /// Compressed state representation
910    Compressed(CompressedQuantumState),
911
912    /// Memory-mapped state for very large simulations
913    MemoryMapped(MemoryMappedQuantumState),
914}
915
916/// Memory usage statistics
917#[derive(Debug, Default, Clone)]
918pub struct MemoryStatistics {
919    /// Current memory usage in bytes
920    pub current_usage: usize,
921
922    /// Peak memory usage in bytes
923    pub peak_usage: usize,
924
925    /// Number of allocations
926    pub allocations: u64,
927
928    /// Number of deallocations
929    pub deallocations: u64,
930
931    /// Compression ratio achieved
932    pub compression_ratio: f64,
933
934    /// Sparsity ratio
935    pub sparsity_ratio: f64,
936
937    /// Time spent in memory operations (microseconds)
938    pub memory_operation_time_us: u64,
939}
940
941impl LargeScaleQuantumSimulator {
942    /// Create new large-scale simulator
943    pub fn new(config: LargeScaleSimulatorConfig) -> QuantRS2Result<Self> {
944        let buffer_pool = Arc::new(Mutex::new(Vec::new()));
945        let memory_stats = Arc::new(Mutex::new(MemoryStatistics::default()));
946
947        // Initialize with appropriate state representation
948        let state = QuantumStateRepresentation::Dense(vec![Complex64::new(1.0, 0.0)]);
949
950        Ok(Self {
951            config,
952            state,
953            buffer_pool,
954            memory_stats,
955        })
956    }
957
958    /// Initialize quantum state for given number of qubits
959    pub fn initialize_state(&mut self, num_qubits: usize) -> QuantRS2Result<()> {
960        if num_qubits > self.config.max_qubits {
961            return Err(QuantRS2Error::InvalidInput(format!(
962                "Number of qubits {} exceeds maximum {}",
963                num_qubits, self.config.max_qubits
964            )));
965        }
966
967        let dimension = 1usize << num_qubits;
968        let memory_required = dimension * std::mem::size_of::<Complex64>();
969
970        // Choose appropriate representation based on size and configuration
971        self.state = if memory_required > self.config.memory_mapping_threshold {
972            // Use memory mapping for very large states
973            QuantumStateRepresentation::MemoryMapped(MemoryMappedQuantumState::new(
974                num_qubits,
975                self.config.chunk_size,
976                &self.config.working_directory,
977            )?)
978        } else if memory_required > self.config.compression_threshold
979            && self.config.enable_compression
980        {
981            // Use compression for medium-large states
982            let amplitudes = vec![Complex64::new(0.0, 0.0); dimension];
983            let mut amplitudes = amplitudes;
984            amplitudes[0] = Complex64::new(1.0, 0.0); // |0...0⟩ state
985
986            QuantumStateRepresentation::Compressed(CompressedQuantumState::from_dense(
987                &amplitudes,
988                CompressionAlgorithm::LZ4,
989            )?)
990        } else if self.config.enable_sparse_representation {
991            // Use sparse representation
992            QuantumStateRepresentation::Sparse(SparseQuantumState::new(num_qubits)?)
993        } else {
994            // Use traditional dense representation
995            let mut amplitudes = vec![Complex64::new(0.0, 0.0); dimension];
996            amplitudes[0] = Complex64::new(1.0, 0.0); // |0...0⟩ state
997            QuantumStateRepresentation::Dense(amplitudes)
998        };
999
1000        self.update_memory_stats()?;
1001
1002        Ok(())
1003    }
1004
1005    /// Apply quantum gate
1006    pub fn apply_gate(&mut self, gate: &dyn GateOp) -> QuantRS2Result<()> {
1007        let start_time = std::time::Instant::now();
1008
1009        // Handle different state representations
1010        let mut needs_state_change = None;
1011
1012        match &mut self.state {
1013            QuantumStateRepresentation::Dense(amplitudes) => {
1014                // Create a copy to avoid borrowing issues
1015                let mut amplitudes_copy = amplitudes.clone();
1016                Self::apply_gate_dense(&mut amplitudes_copy, gate, &self.config)?;
1017                *amplitudes = amplitudes_copy;
1018            }
1019            QuantumStateRepresentation::Sparse(sparse_state) => {
1020                sparse_state.apply_sparse_gate(gate)?;
1021
1022                // Check if still sparse enough
1023                if sparse_state.sparsity_ratio() > self.config.sparsity_threshold {
1024                    // Convert to dense if no longer sparse
1025                    let dense = sparse_state.to_dense()?;
1026                    needs_state_change = Some(QuantumStateRepresentation::Dense(dense));
1027                }
1028            }
1029            QuantumStateRepresentation::Compressed(compressed_state) => {
1030                // Decompress, apply gate, recompress
1031                let mut dense = compressed_state.to_dense()?;
1032                Self::apply_gate_dense(&mut dense, gate, &self.config)?;
1033
1034                // Recompress if beneficial
1035                let new_compressed =
1036                    CompressedQuantumState::from_dense(&dense, CompressionAlgorithm::LZ4)?;
1037                if new_compressed.compression_ratio() > 1.5 {
1038                    needs_state_change =
1039                        Some(QuantumStateRepresentation::Compressed(new_compressed));
1040                } else {
1041                    needs_state_change = Some(QuantumStateRepresentation::Dense(dense));
1042                }
1043            }
1044            QuantumStateRepresentation::MemoryMapped(mmap_state) => {
1045                mmap_state.apply_gate_chunked(gate)?;
1046            }
1047        }
1048
1049        // Apply state change if needed
1050        if let Some(new_state) = needs_state_change {
1051            self.state = new_state;
1052        }
1053
1054        let elapsed = start_time.elapsed();
1055        if let Ok(mut stats) = self.memory_stats.lock() {
1056            stats.memory_operation_time_us += elapsed.as_micros() as u64;
1057        }
1058
1059        Ok(())
1060    }
1061
1062    /// Apply gate to dense representation
1063    fn apply_gate_dense(
1064        amplitudes: &mut [Complex64],
1065        gate: &dyn GateOp,
1066        config: &LargeScaleSimulatorConfig,
1067    ) -> QuantRS2Result<()> {
1068        match gate.name() {
1069            "X" => {
1070                if let Some(target) = gate.qubits().first() {
1071                    let target_idx = target.id() as usize;
1072                    Self::apply_pauli_x_dense(amplitudes, target_idx)?;
1073                }
1074            }
1075            "H" => {
1076                if let Some(target) = gate.qubits().first() {
1077                    let target_idx = target.id() as usize;
1078                    Self::apply_hadamard_dense(amplitudes, target_idx, config)?;
1079                }
1080            }
1081            "CNOT" => {
1082                if gate.qubits().len() >= 2 {
1083                    let control_idx = gate.qubits()[0].id() as usize;
1084                    let target_idx = gate.qubits()[1].id() as usize;
1085                    Self::apply_cnot_dense(amplitudes, control_idx, target_idx)?;
1086                }
1087            }
1088            _ => {
1089                return Err(QuantRS2Error::UnsupportedOperation(format!(
1090                    "Gate {} not implemented in large-scale simulator",
1091                    gate.name()
1092                )));
1093            }
1094        }
1095
1096        Ok(())
1097    }
1098
1099    /// Apply Pauli-X gate to dense representation
1100    fn apply_pauli_x_dense(amplitudes: &mut [Complex64], target: usize) -> QuantRS2Result<()> {
1101        let target_mask = 1usize << target;
1102
1103        // Sequential operation for now (parallel optimization can be added later)
1104        for i in 0..amplitudes.len() {
1105            if (i & target_mask) == 0 {
1106                let paired_idx = i | target_mask;
1107                if paired_idx < amplitudes.len() {
1108                    amplitudes.swap(i, paired_idx);
1109                }
1110            }
1111        }
1112
1113        Ok(())
1114    }
1115
1116    /// Apply Hadamard gate to dense representation
1117    fn apply_hadamard_dense(
1118        amplitudes: &mut [Complex64],
1119        target: usize,
1120        _config: &LargeScaleSimulatorConfig,
1121    ) -> QuantRS2Result<()> {
1122        let target_mask = 1usize << target;
1123        let inv_sqrt2 = Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0);
1124
1125        // Create temporary buffer
1126        let mut temp = vec![Complex64::new(0.0, 0.0); amplitudes.len()];
1127        temp.copy_from_slice(amplitudes);
1128
1129        // Sequential operation for now (parallel optimization can be added later)
1130        for i in 0..amplitudes.len() {
1131            if (i & target_mask) == 0 {
1132                let paired_idx = i | target_mask;
1133                if paired_idx < amplitudes.len() {
1134                    let old_0 = temp[i];
1135                    let old_1 = temp[paired_idx];
1136
1137                    amplitudes[i] = inv_sqrt2 * (old_0 + old_1);
1138                    amplitudes[paired_idx] = inv_sqrt2 * (old_0 - old_1);
1139                }
1140            }
1141        }
1142
1143        Ok(())
1144    }
1145
1146    /// Apply CNOT gate to dense representation
1147    fn apply_cnot_dense(
1148        amplitudes: &mut [Complex64],
1149        control: usize,
1150        target: usize,
1151    ) -> QuantRS2Result<()> {
1152        let control_mask = 1usize << control;
1153        let target_mask = 1usize << target;
1154
1155        // Sequential operation for now (parallel optimization can be added later)
1156        for i in 0..amplitudes.len() {
1157            if (i & control_mask) != 0 && (i & target_mask) == 0 {
1158                let flipped_idx = i | target_mask;
1159                if flipped_idx < amplitudes.len() {
1160                    amplitudes.swap(i, flipped_idx);
1161                }
1162            }
1163        }
1164
1165        Ok(())
1166    }
1167
1168    /// Get current state as dense vector (for measurement)
1169    pub fn get_dense_state(&self) -> QuantRS2Result<Vec<Complex64>> {
1170        match &self.state {
1171            QuantumStateRepresentation::Dense(amplitudes) => Ok(amplitudes.clone()),
1172            QuantumStateRepresentation::Sparse(sparse_state) => sparse_state.to_dense(),
1173            QuantumStateRepresentation::Compressed(compressed_state) => compressed_state.to_dense(),
1174            QuantumStateRepresentation::MemoryMapped(mmap_state) => {
1175                Ok(mmap_state.get_amplitudes().to_vec())
1176            }
1177        }
1178    }
1179
1180    /// Update memory usage statistics
1181    fn update_memory_stats(&self) -> QuantRS2Result<()> {
1182        if let Ok(mut stats) = self.memory_stats.lock() {
1183            let current_usage = match &self.state {
1184                QuantumStateRepresentation::Dense(amplitudes) => {
1185                    amplitudes.len() * std::mem::size_of::<Complex64>()
1186                }
1187                QuantumStateRepresentation::Sparse(sparse_state) => sparse_state.memory_usage(),
1188                QuantumStateRepresentation::Compressed(compressed_state) => {
1189                    compressed_state.memory_usage()
1190                }
1191                QuantumStateRepresentation::MemoryMapped(mmap_state) => mmap_state.memory_usage(),
1192            };
1193
1194            stats.current_usage = current_usage;
1195            if current_usage > stats.peak_usage {
1196                stats.peak_usage = current_usage;
1197            }
1198
1199            // Update compression and sparsity ratios
1200            match &self.state {
1201                QuantumStateRepresentation::Compressed(compressed_state) => {
1202                    stats.compression_ratio = compressed_state.compression_ratio();
1203                }
1204                QuantumStateRepresentation::Sparse(sparse_state) => {
1205                    stats.sparsity_ratio = sparse_state.sparsity_ratio();
1206                }
1207                _ => {}
1208            }
1209        }
1210
1211        Ok(())
1212    }
1213
1214    /// Get memory statistics
1215    pub fn get_memory_stats(&self) -> MemoryStatistics {
1216        self.memory_stats.lock().unwrap().clone()
1217    }
1218
1219    /// Get configuration
1220    pub fn get_config(&self) -> &LargeScaleSimulatorConfig {
1221        &self.config
1222    }
1223
1224    /// Check if current state can simulate given number of qubits
1225    pub fn can_simulate(&self, num_qubits: usize) -> bool {
1226        if num_qubits > self.config.max_qubits {
1227            return false;
1228        }
1229
1230        let dimension = 1usize << num_qubits;
1231        let memory_required = dimension * std::mem::size_of::<Complex64>();
1232
1233        memory_required <= self.config.memory_budget
1234    }
1235
1236    /// Estimate memory requirements for given number of qubits
1237    pub fn estimate_memory_requirements(&self, num_qubits: usize) -> usize {
1238        let dimension = 1usize << num_qubits;
1239        let base_memory = dimension * std::mem::size_of::<Complex64>();
1240
1241        // Add overhead for operations and temporary buffers
1242        let overhead_factor = 1.5;
1243        (base_memory as f64 * overhead_factor) as usize
1244    }
1245}
1246
1247impl<const N: usize> Simulator<N> for LargeScaleQuantumSimulator {
1248    fn run(&self, circuit: &Circuit<N>) -> QuantRS2Result<quantrs2_core::register::Register<N>> {
1249        let mut simulator = LargeScaleQuantumSimulator::new(self.config.clone())?;
1250        simulator.initialize_state(N)?;
1251
1252        // Apply all gates in the circuit
1253        for gate in circuit.gates() {
1254            simulator.apply_gate(gate.as_ref())?;
1255        }
1256
1257        // Get final state and create register
1258        let final_state = simulator.get_dense_state()?;
1259        quantrs2_core::register::Register::with_amplitudes(final_state)
1260    }
1261}
1262
1263#[cfg(test)]
1264mod tests {
1265    use super::*;
1266    use quantrs2_core::gate::multi::CNOT;
1267    use quantrs2_core::gate::single::{Hadamard, PauliX};
1268    use quantrs2_core::qubit::QubitId;
1269
1270    #[test]
1271    fn test_sparse_quantum_state() {
1272        let mut sparse_state = SparseQuantumState::new(3).unwrap();
1273        assert_eq!(sparse_state.num_qubits, 3);
1274        assert_eq!(sparse_state.dimension, 8);
1275        assert!(sparse_state.sparsity_ratio() < 0.2);
1276
1277        let dense = sparse_state.to_dense().unwrap();
1278        assert_eq!(dense.len(), 8);
1279        assert!((dense[0] - Complex64::new(1.0, 0.0)).norm() < 1e-10);
1280    }
1281
1282    #[test]
1283    fn test_compressed_quantum_state() {
1284        let amplitudes = vec![
1285            Complex64::new(1.0, 0.0),
1286            Complex64::new(0.0, 0.0),
1287            Complex64::new(0.0, 0.0),
1288            Complex64::new(0.0, 0.0),
1289        ];
1290
1291        let compressed =
1292            CompressedQuantumState::from_dense(&amplitudes, CompressionAlgorithm::LZ4).unwrap();
1293        let decompressed = compressed.to_dense().unwrap();
1294
1295        assert_eq!(decompressed.len(), 4);
1296        assert!((decompressed[0] - Complex64::new(1.0, 0.0)).norm() < 1e-10);
1297    }
1298
1299    #[test]
1300    fn test_large_scale_simulator() {
1301        let config = LargeScaleSimulatorConfig::default();
1302        let mut simulator = LargeScaleQuantumSimulator::new(config).unwrap();
1303
1304        // Test with 10 qubits (medium scale)
1305        simulator.initialize_state(10).unwrap();
1306        assert!(simulator.can_simulate(10));
1307
1308        // Test basic gates
1309        let x_gate = PauliX { target: QubitId(0) };
1310        simulator.apply_gate(&x_gate).unwrap();
1311
1312        let h_gate = Hadamard { target: QubitId(1) };
1313        simulator.apply_gate(&h_gate).unwrap();
1314
1315        let final_state = simulator.get_dense_state().unwrap();
1316        assert_eq!(final_state.len(), 1024); // 2^10
1317    }
1318
1319    #[test]
1320    fn test_memory_stats() {
1321        let config = LargeScaleSimulatorConfig::default();
1322        let mut simulator = LargeScaleQuantumSimulator::new(config).unwrap();
1323
1324        simulator.initialize_state(5).unwrap();
1325        let stats = simulator.get_memory_stats();
1326
1327        assert!(stats.current_usage > 0);
1328        assert_eq!(stats.peak_usage, stats.current_usage);
1329    }
1330}