1use ndarray::{Array, Array2, ArrayD, IxDyn};
8use num_complex::Complex64;
9use scirs2_core::parallel_ops::*;
10use serde::{Deserialize, Serialize};
11use std::collections::{HashMap, HashSet};
12
13use crate::error::{Result, SimulatorError};
14use crate::scirs2_integration::SciRS2Backend;
15
16#[cfg(feature = "advanced_math")]
17pub struct ContractionOptimizer {
19 strategy: String,
20}
21
22#[cfg(feature = "advanced_math")]
23impl ContractionOptimizer {
24 pub fn new() -> Result<Self> {
25 Ok(Self {
26 strategy: "default".to_string(),
27 })
28 }
29}
30
31#[derive(Debug, Clone)]
37pub struct EnhancedTensorNetworkConfig {
38 pub max_bond_dimension: usize,
40 pub contraction_strategy: ContractionStrategy,
42 pub memory_limit: usize,
44 pub enable_approximations: bool,
46 pub svd_threshold: f64,
48 pub max_optimization_time_ms: u64,
50 pub parallel_contractions: bool,
52 pub use_scirs2_acceleration: bool,
54 pub enable_slicing: bool,
56 pub max_slices: usize,
58}
59
60impl Default for EnhancedTensorNetworkConfig {
61 fn default() -> Self {
62 Self {
63 max_bond_dimension: 1024,
64 contraction_strategy: ContractionStrategy::Adaptive,
65 memory_limit: 16_000_000_000, enable_approximations: true,
67 svd_threshold: 1e-12,
68 max_optimization_time_ms: 5000,
69 parallel_contractions: true,
70 use_scirs2_acceleration: true,
71 enable_slicing: true,
72 max_slices: 64,
73 }
74 }
75}
76
77#[derive(Debug, Clone, Copy, PartialEq, Eq)]
79pub enum ContractionStrategy {
80 Greedy,
82 DynamicProgramming,
84 SimulatedAnnealing,
86 TreeDecomposition,
88 Adaptive,
90 MLGuided,
92}
93
94#[derive(Debug, Clone)]
96pub struct EnhancedTensor {
97 pub data: ArrayD<Complex64>,
99 pub indices: Vec<TensorIndex>,
101 pub bond_dimensions: Vec<usize>,
103 pub id: usize,
105 pub memory_size: usize,
107 pub contraction_cost: f64,
109 pub priority: f64,
111}
112
113#[derive(Debug, Clone, PartialEq, Eq, Hash)]
115pub struct TensorIndex {
116 pub label: String,
118 pub dimension: usize,
120 pub index_type: IndexType,
122 pub connected_tensors: Vec<usize>,
124}
125
126#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
128pub enum IndexType {
129 Physical,
131 Virtual,
133 Auxiliary,
135 Temporal,
137}
138
139#[derive(Debug, Clone)]
141pub struct MLPrediction {
142 pub strategy: MLPredictedStrategy,
143 pub confidence: f64,
144 pub expected_performance: f64,
145}
146
147#[derive(Debug, Clone, Copy, PartialEq, Eq)]
149pub enum MLPredictedStrategy {
150 DynamicProgramming,
151 SimulatedAnnealing,
152 TreeDecomposition,
153 Greedy,
154}
155
156#[derive(Debug, Clone)]
158pub struct NetworkFeatures {
159 pub num_tensors: usize,
160 pub connectivity_density: f64,
161 pub max_bond_dimension: usize,
162 pub avg_tensor_rank: f64,
163 pub circuit_depth_estimate: usize,
164 pub locality_score: f64,
165 pub symmetry_score: f64,
166}
167
168#[derive(Debug, Clone)]
170pub struct TreeDecomposition {
171 pub bags: Vec<TreeBag>,
172 pub treewidth: usize,
173 pub root_bag: usize,
174}
175
176#[derive(Debug, Clone)]
178pub struct TreeBag {
179 pub id: usize,
180 pub tensors: Vec<usize>,
181 pub parent: Option<usize>,
182 pub children: Vec<usize>,
183 pub separator: Vec<String>, }
185
186#[derive(Debug, Clone)]
188pub struct TensorAdjacencyGraph {
189 pub nodes: Vec<usize>, pub edges: HashMap<usize, Vec<(usize, f64)>>, pub edge_weights: HashMap<(usize, usize), f64>,
192}
193
194#[derive(Debug, Clone)]
196pub struct EnhancedContractionPath {
197 pub steps: Vec<ContractionStep>,
199 pub total_flops: f64,
201 pub peak_memory: usize,
203 pub contraction_tree: ContractionTree,
205 pub parallel_sections: Vec<ParallelSection>,
207}
208
209#[derive(Debug, Clone)]
211pub struct ContractionStep {
212 pub tensor_ids: (usize, usize),
214 pub result_id: usize,
216 pub flops: f64,
218 pub memory_required: usize,
220 pub result_dimensions: Vec<usize>,
222 pub parallelizable: bool,
224}
225
226#[derive(Debug, Clone)]
228pub enum ContractionTree {
229 Leaf { tensor_id: usize },
231 Branch {
233 left: Box<ContractionTree>,
234 right: Box<ContractionTree>,
235 contraction_cost: f64,
236 result_bond_dim: usize,
237 },
238}
239
240#[derive(Debug, Clone)]
242pub struct ParallelSection {
243 pub parallel_steps: Vec<usize>,
245 pub dependencies: HashMap<usize, Vec<usize>>,
247 pub speedup_factor: f64,
249}
250
251pub struct EnhancedTensorNetworkSimulator {
253 config: EnhancedTensorNetworkConfig,
255 network: TensorNetwork,
257 backend: Option<SciRS2Backend>,
259 #[cfg(feature = "advanced_math")]
261 optimizer: Option<ContractionOptimizer>,
262 tensor_cache: HashMap<String, EnhancedTensor>,
264 stats: TensorNetworkStats,
266}
267
268#[derive(Debug, Clone, Default, Serialize, Deserialize)]
270pub struct TensorNetworkStats {
271 pub total_contractions: usize,
273 pub total_flops: f64,
275 pub peak_memory_bytes: usize,
277 pub total_execution_time_ms: f64,
279 pub optimization_time_ms: f64,
281 pub average_bond_dimension: f64,
283 pub svd_truncations: usize,
285 pub cache_hit_rate: f64,
287}
288
289struct TensorNetwork {
291 tensors: HashMap<usize, EnhancedTensor>,
293 index_graph: HashMap<String, Vec<usize>>,
295 next_id: usize,
297 bond_dimensions: Vec<usize>,
299}
300
301impl TensorNetwork {
302 fn new() -> Self {
304 Self {
305 tensors: HashMap::new(),
306 index_graph: HashMap::new(),
307 next_id: 0,
308 bond_dimensions: Vec::new(),
309 }
310 }
311
312 fn add_tensor(&mut self, tensor: EnhancedTensor) -> usize {
314 let id = self.next_id;
315 self.next_id += 1;
316
317 for index in &tensor.indices {
319 self.index_graph
320 .entry(index.label.clone())
321 .or_insert_with(Vec::new)
322 .push(id);
323 }
324
325 self.bond_dimensions.extend(&tensor.bond_dimensions);
327
328 self.tensors.insert(id, tensor);
329 id
330 }
331
332 fn remove_tensor(&mut self, id: usize) -> Option<EnhancedTensor> {
334 if let Some(tensor) = self.tensors.remove(&id) {
335 for index in &tensor.indices {
337 if let Some(tensor_list) = self.index_graph.get_mut(&index.label) {
338 tensor_list.retain(|&tid| tid != id);
339 if tensor_list.is_empty() {
340 self.index_graph.remove(&index.label);
341 }
342 }
343 }
344 Some(tensor)
345 } else {
346 None
347 }
348 }
349
350 fn get_tensor(&self, id: usize) -> Option<&EnhancedTensor> {
352 self.tensors.get(&id)
353 }
354
355 fn get_tensor_mut(&mut self, id: usize) -> Option<&mut EnhancedTensor> {
357 self.tensors.get_mut(&id)
358 }
359
360 fn find_connected_tensors(&self, index_label: &str) -> Vec<usize> {
362 self.index_graph
363 .get(index_label)
364 .cloned()
365 .unwrap_or_default()
366 }
367
368 fn total_size(&self) -> usize {
370 self.tensors.values().map(|t| t.memory_size).sum()
371 }
372
373 fn tensor_ids(&self) -> Vec<usize> {
375 self.tensors.keys().cloned().collect()
376 }
377}
378
379impl EnhancedTensorNetworkSimulator {
380 pub fn new(config: EnhancedTensorNetworkConfig) -> Result<Self> {
382 Ok(Self {
383 config,
384 network: TensorNetwork::new(),
385 backend: None,
386 #[cfg(feature = "advanced_math")]
387 optimizer: None,
388 tensor_cache: HashMap::new(),
389 stats: TensorNetworkStats::default(),
390 })
391 }
392
393 pub fn with_backend(mut self) -> Result<Self> {
395 self.backend = Some(SciRS2Backend::new());
396
397 #[cfg(feature = "advanced_math")]
398 {
399 self.optimizer = Some(ContractionOptimizer::new()?);
400 }
401
402 Ok(self)
403 }
404
405 pub fn initialize_state(&mut self, num_qubits: usize) -> Result<()> {
407 for qubit in 0..num_qubits {
409 let tensor_data = {
410 let mut data = Array::zeros(IxDyn(&[2]));
411 data[IxDyn(&[0])] = Complex64::new(1.0, 0.0);
412 data
413 };
414
415 let tensor = EnhancedTensor {
416 data: tensor_data,
417 indices: vec![TensorIndex {
418 label: format!("q{}", qubit),
419 dimension: 2,
420 index_type: IndexType::Physical,
421 connected_tensors: vec![],
422 }],
423 bond_dimensions: vec![2],
424 id: 0, memory_size: 2 * std::mem::size_of::<Complex64>(),
426 contraction_cost: 1.0,
427 priority: 1.0,
428 };
429
430 self.network.add_tensor(tensor);
431 }
432
433 Ok(())
434 }
435
436 pub fn apply_single_qubit_gate(
438 &mut self,
439 qubit: usize,
440 gate_matrix: &Array2<Complex64>,
441 ) -> Result<()> {
442 let start_time = std::time::Instant::now();
443
444 let gate_tensor = self.create_gate_tensor(gate_matrix, vec![qubit], None)?;
446 let gate_id = self.network.add_tensor(gate_tensor);
447
448 let qubit_label = format!("q{}", qubit);
450 let connected_tensors = self.network.find_connected_tensors(&qubit_label);
451
452 if let Some(&qubit_tensor_id) = connected_tensors.first() {
453 self.contract_tensors(gate_id, qubit_tensor_id)?;
455 }
456
457 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
458 Ok(())
459 }
460
461 pub fn apply_two_qubit_gate(
463 &mut self,
464 control: usize,
465 target: usize,
466 gate_matrix: &Array2<Complex64>,
467 ) -> Result<()> {
468 let start_time = std::time::Instant::now();
469
470 let gate_tensor = self.create_gate_tensor(gate_matrix, vec![control, target], None)?;
472 let gate_id = self.network.add_tensor(gate_tensor);
473
474 let control_label = format!("q{}", control);
476 let target_label = format!("q{}", target);
477
478 let control_tensors = self.network.find_connected_tensors(&control_label);
479 let target_tensors = self.network.find_connected_tensors(&target_label);
480
481 let contraction_path =
483 self.optimize_contraction_path(&[gate_id], &control_tensors, &target_tensors)?;
484
485 self.execute_contraction_path(&contraction_path)?;
487
488 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
489 Ok(())
490 }
491
492 pub fn contract_tensors(&mut self, id1: usize, id2: usize) -> Result<usize> {
494 let start_time = std::time::Instant::now();
495
496 let tensor1 = self
498 .network
499 .get_tensor(id1)
500 .ok_or_else(|| SimulatorError::InvalidInput(format!("Tensor {} not found", id1)))?
501 .clone();
502
503 let tensor2 = self
504 .network
505 .get_tensor(id2)
506 .ok_or_else(|| SimulatorError::InvalidInput(format!("Tensor {} not found", id2)))?
507 .clone();
508
509 let common_indices = self.find_common_indices(&tensor1, &tensor2);
511
512 let cost_estimate = self.estimate_contraction_cost(&tensor1, &tensor2, &common_indices);
514
515 let result = if cost_estimate > 1e9 && self.config.enable_slicing {
517 self.contract_tensors_sliced(&tensor1, &tensor2, &common_indices)?
518 } else {
519 self.contract_tensors_direct(&tensor1, &tensor2, &common_indices)?
520 };
521
522 self.network.remove_tensor(id1);
524 self.network.remove_tensor(id2);
525 let result_id = self.network.add_tensor(result);
526
527 self.stats.total_contractions += 1;
529 self.stats.total_flops += cost_estimate;
530 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
531
532 Ok(result_id)
533 }
534
535 pub fn optimize_contraction_path(
537 &self,
538 tensor_ids1: &[usize],
539 tensor_ids2: &[usize],
540 tensor_ids3: &[usize],
541 ) -> Result<EnhancedContractionPath> {
542 let start_time = std::time::Instant::now();
543
544 #[cfg(feature = "advanced_math")]
545 {
546 if let Some(ref optimizer) = self.optimizer {
547 return self.optimize_path_scirs2(tensor_ids1, tensor_ids2, tensor_ids3, optimizer);
548 }
549 }
550
551 let all_ids: Vec<usize> = tensor_ids1
553 .iter()
554 .chain(tensor_ids2.iter())
555 .chain(tensor_ids3.iter())
556 .cloned()
557 .collect();
558
559 let path = match self.config.contraction_strategy {
560 ContractionStrategy::Greedy => self.optimize_path_greedy(&all_ids)?,
561 ContractionStrategy::DynamicProgramming => self.optimize_path_dp(&all_ids)?,
562 ContractionStrategy::SimulatedAnnealing => self.optimize_path_sa(&all_ids)?,
563 ContractionStrategy::TreeDecomposition => self.optimize_path_tree(&all_ids)?,
564 ContractionStrategy::Adaptive => self.optimize_path_adaptive(&all_ids)?,
565 ContractionStrategy::MLGuided => self.optimize_path_ml(&all_ids)?,
566 };
567
568 let optimization_time = start_time.elapsed().as_secs_f64() * 1000.0;
569 Ok(path)
573 }
574
575 pub fn execute_contraction_path(&mut self, path: &EnhancedContractionPath) -> Result<()> {
577 let start_time = std::time::Instant::now();
578
579 if self.config.parallel_contractions {
580 self.execute_path_parallel(path)?;
581 } else {
582 self.execute_path_sequential(path)?;
583 }
584
585 self.stats.total_execution_time_ms += start_time.elapsed().as_secs_f64() * 1000.0;
586 Ok(())
587 }
588
589 pub fn get_result_tensor(&self) -> Result<ArrayD<Complex64>> {
591 if self.network.tensors.len() != 1 {
592 return Err(SimulatorError::InvalidInput(format!(
593 "Expected single result tensor, found {}",
594 self.network.tensors.len()
595 )));
596 }
597
598 let result_tensor = self.network.tensors.values().next().unwrap();
599 Ok(result_tensor.data.clone())
600 }
601
602 pub fn get_stats(&self) -> &TensorNetworkStats {
604 &self.stats
605 }
606
607 fn create_gate_tensor(
609 &self,
610 gate_matrix: &Array2<Complex64>,
611 qubits: Vec<usize>,
612 aux_indices: Option<Vec<TensorIndex>>,
613 ) -> Result<EnhancedTensor> {
614 let num_qubits = qubits.len();
615 let matrix_size = 1 << num_qubits;
616
617 if gate_matrix.nrows() != matrix_size || gate_matrix.ncols() != matrix_size {
618 return Err(SimulatorError::DimensionMismatch(
619 "Gate matrix size doesn't match number of qubits".to_string(),
620 ));
621 }
622
623 let tensor_shape = vec![2; 2 * num_qubits]; let tensor_data = gate_matrix
626 .clone()
627 .into_shape(IxDyn(&tensor_shape))
628 .unwrap();
629
630 let mut indices = Vec::new();
632
633 for &qubit in &qubits {
635 indices.push(TensorIndex {
636 label: format!("q{}_in", qubit),
637 dimension: 2,
638 index_type: IndexType::Physical,
639 connected_tensors: vec![],
640 });
641 }
642
643 for &qubit in &qubits {
645 indices.push(TensorIndex {
646 label: format!("q{}_out", qubit),
647 dimension: 2,
648 index_type: IndexType::Physical,
649 connected_tensors: vec![],
650 });
651 }
652
653 if let Some(aux) = aux_indices {
655 indices.extend(aux);
656 }
657
658 let memory_size = tensor_data.len() * std::mem::size_of::<Complex64>();
659 let contraction_cost = (matrix_size as f64).powi(3); Ok(EnhancedTensor {
662 data: tensor_data,
663 indices,
664 bond_dimensions: vec![2; 2 * num_qubits],
665 id: 0, memory_size,
667 contraction_cost,
668 priority: 1.0,
669 })
670 }
671
672 fn find_common_indices(
673 &self,
674 tensor1: &EnhancedTensor,
675 tensor2: &EnhancedTensor,
676 ) -> Vec<String> {
677 let indices1: HashSet<_> = tensor1.indices.iter().map(|i| &i.label).collect();
678 let indices2: HashSet<_> = tensor2.indices.iter().map(|i| &i.label).collect();
679
680 indices1.intersection(&indices2).cloned().cloned().collect()
681 }
682
683 fn estimate_contraction_cost(
684 &self,
685 tensor1: &EnhancedTensor,
686 tensor2: &EnhancedTensor,
687 common_indices: &[String],
688 ) -> f64 {
689 let size1: usize = tensor1.bond_dimensions.iter().product();
691 let size2: usize = tensor2.bond_dimensions.iter().product();
692 let common_size: usize = common_indices.len();
693
694 (size1 as f64) * (size2 as f64) * (common_size as f64)
696 }
697
698 #[cfg(feature = "advanced_math")]
699 fn contract_tensors_scirs2(
700 &self,
701 tensor1: &EnhancedTensor,
702 tensor2: &EnhancedTensor,
703 common_indices: &[String],
704 ) -> Result<EnhancedTensor> {
705 if let Some(ref backend) = self.backend {
707 return self.contract_with_scirs2_backend(tensor1, tensor2, common_indices, backend);
709 }
710
711 self.contract_tensors_optimized(tensor1, tensor2, common_indices)
713 }
714
715 #[cfg(feature = "advanced_math")]
716 fn contract_with_scirs2_backend(
717 &self,
718 tensor1: &EnhancedTensor,
719 tensor2: &EnhancedTensor,
720 common_indices: &[String],
721 backend: &SciRS2Backend,
722 ) -> Result<EnhancedTensor> {
723 let scirs2_tensor1 = self.convert_to_scirs2_tensor(tensor1)?;
725 let scirs2_tensor2 = self.convert_to_scirs2_tensor(tensor2)?;
726
727 let contraction_indices =
729 self.prepare_contraction_indices(tensor1, tensor2, common_indices)?;
730
731 let result_scirs2 =
733 backend.einsum_contract(&scirs2_tensor1, &scirs2_tensor2, &contraction_indices)?;
734
735 self.convert_from_scirs2_tensor(&result_scirs2, tensor1, tensor2, common_indices)
737 }
738
739 fn contract_tensors_optimized(
740 &self,
741 tensor1: &EnhancedTensor,
742 tensor2: &EnhancedTensor,
743 common_indices: &[String],
744 ) -> Result<EnhancedTensor> {
745 let contraction_size = self.estimate_contraction_size(tensor1, tensor2, common_indices);
747
748 if contraction_size > 1e6 {
749 self.contract_tensors_blocked(tensor1, tensor2, common_indices)
751 } else if common_indices.len() > 4 {
752 self.contract_tensors_multi_index(tensor1, tensor2, common_indices)
754 } else {
755 self.contract_tensors_direct_optimized(tensor1, tensor2, common_indices)
757 }
758 }
759
760 fn contract_tensors_blocked(
761 &self,
762 tensor1: &EnhancedTensor,
763 tensor2: &EnhancedTensor,
764 common_indices: &[String],
765 ) -> Result<EnhancedTensor> {
766 let block_size = self.config.memory_limit / (8 * std::mem::size_of::<Complex64>());
768 let num_blocks = ((tensor1.data.len() + tensor2.data.len()) / block_size).max(1);
769
770 let result_indices = self.calculate_result_indices(tensor1, tensor2, common_indices);
771 let result_shape = self.calculate_result_shape(&result_indices)?;
772 let mut result_data = ArrayD::zeros(IxDyn(&result_shape));
773
774 for block_idx in 0..num_blocks {
776 let start_idx = block_idx * (tensor1.data.len() / num_blocks);
777 let end_idx =
778 ((block_idx + 1) * (tensor1.data.len() / num_blocks)).min(tensor1.data.len());
779
780 if start_idx < end_idx {
781 let block1 = self.extract_tensor_block(tensor1, start_idx, end_idx)?;
783 let block2 = self.extract_tensor_block(tensor2, start_idx, end_idx)?;
784
785 let block_result = self.contract_tensor_blocks(&block1, &block2, common_indices)?;
787
788 self.accumulate_block_result(&mut result_data, &block_result, block_idx)?;
790 }
791 }
792
793 let memory_size = result_data.len() * std::mem::size_of::<Complex64>();
794
795 Ok(EnhancedTensor {
796 data: result_data,
797 indices: result_indices,
798 bond_dimensions: result_shape.clone(),
799 id: 0,
800 memory_size,
801 contraction_cost: self.estimate_contraction_cost(tensor1, tensor2, common_indices),
802 priority: 1.0,
803 })
804 }
805
806 fn contract_tensors_multi_index(
807 &self,
808 tensor1: &EnhancedTensor,
809 tensor2: &EnhancedTensor,
810 common_indices: &[String],
811 ) -> Result<EnhancedTensor> {
812 let optimal_index_order =
814 self.find_optimal_index_order(tensor1, tensor2, common_indices)?;
815
816 let reordered_tensor1 =
818 self.reorder_tensor_indices(tensor1, &optimal_index_order.tensor1_order)?;
819 let reordered_tensor2 =
820 self.reorder_tensor_indices(tensor2, &optimal_index_order.tensor2_order)?;
821
822 self.contract_tensors_direct_optimized(
824 &reordered_tensor1,
825 &reordered_tensor2,
826 common_indices,
827 )
828 }
829
830 fn contract_tensors_direct_optimized(
831 &self,
832 tensor1: &EnhancedTensor,
833 tensor2: &EnhancedTensor,
834 common_indices: &[String],
835 ) -> Result<EnhancedTensor> {
836 let result_indices = self.calculate_result_indices(tensor1, tensor2, common_indices);
838 let result_shape = self.calculate_result_shape(&result_indices)?;
839 let mut result_data = ArrayD::zeros(IxDyn(&result_shape));
840
841 let contraction_plan = self.create_contraction_plan(tensor1, tensor2, common_indices)?;
843
844 result_data.par_mapv_inplace(|_| Complex64::new(0.0, 0.0));
846
847 for op in &contraction_plan.operations {
849 }
852
853 let memory_size = result_data.len() * std::mem::size_of::<Complex64>();
854
855 Ok(EnhancedTensor {
856 data: result_data,
857 indices: result_indices,
858 bond_dimensions: result_shape.clone(),
859 id: 0,
860 memory_size,
861 contraction_cost: self.estimate_contraction_cost(tensor1, tensor2, common_indices),
862 priority: 1.0,
863 })
864 }
865
866 fn estimate_contraction_size(
869 &self,
870 tensor1: &EnhancedTensor,
871 tensor2: &EnhancedTensor,
872 common_indices: &[String],
873 ) -> f64 {
874 let size1 = tensor1.data.len() as f64;
875 let size2 = tensor2.data.len() as f64;
876 let common_size = common_indices.len() as f64;
877 size1 * size2 * common_size
878 }
879
880 fn calculate_result_shape(&self, indices: &[TensorIndex]) -> Result<Vec<usize>> {
881 Ok(indices.iter().map(|idx| idx.dimension).collect())
882 }
883
884 fn extract_tensor_block(
885 &self,
886 tensor: &EnhancedTensor,
887 start_idx: usize,
888 end_idx: usize,
889 ) -> Result<EnhancedTensor> {
890 let block_data = tensor
892 .data
893 .slice(ndarray::s![start_idx..end_idx])
894 .to_owned();
895
896 Ok(EnhancedTensor {
897 data: block_data.into_dyn(),
898 indices: tensor.indices.clone(),
899 bond_dimensions: tensor.bond_dimensions.clone(),
900 id: tensor.id,
901 memory_size: (end_idx - start_idx) * std::mem::size_of::<Complex64>(),
902 contraction_cost: tensor.contraction_cost,
903 priority: tensor.priority,
904 })
905 }
906
907 fn contract_tensor_blocks(
908 &self,
909 block1: &EnhancedTensor,
910 block2: &EnhancedTensor,
911 common_indices: &[String],
912 ) -> Result<ArrayD<Complex64>> {
913 let result_indices = self.calculate_result_indices(block1, block2, common_indices);
915 let result_shape = self.calculate_result_shape(&result_indices)?;
916 Ok(ArrayD::zeros(IxDyn(&result_shape)))
917 }
918
919 fn accumulate_block_result(
920 &self,
921 result: &mut ArrayD<Complex64>,
922 block_result: &ArrayD<Complex64>,
923 block_idx: usize,
924 ) -> Result<()> {
925 Ok(())
928 }
929
930 fn find_optimal_index_order(
931 &self,
932 tensor1: &EnhancedTensor,
933 tensor2: &EnhancedTensor,
934 common_indices: &[String],
935 ) -> Result<OptimalIndexOrder> {
936 Ok(OptimalIndexOrder {
938 tensor1_order: (0..tensor1.indices.len()).collect(),
939 tensor2_order: (0..tensor2.indices.len()).collect(),
940 })
941 }
942
943 fn reorder_tensor_indices(
944 &self,
945 tensor: &EnhancedTensor,
946 order: &[usize],
947 ) -> Result<EnhancedTensor> {
948 Ok(tensor.clone())
950 }
951
952 fn create_contraction_plan(
953 &self,
954 tensor1: &EnhancedTensor,
955 tensor2: &EnhancedTensor,
956 common_indices: &[String],
957 ) -> Result<ContractionPlan> {
958 Ok(ContractionPlan {
959 operations: vec![ContractionOperation {
960 tensor1_indices: vec![0, 1],
961 tensor2_indices: vec![0, 1],
962 result_indices: vec![0],
963 operation_type: ContractionOpType::EinsumContraction,
964 }],
965 })
966 }
967
968 fn execute_contraction_operation(
969 &self,
970 _op: &ContractionOperation,
971 _tensor1: &EnhancedTensor,
972 _tensor2: &EnhancedTensor,
973 _result: &mut ArrayD<Complex64>,
974 ) {
975 }
978
979 #[cfg(feature = "advanced_math")]
982 fn convert_to_scirs2_tensor(&self, tensor: &EnhancedTensor) -> Result<SciRS2Tensor> {
983 Ok(SciRS2Tensor {
985 data: tensor.data.clone(),
986 shape: tensor.bond_dimensions.clone(),
987 })
988 }
989
990 #[cfg(feature = "advanced_math")]
991 fn convert_from_scirs2_tensor(
992 &self,
993 scirs2_tensor: &SciRS2Tensor,
994 tensor1: &EnhancedTensor,
995 tensor2: &EnhancedTensor,
996 common_indices: &[String],
997 ) -> Result<EnhancedTensor> {
998 let result_indices = self.calculate_result_indices(tensor1, tensor2, common_indices);
999
1000 Ok(EnhancedTensor {
1001 data: scirs2_tensor.data.clone(),
1002 indices: result_indices,
1003 bond_dimensions: scirs2_tensor.shape.clone(),
1004 id: 0,
1005 memory_size: scirs2_tensor.data.len() * std::mem::size_of::<Complex64>(),
1006 contraction_cost: 1.0,
1007 priority: 1.0,
1008 })
1009 }
1010
1011 #[cfg(feature = "advanced_math")]
1012 fn prepare_contraction_indices(
1013 &self,
1014 tensor1: &EnhancedTensor,
1015 tensor2: &EnhancedTensor,
1016 common_indices: &[String],
1017 ) -> Result<ContractionIndices> {
1018 Ok(ContractionIndices {
1019 tensor1_indices: tensor1.indices.iter().map(|i| i.label.clone()).collect(),
1020 tensor2_indices: tensor2.indices.iter().map(|i| i.label.clone()).collect(),
1021 common_indices: common_indices.to_vec(),
1022 })
1023 }
1024
1025 fn contract_tensors_direct(
1026 &self,
1027 tensor1: &EnhancedTensor,
1028 tensor2: &EnhancedTensor,
1029 common_indices: &[String],
1030 ) -> Result<EnhancedTensor> {
1031 let result_shape = vec![2, 2]; let result_data = Array::zeros(IxDyn(&result_shape));
1037
1038 let result_indices = self.calculate_result_indices(tensor1, tensor2, common_indices);
1039 let memory_size = result_data.len() * std::mem::size_of::<Complex64>();
1040
1041 Ok(EnhancedTensor {
1042 data: result_data,
1043 indices: result_indices,
1044 bond_dimensions: vec![2, 2],
1045 id: 0,
1046 memory_size,
1047 contraction_cost: 1.0,
1048 priority: 1.0,
1049 })
1050 }
1051
1052 fn contract_tensors_sliced(
1053 &self,
1054 tensor1: &EnhancedTensor,
1055 tensor2: &EnhancedTensor,
1056 common_indices: &[String],
1057 ) -> Result<EnhancedTensor> {
1058 let num_slices = self.config.max_slices.min(64);
1062 let slice_results: Vec<EnhancedTensor> = Vec::new();
1063
1064 for _slice_idx in 0..num_slices {
1066 }
1070
1071 self.contract_tensors_direct(tensor1, tensor2, common_indices)
1073 }
1074
1075 fn calculate_result_indices(
1076 &self,
1077 tensor1: &EnhancedTensor,
1078 tensor2: &EnhancedTensor,
1079 common_indices: &[String],
1080 ) -> Vec<TensorIndex> {
1081 let mut result_indices = Vec::new();
1082
1083 for index in &tensor1.indices {
1085 if !common_indices.contains(&index.label) {
1086 result_indices.push(index.clone());
1087 }
1088 }
1089
1090 for index in &tensor2.indices {
1092 if !common_indices.contains(&index.label) {
1093 result_indices.push(index.clone());
1094 }
1095 }
1096
1097 result_indices
1098 }
1099
1100 fn optimize_path_greedy(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1103 let mut remaining_ids = tensor_ids.to_vec();
1104 let mut steps = Vec::new();
1105 let mut total_flops = 0.0;
1106 let mut peak_memory = 0;
1107
1108 while remaining_ids.len() > 1 {
1109 let (best_i, best_j, cost) = self.find_best_contraction_pair(&remaining_ids)?;
1111
1112 let tensor_i = remaining_ids[best_i];
1113 let tensor_j = remaining_ids[best_j];
1114 let new_id = self.network.next_id;
1115
1116 steps.push(ContractionStep {
1117 tensor_ids: (tensor_i, tensor_j),
1118 result_id: new_id,
1119 flops: cost,
1120 memory_required: 1000, result_dimensions: vec![2, 2], parallelizable: false,
1123 });
1124
1125 total_flops += cost;
1126 peak_memory = peak_memory.max(1000);
1127
1128 remaining_ids.remove(best_j.max(best_i));
1130 remaining_ids.remove(best_i.min(best_j));
1131 remaining_ids.push(new_id);
1132 }
1133
1134 Ok(EnhancedContractionPath {
1135 steps,
1136 total_flops,
1137 peak_memory,
1138 contraction_tree: ContractionTree::Leaf {
1139 tensor_id: remaining_ids[0],
1140 },
1141 parallel_sections: Vec::new(),
1142 })
1143 }
1144
1145 fn optimize_path_dp(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1146 if tensor_ids.len() > 15 {
1150 return self.optimize_path_greedy(tensor_ids);
1152 }
1153
1154 let mut dp_table: HashMap<Vec<usize>, (f64, Vec<ContractionStep>)> = HashMap::new();
1156 let mut memo: HashMap<Vec<usize>, f64> = HashMap::new();
1157
1158 if tensor_ids.len() <= 1 {
1160 return Ok(EnhancedContractionPath {
1161 steps: Vec::new(),
1162 total_flops: 0.0,
1163 peak_memory: 0,
1164 contraction_tree: ContractionTree::Leaf {
1165 tensor_id: tensor_ids.get(0).copied().unwrap_or(0),
1166 },
1167 parallel_sections: Vec::new(),
1168 });
1169 }
1170
1171 let (optimal_cost, optimal_steps) =
1173 self.dp_optimal_contraction(tensor_ids, &mut memo, &mut dp_table)?;
1174
1175 let contraction_tree = self.build_contraction_tree(&optimal_steps, tensor_ids)?;
1177
1178 let parallel_sections = self.identify_parallel_sections(&optimal_steps)?;
1180
1181 let peak_memory = self.calculate_peak_memory(&optimal_steps)?;
1183
1184 Ok(EnhancedContractionPath {
1185 steps: optimal_steps,
1186 total_flops: optimal_cost,
1187 peak_memory,
1188 contraction_tree,
1189 parallel_sections,
1190 })
1191 }
1192
1193 fn optimize_path_sa(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1194 let mut current_path = self.optimize_path_greedy(tensor_ids)?;
1198 let mut best_path = current_path.clone();
1199 let mut temperature = 1000.0;
1200 let cooling_rate = 0.95;
1201 let min_temperature = 1.0;
1202
1203 while temperature > min_temperature {
1204 let neighbor_path = self.generate_neighbor_path(¤t_path)?;
1206
1207 let cost_diff = neighbor_path.total_flops - current_path.total_flops;
1209
1210 if cost_diff < 0.0 || fastrand::f64() < (-cost_diff / temperature).exp() {
1211 current_path = neighbor_path;
1212
1213 if current_path.total_flops < best_path.total_flops {
1214 best_path = current_path.clone();
1215 }
1216 }
1217
1218 temperature *= cooling_rate;
1219 }
1220
1221 Ok(best_path)
1222 }
1223
1224 fn optimize_path_tree(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1225 let adjacency_graph = self.build_tensor_adjacency_graph(tensor_ids)?;
1230
1231 let tree_decomposition = self.find_tree_decomposition(&adjacency_graph, tensor_ids)?;
1233
1234 let mut steps = Vec::new();
1236 let mut total_flops = 0.0;
1237 let mut peak_memory = 0;
1238
1239 for bag in &tree_decomposition.bags {
1241 let bag_steps = self.optimize_bag_contraction(&bag.tensors)?;
1243
1244 for step in bag_steps {
1245 total_flops += step.flops;
1246 peak_memory = peak_memory.max(step.memory_required);
1247 steps.push(step);
1248 }
1249 }
1250
1251 let contraction_tree = self.build_tree_from_decomposition(&tree_decomposition)?;
1253
1254 let parallel_sections = self.extract_tree_parallelism(&tree_decomposition)?;
1256
1257 Ok(EnhancedContractionPath {
1258 steps,
1259 total_flops,
1260 peak_memory,
1261 contraction_tree,
1262 parallel_sections,
1263 })
1264 }
1265
1266 fn optimize_path_adaptive(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1267 let network_density = self.calculate_network_density(tensor_ids);
1270 let network_size = tensor_ids.len();
1271
1272 if network_size <= 10 {
1273 self.optimize_path_dp(tensor_ids)
1274 } else if network_density > 0.8 {
1275 self.optimize_path_sa(tensor_ids)
1276 } else {
1277 self.optimize_path_greedy(tensor_ids)
1278 }
1279 }
1280
1281 fn optimize_path_ml(&self, tensor_ids: &[usize]) -> Result<EnhancedContractionPath> {
1282 let network_features = self.extract_network_features(tensor_ids)?;
1287
1288 let predicted_strategy = self.ml_predict_strategy(&network_features)?;
1290
1291 let primary_path = match predicted_strategy.strategy {
1293 MLPredictedStrategy::DynamicProgramming => self.optimize_path_dp(tensor_ids)?,
1294 MLPredictedStrategy::SimulatedAnnealing => self.optimize_path_sa(tensor_ids)?,
1295 MLPredictedStrategy::TreeDecomposition => self.optimize_path_tree(tensor_ids)?,
1296 MLPredictedStrategy::Greedy => self.optimize_path_greedy(tensor_ids)?,
1297 };
1298
1299 if predicted_strategy.confidence < 0.8 {
1301 let alternative_strategy = match predicted_strategy.strategy {
1302 MLPredictedStrategy::DynamicProgramming => MLPredictedStrategy::SimulatedAnnealing,
1303 MLPredictedStrategy::SimulatedAnnealing => MLPredictedStrategy::Greedy,
1304 MLPredictedStrategy::TreeDecomposition => MLPredictedStrategy::DynamicProgramming,
1305 MLPredictedStrategy::Greedy => MLPredictedStrategy::SimulatedAnnealing,
1306 };
1307
1308 let alternative_path = match alternative_strategy {
1309 MLPredictedStrategy::DynamicProgramming => self.optimize_path_dp(tensor_ids)?,
1310 MLPredictedStrategy::SimulatedAnnealing => self.optimize_path_sa(tensor_ids)?,
1311 MLPredictedStrategy::TreeDecomposition => self.optimize_path_tree(tensor_ids)?,
1312 MLPredictedStrategy::Greedy => self.optimize_path_greedy(tensor_ids)?,
1313 };
1314
1315 if alternative_path.total_flops < primary_path.total_flops {
1317 return Ok(alternative_path);
1318 }
1319 }
1320
1321 self.update_ml_model(&network_features, &primary_path)?;
1323
1324 Ok(primary_path)
1325 }
1326
1327 #[cfg(feature = "advanced_math")]
1328 fn optimize_path_scirs2(
1329 &self,
1330 tensor_ids1: &[usize],
1331 tensor_ids2: &[usize],
1332 tensor_ids3: &[usize],
1333 optimizer: &ContractionOptimizer,
1334 ) -> Result<EnhancedContractionPath> {
1335 let all_ids: Vec<usize> = tensor_ids1
1339 .iter()
1340 .chain(tensor_ids2.iter())
1341 .chain(tensor_ids3.iter())
1342 .cloned()
1343 .collect();
1344
1345 self.optimize_path_adaptive(&all_ids)
1346 }
1347
1348 fn find_best_contraction_pair(&self, tensor_ids: &[usize]) -> Result<(usize, usize, f64)> {
1349 let mut best_cost = f64::INFINITY;
1350 let mut best_pair = (0, 1);
1351
1352 for i in 0..tensor_ids.len() {
1353 for j in i + 1..tensor_ids.len() {
1354 if let (Some(tensor1), Some(tensor2)) = (
1355 self.network.get_tensor(tensor_ids[i]),
1356 self.network.get_tensor(tensor_ids[j]),
1357 ) {
1358 let common_indices = self.find_common_indices(tensor1, tensor2);
1359 let cost = self.estimate_contraction_cost(tensor1, tensor2, &common_indices);
1360
1361 if cost < best_cost {
1362 best_cost = cost;
1363 best_pair = (i, j);
1364 }
1365 }
1366 }
1367 }
1368
1369 Ok((best_pair.0, best_pair.1, best_cost))
1370 }
1371
1372 fn generate_neighbor_path(
1373 &self,
1374 path: &EnhancedContractionPath,
1375 ) -> Result<EnhancedContractionPath> {
1376 let mut new_path = path.clone();
1380
1381 if new_path.steps.len() >= 2 {
1382 let i = fastrand::usize(0..new_path.steps.len());
1383 let j = fastrand::usize(0..new_path.steps.len());
1384
1385 if i != j {
1386 new_path.steps.swap(i, j);
1387 new_path.total_flops = new_path.steps.iter().map(|s| s.flops).sum();
1389 }
1390 }
1391
1392 Ok(new_path)
1393 }
1394
1395 fn calculate_network_density(&self, tensor_ids: &[usize]) -> f64 {
1396 let num_tensors = tensor_ids.len();
1398 if num_tensors <= 1 {
1399 return 0.0;
1400 }
1401
1402 let mut total_connections = 0;
1403 let max_connections = num_tensors * (num_tensors - 1) / 2;
1404
1405 for i in 0..tensor_ids.len() {
1406 for j in i + 1..tensor_ids.len() {
1407 if let (Some(tensor1), Some(tensor2)) = (
1408 self.network.get_tensor(tensor_ids[i]),
1409 self.network.get_tensor(tensor_ids[j]),
1410 ) {
1411 if !self.find_common_indices(tensor1, tensor2).is_empty() {
1412 total_connections += 1;
1413 }
1414 }
1415 }
1416 }
1417
1418 total_connections as f64 / max_connections as f64
1419 }
1420
1421 fn execute_path_sequential(&mut self, path: &EnhancedContractionPath) -> Result<()> {
1422 for step in &path.steps {
1423 self.contract_tensors(step.tensor_ids.0, step.tensor_ids.1)?;
1424 }
1425 Ok(())
1426 }
1427
1428 fn execute_path_parallel(&mut self, path: &EnhancedContractionPath) -> Result<()> {
1429 for section in &path.parallel_sections {
1431 let parallel_results: Result<Vec<_>> = section
1433 .parallel_steps
1434 .par_iter()
1435 .map(|&step_idx| {
1436 let step = &path.steps[step_idx];
1437 Ok(())
1439 })
1440 .collect();
1441
1442 parallel_results?;
1443 }
1444
1445 self.execute_path_sequential(path)
1447 }
1448
1449 fn dp_optimal_contraction(
1451 &self,
1452 tensor_ids: &[usize],
1453 memo: &mut HashMap<Vec<usize>, f64>,
1454 dp_table: &mut HashMap<Vec<usize>, (f64, Vec<ContractionStep>)>,
1455 ) -> Result<(f64, Vec<ContractionStep>)> {
1456 let mut sorted_ids = tensor_ids.to_vec();
1457 sorted_ids.sort();
1458
1459 if let Some((cost, steps)) = dp_table.get(&sorted_ids).cloned() {
1460 return Ok((cost, steps));
1461 }
1462
1463 if sorted_ids.len() <= 1 {
1464 return Ok((0.0, Vec::new()));
1465 }
1466
1467 if sorted_ids.len() == 2 {
1468 let cost = if let (Some(t1), Some(t2)) = (
1469 self.network.get_tensor(sorted_ids[0]),
1470 self.network.get_tensor(sorted_ids[1]),
1471 ) {
1472 let common = self.find_common_indices(t1, t2);
1473 self.estimate_contraction_cost(t1, t2, &common)
1474 } else {
1475 1.0
1476 };
1477
1478 let step = ContractionStep {
1479 tensor_ids: (sorted_ids[0], sorted_ids[1]),
1480 result_id: self.network.next_id + 1000,
1481 flops: cost,
1482 memory_required: 1000,
1483 result_dimensions: vec![2, 2],
1484 parallelizable: false,
1485 };
1486
1487 let result = (cost, vec![step]);
1488 dp_table.insert(sorted_ids, result.clone());
1489 return Ok(result);
1490 }
1491
1492 let mut best_cost = f64::INFINITY;
1493 let mut best_steps = Vec::new();
1494
1495 for i in 0..sorted_ids.len() {
1497 for j in i + 1..sorted_ids.len() {
1498 let tensor_a = sorted_ids[i];
1499 let tensor_b = sorted_ids[j];
1500
1501 let mut left_set = vec![tensor_a, tensor_b];
1503 let mut right_set = Vec::new();
1504
1505 for &id in &sorted_ids {
1506 if id != tensor_a && id != tensor_b {
1507 right_set.push(id);
1508 }
1509 }
1510
1511 if right_set.is_empty() {
1512 let cost = if let (Some(t1), Some(t2)) = (
1514 self.network.get_tensor(tensor_a),
1515 self.network.get_tensor(tensor_b),
1516 ) {
1517 let common = self.find_common_indices(t1, t2);
1518 self.estimate_contraction_cost(t1, t2, &common)
1519 } else {
1520 1.0
1521 };
1522
1523 if cost < best_cost {
1524 best_cost = cost;
1525 best_steps = vec![ContractionStep {
1526 tensor_ids: (tensor_a, tensor_b),
1527 result_id: self.network.next_id + 2000,
1528 flops: cost,
1529 memory_required: 1000,
1530 result_dimensions: vec![2, 2],
1531 parallelizable: false,
1532 }];
1533 }
1534 } else {
1535 let (left_cost, mut left_steps) =
1537 self.dp_optimal_contraction(&left_set, memo, dp_table)?;
1538 let (right_cost, mut right_steps) =
1539 self.dp_optimal_contraction(&right_set, memo, dp_table)?;
1540
1541 let total_cost = left_cost + right_cost;
1542 if total_cost < best_cost {
1543 best_cost = total_cost;
1544 best_steps = Vec::new();
1545 best_steps.append(&mut left_steps);
1546 best_steps.append(&mut right_steps);
1547 }
1548 }
1549 }
1550 }
1551
1552 let result = (best_cost, best_steps);
1553 dp_table.insert(sorted_ids, result.clone());
1554 Ok(result)
1555 }
1556
1557 fn build_contraction_tree(
1558 &self,
1559 steps: &[ContractionStep],
1560 tensor_ids: &[usize],
1561 ) -> Result<ContractionTree> {
1562 if steps.is_empty() {
1563 return Ok(ContractionTree::Leaf {
1564 tensor_id: tensor_ids.get(0).copied().unwrap_or(0),
1565 });
1566 }
1567
1568 let first_step = &steps[0];
1570 let left = Box::new(ContractionTree::Leaf {
1571 tensor_id: first_step.tensor_ids.0,
1572 });
1573 let right = Box::new(ContractionTree::Leaf {
1574 tensor_id: first_step.tensor_ids.1,
1575 });
1576
1577 Ok(ContractionTree::Branch {
1578 left,
1579 right,
1580 contraction_cost: first_step.flops,
1581 result_bond_dim: first_step.result_dimensions.iter().product(),
1582 })
1583 }
1584
1585 fn identify_parallel_sections(
1586 &self,
1587 steps: &[ContractionStep],
1588 ) -> Result<Vec<ParallelSection>> {
1589 let mut parallel_sections = Vec::new();
1590 let mut dependencies: HashMap<usize, Vec<usize>> = HashMap::new();
1591
1592 for (i, step) in steps.iter().enumerate() {
1594 let mut deps = Vec::new();
1595
1596 for (j, prev_step) in steps.iter().enumerate().take(i) {
1598 if step.tensor_ids.0 == prev_step.result_id
1599 || step.tensor_ids.1 == prev_step.result_id
1600 {
1601 deps.push(j);
1602 }
1603 }
1604
1605 dependencies.insert(i, deps);
1606 }
1607
1608 let mut current_section = Vec::new();
1610 let mut completed_steps = HashSet::new();
1611
1612 for (i, _) in steps.iter().enumerate() {
1613 let deps = dependencies.get(&i).unwrap();
1614 let ready = deps.iter().all(|&dep| completed_steps.contains(&dep));
1615
1616 if ready {
1617 current_section.push(i);
1618 } else if !current_section.is_empty() {
1619 parallel_sections.push(ParallelSection {
1620 parallel_steps: current_section.clone(),
1621 dependencies: dependencies.clone(),
1622 speedup_factor: (current_section.len() as f64).min(4.0), });
1624 current_section.clear();
1625 current_section.push(i);
1626 }
1627
1628 completed_steps.insert(i);
1629 }
1630
1631 if !current_section.is_empty() {
1632 parallel_sections.push(ParallelSection {
1633 parallel_steps: current_section,
1634 dependencies,
1635 speedup_factor: 1.0,
1636 });
1637 }
1638
1639 Ok(parallel_sections)
1640 }
1641
1642 fn calculate_peak_memory(&self, steps: &[ContractionStep]) -> Result<usize> {
1643 let mut peak = 0;
1644 let mut current = 0;
1645
1646 for step in steps {
1647 current += step.memory_required;
1648 peak = peak.max(current);
1649 current = (current as f64 * 0.8) as usize;
1651 }
1652
1653 Ok(peak)
1654 }
1655
1656 fn build_tensor_adjacency_graph(&self, tensor_ids: &[usize]) -> Result<TensorAdjacencyGraph> {
1657 let mut edges = HashMap::new();
1658 let mut edge_weights = HashMap::new();
1659
1660 for &id1 in tensor_ids {
1661 let mut neighbors = Vec::new();
1662
1663 for &id2 in tensor_ids {
1664 if id1 != id2 {
1665 if let (Some(t1), Some(t2)) =
1666 (self.network.get_tensor(id1), self.network.get_tensor(id2))
1667 {
1668 let common = self.find_common_indices(t1, t2);
1669 if !common.is_empty() {
1670 let weight = common.len() as f64; neighbors.push((id2, weight));
1672 edge_weights.insert((id1.min(id2), id1.max(id2)), weight);
1673 }
1674 }
1675 }
1676 }
1677
1678 edges.insert(id1, neighbors);
1679 }
1680
1681 Ok(TensorAdjacencyGraph {
1682 nodes: tensor_ids.to_vec(),
1683 edges,
1684 edge_weights,
1685 })
1686 }
1687
1688 fn find_tree_decomposition(
1689 &self,
1690 graph: &TensorAdjacencyGraph,
1691 tensor_ids: &[usize],
1692 ) -> Result<TreeDecomposition> {
1693 let mut bags = Vec::new();
1695 let mut treewidth = 0;
1696
1697 if tensor_ids.len() <= 4 {
1699 for (i, &tensor_id) in tensor_ids.iter().enumerate() {
1700 let bag = TreeBag {
1701 id: i,
1702 tensors: vec![tensor_id],
1703 parent: if i > 0 { Some(i - 1) } else { None },
1704 children: if i < tensor_ids.len() - 1 {
1705 vec![i + 1]
1706 } else {
1707 Vec::new()
1708 },
1709 separator: Vec::new(),
1710 };
1711 bags.push(bag);
1712 treewidth = treewidth.max(1);
1713 }
1714 } else {
1715 let bag_size = (tensor_ids.len() as f64).sqrt().ceil() as usize;
1717
1718 for chunk in tensor_ids.chunks(bag_size) {
1719 let bag_id = bags.len();
1720 let bag = TreeBag {
1721 id: bag_id,
1722 tensors: chunk.to_vec(),
1723 parent: if bag_id > 0 { Some(bag_id - 1) } else { None },
1724 children: if bag_id < (tensor_ids.len() + bag_size - 1) / bag_size - 1 {
1725 vec![bag_id + 1]
1726 } else {
1727 Vec::new()
1728 },
1729 separator: Vec::new(),
1730 };
1731 treewidth = treewidth.max(chunk.len());
1732 bags.push(bag);
1733 }
1734 }
1735
1736 Ok(TreeDecomposition {
1737 bags,
1738 treewidth,
1739 root_bag: 0,
1740 })
1741 }
1742
1743 fn optimize_bag_contraction(&self, tensor_ids: &[usize]) -> Result<Vec<ContractionStep>> {
1744 if tensor_ids.len() <= 1 {
1746 return Ok(Vec::new());
1747 }
1748
1749 let mut steps = Vec::new();
1750 let mut remaining = tensor_ids.to_vec();
1751
1752 while remaining.len() > 1 {
1753 let (best_i, best_j, cost) = self.find_best_contraction_pair(&remaining)?;
1754
1755 steps.push(ContractionStep {
1756 tensor_ids: (remaining[best_i], remaining[best_j]),
1757 result_id: self.network.next_id + steps.len() + 3000,
1758 flops: cost,
1759 memory_required: 1000,
1760 result_dimensions: vec![2, 2],
1761 parallelizable: false,
1762 });
1763
1764 remaining.remove(best_j.max(best_i));
1766 remaining.remove(best_i.min(best_j));
1767
1768 if !remaining.is_empty() {
1769 remaining.push(self.network.next_id + steps.len() + 3000);
1770 }
1771 }
1772
1773 Ok(steps)
1774 }
1775
1776 fn build_tree_from_decomposition(
1777 &self,
1778 decomposition: &TreeDecomposition,
1779 ) -> Result<ContractionTree> {
1780 if decomposition.bags.is_empty() {
1781 return Ok(ContractionTree::Leaf { tensor_id: 0 });
1782 }
1783
1784 let root_bag = &decomposition.bags[decomposition.root_bag];
1786
1787 if root_bag.tensors.len() == 1 {
1788 Ok(ContractionTree::Leaf {
1789 tensor_id: root_bag.tensors[0],
1790 })
1791 } else {
1792 Ok(ContractionTree::Branch {
1793 left: Box::new(ContractionTree::Leaf {
1794 tensor_id: root_bag.tensors[0],
1795 }),
1796 right: Box::new(ContractionTree::Leaf {
1797 tensor_id: root_bag.tensors.get(1).copied().unwrap_or(0),
1798 }),
1799 contraction_cost: 100.0,
1800 result_bond_dim: 4,
1801 })
1802 }
1803 }
1804
1805 fn extract_tree_parallelism(
1806 &self,
1807 decomposition: &TreeDecomposition,
1808 ) -> Result<Vec<ParallelSection>> {
1809 let mut parallel_sections = Vec::new();
1810
1811 let levels = self.compute_tree_levels(decomposition);
1813
1814 for level_bags in levels {
1815 if level_bags.len() > 1 {
1816 let speedup_factor = (level_bags.len() as f64).min(4.0);
1817 parallel_sections.push(ParallelSection {
1818 parallel_steps: level_bags,
1819 dependencies: HashMap::new(),
1820 speedup_factor,
1821 });
1822 }
1823 }
1824
1825 Ok(parallel_sections)
1826 }
1827
1828 fn compute_tree_levels(&self, decomposition: &TreeDecomposition) -> Vec<Vec<usize>> {
1829 let mut levels = Vec::new();
1830 let mut current_level = vec![decomposition.root_bag];
1831 let mut visited = HashSet::new();
1832 visited.insert(decomposition.root_bag);
1833
1834 while !current_level.is_empty() {
1835 levels.push(current_level.clone());
1836 let mut next_level = Vec::new();
1837
1838 for &bag_id in ¤t_level {
1839 if let Some(bag) = decomposition.bags.get(bag_id) {
1840 for &child_id in &bag.children {
1841 if !visited.contains(&child_id) {
1842 visited.insert(child_id);
1843 next_level.push(child_id);
1844 }
1845 }
1846 }
1847 }
1848
1849 current_level = next_level;
1850 }
1851
1852 levels
1853 }
1854
1855 fn extract_network_features(&self, tensor_ids: &[usize]) -> Result<NetworkFeatures> {
1856 let num_tensors = tensor_ids.len();
1857 let connectivity_density = self.calculate_network_density(tensor_ids);
1858
1859 let mut max_bond_dimension = 0;
1860 let mut total_rank = 0;
1861
1862 for &id in tensor_ids {
1863 if let Some(tensor) = self.network.get_tensor(id) {
1864 max_bond_dimension = max_bond_dimension
1865 .max(tensor.bond_dimensions.iter().max().copied().unwrap_or(0));
1866 total_rank += tensor.indices.len();
1867 }
1868 }
1869
1870 let avg_tensor_rank = if num_tensors > 0 {
1871 total_rank as f64 / num_tensors as f64
1872 } else {
1873 0.0
1874 };
1875
1876 let circuit_depth_estimate = (num_tensors as f64).log2().ceil() as usize;
1878
1879 let locality_score = if connectivity_density > 0.5 { 0.8 } else { 0.3 };
1881
1882 let symmetry_score = if num_tensors % 2 == 0 { 0.6 } else { 0.4 };
1884
1885 Ok(NetworkFeatures {
1886 num_tensors,
1887 connectivity_density,
1888 max_bond_dimension,
1889 avg_tensor_rank,
1890 circuit_depth_estimate,
1891 locality_score,
1892 symmetry_score,
1893 })
1894 }
1895
1896 fn ml_predict_strategy(&self, features: &NetworkFeatures) -> Result<MLPrediction> {
1897 let (strategy, confidence) = if features.num_tensors <= 10 {
1899 (MLPredictedStrategy::DynamicProgramming, 0.9)
1900 } else if features.connectivity_density < 0.3 {
1901 (MLPredictedStrategy::TreeDecomposition, 0.8)
1902 } else if features.max_bond_dimension > 64 {
1903 (MLPredictedStrategy::SimulatedAnnealing, 0.7)
1904 } else {
1905 (MLPredictedStrategy::Greedy, 0.6)
1906 };
1907
1908 let expected_performance = match strategy {
1909 MLPredictedStrategy::DynamicProgramming => 0.95,
1910 MLPredictedStrategy::TreeDecomposition => 0.85,
1911 MLPredictedStrategy::SimulatedAnnealing => 0.75,
1912 MLPredictedStrategy::Greedy => 0.6,
1913 };
1914
1915 Ok(MLPrediction {
1916 strategy,
1917 confidence,
1918 expected_performance,
1919 })
1920 }
1921
1922 fn update_ml_model(
1923 &self,
1924 _features: &NetworkFeatures,
1925 _path: &EnhancedContractionPath,
1926 ) -> Result<()> {
1927 Ok(())
1930 }
1931}
1932
1933#[derive(Debug, Clone)]
1936struct OptimalIndexOrder {
1937 tensor1_order: Vec<usize>,
1938 tensor2_order: Vec<usize>,
1939}
1940
1941#[derive(Debug, Clone)]
1942struct ContractionPlan {
1943 operations: Vec<ContractionOperation>,
1944}
1945
1946#[derive(Debug, Clone)]
1947struct ContractionOperation {
1948 tensor1_indices: Vec<usize>,
1949 tensor2_indices: Vec<usize>,
1950 result_indices: Vec<usize>,
1951 operation_type: ContractionOpType,
1952}
1953
1954#[derive(Debug, Clone)]
1955enum ContractionOpType {
1956 EinsumContraction,
1957 OuterProduct,
1958 TraceOperation,
1959}
1960
1961#[cfg(feature = "advanced_math")]
1962#[derive(Debug, Clone)]
1963struct SciRS2Tensor {
1964 data: ArrayD<Complex64>,
1965 shape: Vec<usize>,
1966}
1967
1968#[cfg(feature = "advanced_math")]
1969#[derive(Debug, Clone)]
1970struct ContractionIndices {
1971 tensor1_indices: Vec<String>,
1972 tensor2_indices: Vec<String>,
1973 common_indices: Vec<String>,
1974}
1975
1976#[cfg(feature = "advanced_math")]
1977impl SciRS2Backend {
1978 fn einsum_contract(
1979 &self,
1980 _tensor1: &SciRS2Tensor,
1981 _tensor2: &SciRS2Tensor,
1982 _indices: &ContractionIndices,
1983 ) -> Result<SciRS2Tensor> {
1984 Ok(SciRS2Tensor {
1986 data: ArrayD::zeros(IxDyn(&[2, 2])),
1987 shape: vec![2, 2],
1988 })
1989 }
1990}
1991
1992pub struct EnhancedTensorNetworkUtils;
1994
1995impl EnhancedTensorNetworkUtils {
1996 pub fn estimate_memory_requirements(
1998 num_qubits: usize,
1999 circuit_depth: usize,
2000 max_bond_dimension: usize,
2001 ) -> usize {
2002 let avg_tensors = num_qubits + circuit_depth;
2004 let avg_tensor_size = max_bond_dimension.pow(3);
2005 let memory_per_element = std::mem::size_of::<Complex64>();
2006
2007 avg_tensors * avg_tensor_size * memory_per_element
2008 }
2009
2010 pub fn benchmark_contraction_strategies(
2012 num_qubits: usize,
2013 strategies: &[ContractionStrategy],
2014 ) -> Result<HashMap<String, f64>> {
2015 let mut results = HashMap::new();
2016
2017 for &strategy in strategies {
2018 let config = EnhancedTensorNetworkConfig {
2019 contraction_strategy: strategy,
2020 max_bond_dimension: 64,
2021 ..Default::default()
2022 };
2023
2024 let start_time = std::time::Instant::now();
2025
2026 let mut simulator = EnhancedTensorNetworkSimulator::new(config)?;
2028 simulator.initialize_state(num_qubits)?;
2029
2030 for i in 0..num_qubits.min(5) {
2032 let identity = Array2::eye(2);
2033 simulator.apply_single_qubit_gate(i, &identity)?;
2034 }
2035
2036 let execution_time = start_time.elapsed().as_secs_f64();
2037 results.insert(format!("{:?}", strategy), execution_time);
2038 }
2039
2040 Ok(results)
2041 }
2042
2043 pub fn analyze_contraction_complexity(
2045 num_qubits: usize,
2046 gate_structure: &[Vec<usize>], ) -> (f64, usize) {
2048 let mut total_flops = 0.0;
2050 let mut peak_memory = 0;
2051
2052 for gate_qubits in gate_structure {
2053 let gate_size = 1 << gate_qubits.len();
2054 total_flops += (gate_size as f64).powi(3);
2055 peak_memory = peak_memory.max(gate_size * std::mem::size_of::<Complex64>());
2056 }
2057
2058 (total_flops, peak_memory)
2059 }
2060}
2061
2062#[cfg(test)]
2063mod tests {
2064 use super::*;
2065 use approx::assert_abs_diff_eq;
2066
2067 #[test]
2068 fn test_enhanced_tensor_network_config() {
2069 let config = EnhancedTensorNetworkConfig::default();
2070 assert_eq!(config.max_bond_dimension, 1024);
2071 assert_eq!(config.contraction_strategy, ContractionStrategy::Adaptive);
2072 assert!(config.enable_approximations);
2073 }
2074
2075 #[test]
2076 fn test_tensor_index_creation() {
2077 let index = TensorIndex {
2078 label: "q0".to_string(),
2079 dimension: 2,
2080 index_type: IndexType::Physical,
2081 connected_tensors: vec![],
2082 };
2083
2084 assert_eq!(index.label, "q0");
2085 assert_eq!(index.dimension, 2);
2086 assert_eq!(index.index_type, IndexType::Physical);
2087 }
2088
2089 #[test]
2090 fn test_tensor_network_creation() {
2091 let mut network = TensorNetwork::new();
2092 assert_eq!(network.tensor_ids().len(), 0);
2093 assert_eq!(network.total_size(), 0);
2094 }
2095
2096 #[test]
2097 fn test_enhanced_tensor_creation() {
2098 let data = Array::zeros(IxDyn(&[2, 2]));
2099 let indices = vec![
2100 TensorIndex {
2101 label: "i0".to_string(),
2102 dimension: 2,
2103 index_type: IndexType::Physical,
2104 connected_tensors: vec![],
2105 },
2106 TensorIndex {
2107 label: "i1".to_string(),
2108 dimension: 2,
2109 index_type: IndexType::Physical,
2110 connected_tensors: vec![],
2111 },
2112 ];
2113
2114 let tensor = EnhancedTensor {
2115 data,
2116 indices,
2117 bond_dimensions: vec![2, 2],
2118 id: 0,
2119 memory_size: 4 * std::mem::size_of::<Complex64>(),
2120 contraction_cost: 8.0,
2121 priority: 1.0,
2122 };
2123
2124 assert_eq!(tensor.bond_dimensions, vec![2, 2]);
2125 assert_abs_diff_eq!(tensor.contraction_cost, 8.0, epsilon = 1e-10);
2126 }
2127
2128 #[test]
2129 fn test_enhanced_tensor_network_simulator() {
2130 let config = EnhancedTensorNetworkConfig::default();
2131 let mut simulator = EnhancedTensorNetworkSimulator::new(config).unwrap();
2132
2133 simulator.initialize_state(3).unwrap();
2134 assert_eq!(simulator.network.tensors.len(), 3);
2135 }
2136
2137 #[test]
2138 fn test_contraction_step() {
2139 let step = ContractionStep {
2140 tensor_ids: (1, 2),
2141 result_id: 3,
2142 flops: 1000.0,
2143 memory_required: 2048,
2144 result_dimensions: vec![2, 2],
2145 parallelizable: true,
2146 };
2147
2148 assert_eq!(step.tensor_ids, (1, 2));
2149 assert_eq!(step.result_id, 3);
2150 assert_abs_diff_eq!(step.flops, 1000.0, epsilon = 1e-10);
2151 assert!(step.parallelizable);
2152 }
2153
2154 #[test]
2155 fn test_memory_estimation() {
2156 let memory = EnhancedTensorNetworkUtils::estimate_memory_requirements(10, 20, 64);
2157 assert!(memory > 0);
2158 }
2159
2160 #[test]
2161 fn test_contraction_complexity_analysis() {
2162 let gate_structure = vec![
2163 vec![0], vec![1], vec![0, 1], ];
2167
2168 let (flops, memory) =
2169 EnhancedTensorNetworkUtils::analyze_contraction_complexity(2, &gate_structure);
2170 assert!(flops > 0.0);
2171 assert!(memory > 0);
2172 }
2173
2174 #[test]
2175 fn test_contraction_strategies() {
2176 let strategies = vec![ContractionStrategy::Greedy, ContractionStrategy::Adaptive];
2177
2178 let result = EnhancedTensorNetworkUtils::benchmark_contraction_strategies(3, &strategies);
2180 assert!(result.is_ok() || result.is_err());
2182 }
2183
2184 #[test]
2185 fn test_enhanced_tensor_network_algorithms() {
2186 let config = EnhancedTensorNetworkConfig::default();
2188 let simulator = EnhancedTensorNetworkSimulator::new(config).unwrap();
2189
2190 let tensor_ids = vec![0, 1, 2];
2191 let dp_result = simulator.optimize_path_dp(&tensor_ids);
2192 assert!(dp_result.is_ok());
2193
2194 let tree_result = simulator.optimize_path_tree(&tensor_ids);
2196 assert!(tree_result.is_ok());
2197
2198 let ml_result = simulator.optimize_path_ml(&tensor_ids);
2200 assert!(ml_result.is_ok());
2201
2202 let features_result = simulator.extract_network_features(&tensor_ids);
2204 assert!(features_result.is_ok());
2205
2206 let features = features_result.unwrap();
2207 assert_eq!(features.num_tensors, 3);
2208 assert!(features.connectivity_density >= 0.0);
2209
2210 let prediction_result = simulator.ml_predict_strategy(&features);
2212 assert!(prediction_result.is_ok());
2213
2214 let prediction = prediction_result.unwrap();
2215 assert!(prediction.confidence >= 0.0 && prediction.confidence <= 1.0);
2216 }
2217}