1use ndarray::Array1;
16use num_complex::Complex64;
17use scirs2_core::parallel_ops::*;
18use serde::{Deserialize, Serialize};
19use std::collections::{HashMap, VecDeque};
20
21use crate::circuit_interfaces::{
22 CircuitInterface, InterfaceCircuit, InterfaceGate, InterfaceGateType,
23};
24use crate::error::Result;
25#[derive(Debug, Clone, Copy, PartialEq, Eq)]
29pub struct ConcatenationLevel {
30 pub level: usize,
32 pub distance: usize,
34 pub code_rate: usize,
36}
37
38#[derive(Debug)]
40pub struct ConcatenatedCodeConfig {
41 pub levels: Vec<ConcatenationLevel>,
43 pub codes_per_level: Vec<Box<dyn ErrorCorrectionCode>>,
45 pub decoding_method: HierarchicalDecodingMethod,
47 pub error_threshold: f64,
49 pub parallel_decoding: bool,
51 pub max_decoding_iterations: usize,
53}
54
55pub trait ErrorCorrectionCode: Send + Sync + std::fmt::Debug {
57 fn get_parameters(&self) -> CodeParameters;
59
60 fn encode(&self, logical_state: &Array1<Complex64>) -> Result<Array1<Complex64>>;
62
63 fn decode(&self, encoded_state: &Array1<Complex64>) -> Result<DecodingResult>;
65
66 fn syndrome_circuit(&self, num_qubits: usize) -> Result<InterfaceCircuit>;
68
69 fn correct_errors(&self, state: &mut Array1<Complex64>, syndrome: &[bool]) -> Result<()>;
71}
72
73#[derive(Debug, Clone, Copy)]
75pub struct CodeParameters {
76 pub n_logical: usize,
78 pub n_physical: usize,
80 pub distance: usize,
82 pub t: usize, }
85
86#[derive(Debug, Clone, Copy, PartialEq, Eq)]
88pub enum HierarchicalDecodingMethod {
89 Sequential,
91 Parallel,
93 Adaptive,
95 BeliefPropagation,
97}
98
99#[derive(Debug, Clone)]
101pub struct DecodingResult {
102 pub corrected_state: Array1<Complex64>,
104 pub syndrome: Vec<bool>,
106 pub error_pattern: Vec<ErrorType>,
108 pub confidence: f64,
110 pub errors_corrected: usize,
112 pub success: bool,
114}
115
116#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
118pub enum ErrorType {
119 Identity,
121 BitFlip,
123 PhaseFlip,
125 BitPhaseFlip,
127}
128
129#[derive(Debug, Clone, Serialize, Deserialize)]
131pub struct ConcatenatedCorrectionResult {
132 pub final_state: Array1<Complex64>,
134 pub level_results: Vec<LevelDecodingResult>,
136 pub stats: ConcatenationStats,
138 pub execution_time_ms: f64,
140 pub success_probability: f64,
142}
143
144#[derive(Debug, Clone, Serialize, Deserialize)]
146pub struct LevelDecodingResult {
147 pub level: usize,
149 pub syndromes: Vec<Vec<bool>>,
151 pub errors_corrected: usize,
153 pub error_patterns: Vec<String>,
155 pub confidence: f64,
157 pub processing_time_ms: f64,
159}
160
161#[derive(Debug, Clone, Default, Serialize, Deserialize)]
163pub struct ConcatenationStats {
164 pub physical_qubits: usize,
166 pub logical_qubits: usize,
168 pub effective_distance: usize,
170 pub syndrome_measurements: usize,
172 pub total_errors_corrected: usize,
174 pub memory_overhead_factor: f64,
176 pub circuit_depth_overhead: usize,
178 pub decoding_iterations: usize,
180}
181
182pub struct ConcatenatedErrorCorrection {
184 config: ConcatenatedCodeConfig,
186 circuit_interface: CircuitInterface,
188 syndrome_history: VecDeque<Vec<Vec<bool>>>,
190 error_rates: HashMap<usize, f64>,
192 stats: ConcatenationStats,
194}
195
196impl ConcatenatedErrorCorrection {
197 pub fn new(config: ConcatenatedCodeConfig) -> Result<Self> {
199 let circuit_interface = CircuitInterface::new(Default::default())?;
200 let syndrome_history = VecDeque::with_capacity(100);
201 let error_rates = HashMap::new();
202
203 Ok(Self {
204 config,
205 circuit_interface,
206 syndrome_history,
207 error_rates,
208 stats: ConcatenationStats::default(),
209 })
210 }
211
212 pub fn encode_concatenated(
214 &mut self,
215 logical_state: &Array1<Complex64>,
216 ) -> Result<Array1<Complex64>> {
217 let mut current_state = logical_state.clone();
218
219 for (level, code) in self.config.codes_per_level.iter().enumerate() {
221 current_state = code.encode(¤t_state)?;
222
223 let params = code.get_parameters();
224 self.stats.physical_qubits = params.n_physical;
225 self.stats.logical_qubits = params.n_logical;
226
227 if level == 0 {
229 self.stats.effective_distance = params.distance;
230 } else {
231 self.stats.effective_distance = self.stats.effective_distance.min(params.distance);
232 }
233 }
234
235 Ok(current_state)
236 }
237
238 pub fn decode_hierarchical(
240 &mut self,
241 encoded_state: &Array1<Complex64>,
242 ) -> Result<ConcatenatedCorrectionResult> {
243 let start_time = std::time::Instant::now();
244
245 let result = match self.config.decoding_method {
246 HierarchicalDecodingMethod::Sequential => self.decode_sequential(encoded_state)?,
247 HierarchicalDecodingMethod::Parallel => self.decode_parallel(encoded_state)?,
248 HierarchicalDecodingMethod::Adaptive => self.decode_adaptive(encoded_state)?,
249 HierarchicalDecodingMethod::BeliefPropagation => {
250 self.decode_belief_propagation(encoded_state)?
251 }
252 };
253
254 let execution_time_ms = start_time.elapsed().as_secs_f64() * 1000.0;
255
256 let all_syndromes: Vec<Vec<bool>> = result
258 .level_results
259 .iter()
260 .flat_map(|r| r.syndromes.iter().cloned())
261 .collect();
262 self.syndrome_history.push_back(all_syndromes);
263 if self.syndrome_history.len() > 100 {
264 self.syndrome_history.pop_front();
265 }
266
267 let success_probability = self.estimate_success_probability(&result);
269
270 Ok(ConcatenatedCorrectionResult {
271 final_state: result.final_state,
272 level_results: result.level_results,
273 stats: self.stats.clone(),
274 execution_time_ms,
275 success_probability,
276 })
277 }
278
279 fn decode_sequential(
281 &mut self,
282 encoded_state: &Array1<Complex64>,
283 ) -> Result<ConcatenatedCorrectionResult> {
284 let mut current_state = encoded_state.clone();
285 let mut level_results = Vec::new();
286
287 for (level, code) in self.config.codes_per_level.iter().enumerate().rev() {
289 let level_start = std::time::Instant::now();
290
291 let decoding_result = code.decode(¤t_state)?;
292 current_state = decoding_result.corrected_state;
293
294 let error_patterns: Vec<String> = decoding_result
296 .error_pattern
297 .iter()
298 .map(|e| format!("{:?}", e))
299 .collect();
300
301 let level_result = LevelDecodingResult {
302 level,
303 syndromes: vec![decoding_result.syndrome],
304 errors_corrected: decoding_result.errors_corrected,
305 error_patterns,
306 confidence: decoding_result.confidence,
307 processing_time_ms: level_start.elapsed().as_secs_f64() * 1000.0,
308 };
309
310 level_results.push(level_result);
311 self.stats.total_errors_corrected += decoding_result.errors_corrected;
312 self.stats.decoding_iterations += 1;
313 }
314
315 level_results.reverse();
317
318 Ok(ConcatenatedCorrectionResult {
319 final_state: current_state,
320 level_results,
321 stats: self.stats.clone(),
322 execution_time_ms: 0.0, success_probability: 0.0, })
325 }
326
327 fn decode_parallel(
329 &mut self,
330 encoded_state: &Array1<Complex64>,
331 ) -> Result<ConcatenatedCorrectionResult> {
332 if !self.config.parallel_decoding {
333 return self.decode_sequential(encoded_state);
334 }
335
336 let num_levels = self.config.codes_per_level.len();
339 let mut level_results = Vec::with_capacity(num_levels);
340
341 let results: Vec<_> = (0..num_levels)
343 .into_par_iter()
344 .map(|level| {
345 let level_start = std::time::Instant::now();
346
347 let mut state_copy = encoded_state.clone();
349
350 let decoding_result = self.config.codes_per_level[level]
351 .decode(&state_copy)
352 .unwrap_or_else(|_| DecodingResult {
353 corrected_state: state_copy,
354 syndrome: vec![false],
355 error_pattern: vec![ErrorType::Identity],
356 confidence: 0.0,
357 errors_corrected: 0,
358 success: false,
359 });
360
361 let error_patterns: Vec<String> = decoding_result
362 .error_pattern
363 .iter()
364 .map(|e| format!("{:?}", e))
365 .collect();
366
367 LevelDecodingResult {
368 level,
369 syndromes: vec![decoding_result.syndrome],
370 errors_corrected: decoding_result.errors_corrected,
371 error_patterns,
372 confidence: decoding_result.confidence,
373 processing_time_ms: level_start.elapsed().as_secs_f64() * 1000.0,
374 }
375 })
376 .collect();
377
378 level_results.extend(results);
379
380 let sequential_result = self.decode_sequential(encoded_state)?;
382
383 Ok(ConcatenatedCorrectionResult {
384 final_state: sequential_result.final_state,
385 level_results,
386 stats: self.stats.clone(),
387 execution_time_ms: 0.0,
388 success_probability: 0.0,
389 })
390 }
391
392 fn decode_adaptive(
394 &mut self,
395 encoded_state: &Array1<Complex64>,
396 ) -> Result<ConcatenatedCorrectionResult> {
397 let mut result = self.decode_sequential(encoded_state)?;
399
400 let error_rate = self.calculate_current_error_rate(&result.level_results);
402
403 if error_rate > self.config.error_threshold {
404 for iteration in 1..self.config.max_decoding_iterations {
406 let alternative_result = if iteration % 2 == 1 {
407 self.decode_parallel(encoded_state)?
408 } else {
409 self.decode_sequential(encoded_state)?
410 };
411
412 let alt_error_rate =
413 self.calculate_current_error_rate(&alternative_result.level_results);
414 if alt_error_rate < error_rate {
415 result = alternative_result;
416 break;
417 }
418
419 self.stats.decoding_iterations += 1;
420 }
421 }
422
423 Ok(result)
424 }
425
426 fn decode_belief_propagation(
428 &mut self,
429 encoded_state: &Array1<Complex64>,
430 ) -> Result<ConcatenatedCorrectionResult> {
431 let mut current_state = encoded_state.clone();
433 let mut level_results = Vec::new();
434
435 let num_levels = self.config.codes_per_level.len();
437 let mut beliefs = vec![1.0; num_levels];
438
439 for iteration in 0..self.config.max_decoding_iterations.min(5) {
440 for (level, code) in self.config.codes_per_level.iter().enumerate() {
441 let level_start = std::time::Instant::now();
442
443 let decoding_result = code.decode(¤t_state)?;
445
446 beliefs[level] = beliefs[level] * 0.9 + decoding_result.confidence * 0.1;
448
449 current_state = decoding_result.corrected_state;
450
451 let error_patterns: Vec<String> = decoding_result
452 .error_pattern
453 .iter()
454 .map(|e| format!("{:?}", e))
455 .collect();
456
457 let level_result = LevelDecodingResult {
458 level,
459 syndromes: vec![decoding_result.syndrome],
460 errors_corrected: decoding_result.errors_corrected,
461 error_patterns,
462 confidence: beliefs[level],
463 processing_time_ms: level_start.elapsed().as_secs_f64() * 1000.0,
464 };
465
466 if iteration == 0 || level_results.len() <= level {
467 level_results.push(level_result);
468 } else {
469 level_results[level] = level_result;
470 }
471
472 self.stats.total_errors_corrected += decoding_result.errors_corrected;
473 }
474
475 let avg_confidence: f64 = beliefs.iter().sum::<f64>() / beliefs.len() as f64;
477 if avg_confidence > 0.95 {
478 break;
479 }
480
481 self.stats.decoding_iterations += 1;
482 }
483
484 Ok(ConcatenatedCorrectionResult {
485 final_state: current_state,
486 level_results,
487 stats: self.stats.clone(),
488 execution_time_ms: 0.0,
489 success_probability: 0.0,
490 })
491 }
492
493 fn calculate_current_error_rate(&self, level_results: &[LevelDecodingResult]) -> f64 {
495 if level_results.is_empty() {
496 return 0.0;
497 }
498
499 let total_errors: usize = level_results.iter().map(|r| r.errors_corrected).sum();
500
501 let total_qubits = self.stats.physical_qubits.max(1);
502 total_errors as f64 / total_qubits as f64
503 }
504
505 fn estimate_success_probability(&self, result: &ConcatenatedCorrectionResult) -> f64 {
507 if result.level_results.is_empty() {
508 return 1.0;
509 }
510
511 let confidence_product: f64 = result.level_results.iter().map(|r| r.confidence).product();
513
514 let error_rate = self.calculate_current_error_rate(&result.level_results);
516 let error_penalty = (-error_rate * 10.0).exp();
517
518 (confidence_product * error_penalty).min(1.0).max(0.0)
519 }
520
521 pub fn get_stats(&self) -> &ConcatenationStats {
523 &self.stats
524 }
525
526 pub fn reset_stats(&mut self) {
528 self.stats = ConcatenationStats::default();
529 self.syndrome_history.clear();
530 self.error_rates.clear();
531 }
532}
533
534#[derive(Debug, Clone)]
537pub struct BitFlipCode;
538
539impl BitFlipCode {
540 pub fn new() -> Self {
541 Self
542 }
543}
544
545#[derive(Debug)]
547pub struct ConcatenatedBitFlipCode {
548 inner_code: BitFlipCode,
549}
550
551impl ConcatenatedBitFlipCode {
552 pub fn new() -> Self {
553 Self {
554 inner_code: BitFlipCode::new(),
555 }
556 }
557}
558
559impl ErrorCorrectionCode for ConcatenatedBitFlipCode {
560 fn get_parameters(&self) -> CodeParameters {
561 CodeParameters {
562 n_logical: 1,
563 n_physical: 3,
564 distance: 3,
565 t: 1,
566 }
567 }
568
569 fn encode(&self, logical_state: &Array1<Complex64>) -> Result<Array1<Complex64>> {
570 let n_logical = logical_state.len();
572 let n_physical = n_logical * 3;
573
574 let mut encoded = Array1::zeros(n_physical);
575
576 for i in 0..n_logical {
578 let amp = logical_state[i];
579 encoded[i * 3] = amp;
580 encoded[i * 3 + 1] = amp;
581 encoded[i * 3 + 2] = amp;
582 }
583
584 Ok(encoded)
585 }
586
587 fn decode(&self, encoded_state: &Array1<Complex64>) -> Result<DecodingResult> {
588 let n_physical = encoded_state.len();
589 let n_logical = n_physical / 3;
590
591 let mut corrected_state = Array1::zeros(n_logical);
592 let mut syndrome = Vec::new();
593 let mut error_pattern = Vec::new();
594 let mut errors_corrected = 0;
595
596 for i in 0..n_logical {
597 let block_start = i * 3;
598 let a0 = encoded_state[block_start];
599 let a1 = encoded_state[block_start + 1];
600 let a2 = encoded_state[block_start + 2];
601
602 let distances = [(a0 - a1).norm(), (a1 - a2).norm(), (a0 - a2).norm()];
604
605 let min_dist_idx = distances
606 .iter()
607 .enumerate()
608 .min_by(|a, b| a.1.partial_cmp(b.1).unwrap())
609 .unwrap()
610 .0;
611
612 match min_dist_idx {
613 0 => {
614 corrected_state[i] = (a0 + a1) / 2.0;
616 if (a2 - a0).norm() > 1e-10 {
617 syndrome.push(true);
618 error_pattern.push(ErrorType::BitFlip);
619 errors_corrected += 1;
620 } else {
621 syndrome.push(false);
622 error_pattern.push(ErrorType::Identity);
623 }
624 }
625 1 => {
626 corrected_state[i] = (a1 + a2) / 2.0;
628 if (a0 - a1).norm() > 1e-10 {
629 syndrome.push(true);
630 error_pattern.push(ErrorType::BitFlip);
631 errors_corrected += 1;
632 } else {
633 syndrome.push(false);
634 error_pattern.push(ErrorType::Identity);
635 }
636 }
637 2 => {
638 corrected_state[i] = (a0 + a2) / 2.0;
640 if (a1 - a0).norm() > 1e-10 {
641 syndrome.push(true);
642 error_pattern.push(ErrorType::BitFlip);
643 errors_corrected += 1;
644 } else {
645 syndrome.push(false);
646 error_pattern.push(ErrorType::Identity);
647 }
648 }
649 _ => unreachable!(),
650 }
651 }
652
653 let confidence = 1.0 - (errors_corrected as f64 / n_logical as f64);
654
655 Ok(DecodingResult {
656 corrected_state,
657 syndrome,
658 error_pattern,
659 confidence,
660 errors_corrected,
661 success: errors_corrected <= n_logical,
662 })
663 }
664
665 fn syndrome_circuit(&self, num_qubits: usize) -> Result<InterfaceCircuit> {
666 let mut circuit = InterfaceCircuit::new(num_qubits + 2, 2);
667
668 for i in (0..num_qubits).step_by(3) {
670 if i + 2 < num_qubits {
671 circuit.add_gate(InterfaceGate::new(
672 InterfaceGateType::CNOT,
673 vec![i, num_qubits],
674 ));
675 circuit.add_gate(InterfaceGate::new(
676 InterfaceGateType::CNOT,
677 vec![i + 1, num_qubits],
678 ));
679 circuit.add_gate(InterfaceGate::new(
680 InterfaceGateType::CNOT,
681 vec![i + 1, num_qubits + 1],
682 ));
683 circuit.add_gate(InterfaceGate::new(
684 InterfaceGateType::CNOT,
685 vec![i + 2, num_qubits + 1],
686 ));
687 }
688 }
689
690 Ok(circuit)
691 }
692
693 fn correct_errors(&self, state: &mut Array1<Complex64>, syndrome: &[bool]) -> Result<()> {
694 for (i, &has_error) in syndrome.iter().enumerate() {
696 if has_error && i * 3 + 2 < state.len() {
697 let block_start = i * 3;
699 let majority =
700 (state[block_start] + state[block_start + 1] + state[block_start + 2]) / 3.0;
701 state[block_start] = majority;
702 state[block_start + 1] = majority;
703 state[block_start + 2] = majority;
704 }
705 }
706 Ok(())
707 }
708}
709
710pub fn create_standard_concatenated_code(levels: usize) -> Result<ConcatenatedErrorCorrection> {
712 let mut concatenation_levels = Vec::new();
713 let mut codes_per_level: Vec<Box<dyn ErrorCorrectionCode>> = Vec::new();
714
715 for level in 0..levels {
716 concatenation_levels.push(ConcatenationLevel {
717 level,
718 distance: 3,
719 code_rate: 3,
720 });
721
722 codes_per_level.push(Box::new(ConcatenatedBitFlipCode::new()));
723 }
724
725 let config = ConcatenatedCodeConfig {
726 levels: concatenation_levels,
727 codes_per_level,
728 decoding_method: HierarchicalDecodingMethod::Sequential,
729 error_threshold: 0.1,
730 parallel_decoding: true,
731 max_decoding_iterations: 10,
732 };
733
734 ConcatenatedErrorCorrection::new(config)
735}
736
737pub fn benchmark_concatenated_error_correction() -> Result<HashMap<String, f64>> {
739 let mut results = HashMap::new();
740
741 let levels = vec![1, 2, 3];
743
744 for &level in &levels {
745 let start = std::time::Instant::now();
746
747 let mut concatenated = create_standard_concatenated_code(level)?;
748
749 let logical_state = Array1::from_vec(vec![
751 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
752 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
753 ]);
754
755 let encoded = concatenated.encode_concatenated(&logical_state)?;
757
758 let mut noisy_encoded = encoded.clone();
760 for i in 0..noisy_encoded.len().min(5) {
761 noisy_encoded[i] += Complex64::new(0.01 * fastrand::f64(), 0.01 * fastrand::f64());
762 }
763
764 let _result = concatenated.decode_hierarchical(&noisy_encoded)?;
766
767 let time = start.elapsed().as_secs_f64() * 1000.0;
768 results.insert(format!("level_{}", level), time);
769 }
770
771 Ok(results)
772}
773
774#[cfg(test)]
775mod tests {
776 use super::*;
777 use approx::assert_abs_diff_eq;
778
779 #[test]
780 fn test_concatenated_code_creation() {
781 let concatenated = create_standard_concatenated_code(2);
782 assert!(concatenated.is_ok());
783 }
784
785 #[test]
786 fn test_bit_flip_code_parameters() {
787 let code = ConcatenatedBitFlipCode::new();
788 let params = code.get_parameters();
789
790 assert_eq!(params.n_logical, 1);
791 assert_eq!(params.n_physical, 3);
792 assert_eq!(params.distance, 3);
793 assert_eq!(params.t, 1);
794 }
795
796 #[test]
797 fn test_bit_flip_encoding() {
798 let code = ConcatenatedBitFlipCode::new();
799 let logical_state =
800 Array1::from_vec(vec![Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)]);
801
802 let encoded = code.encode(&logical_state).unwrap();
803 assert_eq!(encoded.len(), 6); assert!((encoded[0] - logical_state[0]).norm() < 1e-10);
807 assert!((encoded[1] - logical_state[0]).norm() < 1e-10);
808 assert!((encoded[2] - logical_state[0]).norm() < 1e-10);
809 }
810
811 #[test]
812 fn test_concatenated_encoding_decoding() {
813 let mut concatenated = create_standard_concatenated_code(1).unwrap();
814
815 let logical_state = Array1::from_vec(vec![
816 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
817 Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
818 ]);
819
820 let encoded = concatenated.encode_concatenated(&logical_state).unwrap();
821 assert!(encoded.len() >= logical_state.len());
822
823 let result = concatenated.decode_hierarchical(&encoded).unwrap();
824 assert!(!result.level_results.is_empty());
825 assert!(result.success_probability >= 0.0);
826 }
827
828 #[test]
829 fn test_syndrome_circuit_creation() {
830 let code = ConcatenatedBitFlipCode::new();
831 let circuit = code.syndrome_circuit(6).unwrap();
832
833 assert_eq!(circuit.num_qubits, 8); assert!(!circuit.gates.is_empty());
835 }
836
837 #[test]
838 fn test_decoding_methods() {
839 let mut concatenated = create_standard_concatenated_code(1).unwrap();
840
841 let logical_state = Array1::from_vec(vec![Complex64::new(1.0, 0.0)]);
842 let encoded = concatenated.encode_concatenated(&logical_state).unwrap();
843
844 concatenated.config.decoding_method = HierarchicalDecodingMethod::Sequential;
846 let seq_result = concatenated.decode_hierarchical(&encoded).unwrap();
847 assert!(!seq_result.level_results.is_empty());
848
849 concatenated.config.decoding_method = HierarchicalDecodingMethod::Adaptive;
851 let adapt_result = concatenated.decode_hierarchical(&encoded).unwrap();
852 assert!(!adapt_result.level_results.is_empty());
853 }
854
855 #[test]
856 fn test_error_rate_calculation() {
857 let concatenated = create_standard_concatenated_code(1).unwrap();
858
859 let level_results = vec![LevelDecodingResult {
860 level: 0,
861 syndromes: vec![vec![true, false]],
862 errors_corrected: 1,
863 error_patterns: vec!["BitFlip".to_string()],
864 confidence: 0.9,
865 processing_time_ms: 1.0,
866 }];
867
868 let error_rate = concatenated.calculate_current_error_rate(&level_results);
869 assert!(error_rate > 0.0);
870 }
871}