quantrs2_sim/
cache_optimized_layouts.rs

1//! Cache-optimized state vector layouts and access patterns.
2//!
3//! This module provides advanced cache-optimized implementations for quantum
4//! state vector operations, including cache-aware data structures, memory
5//! access patterns, and cache-conscious algorithms for quantum gates.
6
7use ndarray::Array2;
8use num_complex::Complex64;
9#[cfg(target_arch = "x86_64")]
10use std::arch::x86_64::*;
11use std::collections::{HashMap, VecDeque};
12use std::sync::{Arc, Mutex};
13use std::time::{Duration, Instant};
14
15use crate::error::{Result, SimulatorError};
16use crate::memory_bandwidth_optimization::MemoryOptimizationConfig;
17
18/// Cache hierarchy configuration
19#[derive(Debug, Clone)]
20pub struct CacheHierarchyConfig {
21    /// L1 cache size in bytes
22    pub l1_size: usize,
23    /// L1 cache line size in bytes
24    pub l1_line_size: usize,
25    /// L1 cache associativity
26    pub l1_associativity: usize,
27    /// L2 cache size in bytes
28    pub l2_size: usize,
29    /// L2 cache line size in bytes
30    pub l2_line_size: usize,
31    /// L2 cache associativity
32    pub l2_associativity: usize,
33    /// L3 cache size in bytes
34    pub l3_size: usize,
35    /// L3 cache line size in bytes
36    pub l3_line_size: usize,
37    /// L3 cache associativity
38    pub l3_associativity: usize,
39    /// Memory latency in cycles
40    pub memory_latency: usize,
41    /// Cache replacement policy
42    pub replacement_policy: CacheReplacementPolicy,
43}
44
45impl Default for CacheHierarchyConfig {
46    fn default() -> Self {
47        Self {
48            l1_size: 32 * 1024,       // 32KB L1
49            l1_line_size: 64,         // 64B cache line
50            l1_associativity: 8,      // 8-way associative
51            l2_size: 256 * 1024,      // 256KB L2
52            l2_line_size: 64,         // 64B cache line
53            l2_associativity: 8,      // 8-way associative
54            l3_size: 8 * 1024 * 1024, // 8MB L3
55            l3_line_size: 64,         // 64B cache line
56            l3_associativity: 16,     // 16-way associative
57            memory_latency: 300,      // ~300 cycles
58            replacement_policy: CacheReplacementPolicy::LRU,
59        }
60    }
61}
62
63/// Cache replacement policies
64#[derive(Debug, Clone, Copy, PartialEq, Eq)]
65pub enum CacheReplacementPolicy {
66    /// Least Recently Used
67    LRU,
68    /// First In, First Out
69    FIFO,
70    /// Random replacement
71    Random,
72    /// Least Frequently Used
73    LFU,
74}
75
76/// Cache-optimized data layout strategies
77#[derive(Debug, Clone, Copy, PartialEq, Eq)]
78pub enum CacheOptimizedLayout {
79    /// Standard linear layout
80    Linear,
81    /// Block-based layout for cache lines
82    Blocked,
83    /// Z-order (Morton order) layout
84    ZOrder,
85    /// Hilbert curve layout
86    Hilbert,
87    /// Bit-reversal layout for FFT-like operations
88    BitReversal,
89    /// Strided layout for parallel access
90    Strided,
91    /// Hierarchical layout matching cache levels
92    Hierarchical,
93}
94
95/// Cache access pattern tracking
96#[derive(Debug, Clone)]
97pub struct CacheAccessPattern {
98    /// Access counts per cache line
99    pub line_access_counts: HashMap<usize, u64>,
100    /// Cache hit/miss statistics
101    pub cache_hits: u64,
102    pub cache_misses: u64,
103    /// Access sequence for temporal locality analysis
104    pub access_sequence: VecDeque<usize>,
105    /// Stride detection
106    pub detected_strides: Vec<isize>,
107    /// Temporal locality score (0.0 to 1.0)
108    pub temporal_locality: f64,
109    /// Spatial locality score (0.0 to 1.0)
110    pub spatial_locality: f64,
111}
112
113impl Default for CacheAccessPattern {
114    fn default() -> Self {
115        Self {
116            line_access_counts: HashMap::new(),
117            cache_hits: 0,
118            cache_misses: 0,
119            access_sequence: VecDeque::new(),
120            detected_strides: Vec::new(),
121            temporal_locality: 0.0,
122            spatial_locality: 0.0,
123        }
124    }
125}
126
127/// Cache-optimized state vector with advanced layout management
128#[derive(Debug)]
129pub struct CacheOptimizedStateVector {
130    /// State vector data with optimized layout
131    data: Vec<Complex64>,
132    /// Number of qubits
133    num_qubits: usize,
134    /// Current layout strategy
135    layout: CacheOptimizedLayout,
136    /// Cache hierarchy configuration
137    cache_config: CacheHierarchyConfig,
138    /// Memory optimization configuration
139    memory_config: MemoryOptimizationConfig,
140    /// Cache access pattern tracking
141    access_pattern: Arc<Mutex<CacheAccessPattern>>,
142    /// Layout transformation indices
143    layout_indices: Vec<usize>,
144    /// Inverse layout transformation indices
145    inverse_indices: Vec<usize>,
146}
147
148impl CacheOptimizedStateVector {
149    /// Create a new cache-optimized state vector
150    pub fn new(
151        num_qubits: usize,
152        layout: CacheOptimizedLayout,
153        cache_config: CacheHierarchyConfig,
154        memory_config: MemoryOptimizationConfig,
155    ) -> Result<Self> {
156        let size = 1 << num_qubits;
157
158        // Generate layout transformation indices
159        let (layout_indices, inverse_indices) = Self::generate_layout_indices(size, layout)?;
160
161        // Allocate and initialize data
162        let mut data = vec![Complex64::new(0.0, 0.0); size];
163        data[0] = Complex64::new(1.0, 0.0); // |0...0⟩ state
164
165        // Apply layout transformation
166        let mut instance = Self {
167            data,
168            num_qubits,
169            layout,
170            cache_config,
171            memory_config,
172            access_pattern: Arc::new(Mutex::new(CacheAccessPattern::default())),
173            layout_indices,
174            inverse_indices,
175        };
176
177        instance.apply_layout_transformation()?;
178
179        Ok(instance)
180    }
181
182    /// Generate layout transformation indices for different cache-optimized layouts
183    fn generate_layout_indices(
184        size: usize,
185        layout: CacheOptimizedLayout,
186    ) -> Result<(Vec<usize>, Vec<usize>)> {
187        let indices = match layout {
188            CacheOptimizedLayout::Linear => (0..size).collect::<Vec<usize>>(),
189            CacheOptimizedLayout::Blocked => Self::generate_blocked_indices(size)?,
190            CacheOptimizedLayout::ZOrder => Self::generate_z_order_indices(size)?,
191            CacheOptimizedLayout::Hilbert => Self::generate_hilbert_indices(size)?,
192            CacheOptimizedLayout::BitReversal => Self::generate_bit_reversal_indices(size)?,
193            CacheOptimizedLayout::Strided => Self::generate_strided_indices(size)?,
194            CacheOptimizedLayout::Hierarchical => Self::generate_hierarchical_indices(size)?,
195        };
196
197        // Generate inverse mapping
198        let mut inverse_indices = vec![0; size];
199        for (new_idx, &old_idx) in indices.iter().enumerate() {
200            inverse_indices[old_idx] = new_idx;
201        }
202
203        Ok((indices, inverse_indices))
204    }
205
206    /// Generate blocked layout indices for cache line optimization
207    fn generate_blocked_indices(size: usize) -> Result<Vec<usize>> {
208        let block_size = 64 / std::mem::size_of::<Complex64>(); // Cache line size in elements
209        let mut indices = Vec::with_capacity(size);
210
211        for block_start in (0..size).step_by(block_size) {
212            let block_end = std::cmp::min(block_start + block_size, size);
213            for i in block_start..block_end {
214                indices.push(i);
215            }
216        }
217
218        Ok(indices)
219    }
220
221    /// Generate Z-order (Morton order) indices for 2D spatial locality
222    fn generate_z_order_indices(size: usize) -> Result<Vec<usize>> {
223        let bits = (size as f64).log2() as usize;
224        if 1 << bits != size {
225            return Err(SimulatorError::InvalidParameter(
226                "Z-order layout requires power-of-2 size".to_string(),
227            ));
228        }
229
230        let mut indices = Vec::with_capacity(size);
231
232        for i in 0..size {
233            let morton_index = Self::morton_encode_2d(i, bits / 2);
234            indices.push(morton_index % size);
235        }
236
237        Ok(indices)
238    }
239
240    /// Encode 2D coordinates using Morton order
241    fn morton_encode_2d(index: usize, bits_per_dim: usize) -> usize {
242        let x = index & ((1 << bits_per_dim) - 1);
243        let y = index >> bits_per_dim;
244
245        let mut result = 0;
246        for i in 0..bits_per_dim {
247            result |= ((x >> i) & 1) << (2 * i);
248            result |= ((y >> i) & 1) << (2 * i + 1);
249        }
250
251        result
252    }
253
254    /// Generate Hilbert curve indices for optimal spatial locality
255    fn generate_hilbert_indices(size: usize) -> Result<Vec<usize>> {
256        let bits = (size as f64).log2() as usize;
257        if 1 << bits != size {
258            return Err(SimulatorError::InvalidParameter(
259                "Hilbert layout requires power-of-2 size".to_string(),
260            ));
261        }
262
263        let order = bits / 2;
264        let mut indices = Vec::with_capacity(size);
265
266        for i in 0..size {
267            let (x, y) = Self::hilbert_index_to_xy(i, order);
268            let linear_index = y * (1 << order) + x;
269            indices.push(linear_index % size);
270        }
271
272        Ok(indices)
273    }
274
275    /// Convert Hilbert index to 2D coordinates
276    fn hilbert_index_to_xy(mut index: usize, order: usize) -> (usize, usize) {
277        let mut x = 0;
278        let mut y = 0;
279
280        for s in (0..order).rev() {
281            let rx = 1 & (index >> 1);
282            let ry = 1 & (index ^ rx);
283
284            if ry == 0 {
285                if rx == 1 {
286                    // Safely perform rotation using saturation to prevent underflow
287                    let max_val = (1usize << s).saturating_sub(1);
288                    x = max_val.saturating_sub(x);
289                    y = max_val.saturating_sub(y);
290                }
291                std::mem::swap(&mut x, &mut y);
292            }
293
294            x += rx << s;
295            y += ry << s;
296            index >>= 2;
297        }
298
299        (x, y)
300    }
301
302    /// Generate bit-reversal indices for FFT-like operations
303    fn generate_bit_reversal_indices(size: usize) -> Result<Vec<usize>> {
304        let bits = (size as f64).log2() as usize;
305        if 1 << bits != size {
306            return Err(SimulatorError::InvalidParameter(
307                "Bit-reversal layout requires power-of-2 size".to_string(),
308            ));
309        }
310
311        let mut indices = Vec::with_capacity(size);
312
313        for i in 0..size {
314            let reversed = Self::reverse_bits(i, bits);
315            indices.push(reversed);
316        }
317
318        Ok(indices)
319    }
320
321    /// Reverse bits in an integer
322    fn reverse_bits(mut num: usize, bits: usize) -> usize {
323        let mut result = 0;
324        for _ in 0..bits {
325            result = (result << 1) | (num & 1);
326            num >>= 1;
327        }
328        result
329    }
330
331    /// Generate strided indices for parallel access optimization
332    fn generate_strided_indices(size: usize) -> Result<Vec<usize>> {
333        let stride = 8; // SIMD width
334        let mut indices = Vec::with_capacity(size);
335
336        for group in 0..(size + stride - 1) / stride {
337            for offset in 0..stride {
338                let index = group * stride + offset;
339                if index < size {
340                    indices.push(index);
341                }
342            }
343        }
344
345        Ok(indices)
346    }
347
348    /// Generate hierarchical indices matching cache levels
349    fn generate_hierarchical_indices(size: usize) -> Result<Vec<usize>> {
350        let l1_block_size = 32 / std::mem::size_of::<Complex64>(); // L1 cache block
351        let l2_block_size = 256 / std::mem::size_of::<Complex64>(); // L2 cache block
352
353        let mut indices = Vec::with_capacity(size);
354
355        for l2_block in 0..(size + l2_block_size - 1) / l2_block_size {
356            let l2_start = l2_block * l2_block_size;
357            let l2_end = std::cmp::min(l2_start + l2_block_size, size);
358
359            for l1_block_start in (l2_start..l2_end).step_by(l1_block_size) {
360                let l1_block_end = std::cmp::min(l1_block_start + l1_block_size, l2_end);
361
362                for i in l1_block_start..l1_block_end {
363                    indices.push(i);
364                }
365            }
366        }
367
368        Ok(indices)
369    }
370
371    /// Apply layout transformation to reorder data
372    fn apply_layout_transformation(&mut self) -> Result<()> {
373        let original_data = self.data.clone();
374
375        for (new_idx, &old_idx) in self.layout_indices.iter().enumerate() {
376            self.data[new_idx] = original_data[old_idx];
377        }
378
379        Ok(())
380    }
381
382    /// Convert logical index to physical index based on current layout
383    fn logical_to_physical(&self, logical_index: usize) -> usize {
384        self.inverse_indices[logical_index]
385    }
386
387    /// Convert physical index to logical index based on current layout
388    fn physical_to_logical(&self, physical_index: usize) -> usize {
389        self.layout_indices[physical_index]
390    }
391
392    /// Apply single-qubit gate with cache-optimized access pattern
393    pub fn apply_single_qubit_gate_cache_optimized(
394        &mut self,
395        target: usize,
396        gate_matrix: &Array2<Complex64>,
397    ) -> Result<()> {
398        let start_time = Instant::now();
399        let mask = 1 << target;
400
401        // Choose optimization based on layout
402        match self.layout {
403            CacheOptimizedLayout::Blocked => {
404                self.apply_single_qubit_blocked(target, gate_matrix, mask)?;
405            }
406            CacheOptimizedLayout::ZOrder => {
407                self.apply_single_qubit_z_order(target, gate_matrix, mask)?;
408            }
409            CacheOptimizedLayout::Hilbert => {
410                self.apply_single_qubit_hilbert(target, gate_matrix, mask)?;
411            }
412            CacheOptimizedLayout::Strided => {
413                self.apply_single_qubit_strided(target, gate_matrix, mask)?;
414            }
415            _ => {
416                self.apply_single_qubit_linear(target, gate_matrix, mask)?;
417            }
418        }
419
420        // Update access pattern statistics
421        self.update_access_statistics(start_time.elapsed());
422
423        Ok(())
424    }
425
426    /// Apply single-qubit gate with blocked access pattern
427    fn apply_single_qubit_blocked(
428        &mut self,
429        _target: usize,
430        gate_matrix: &Array2<Complex64>,
431        mask: usize,
432    ) -> Result<()> {
433        let block_size = self.cache_config.l1_line_size / std::mem::size_of::<Complex64>();
434
435        for block_start in (0..self.data.len()).step_by(block_size) {
436            let block_end = std::cmp::min(block_start + block_size, self.data.len());
437
438            // Prefetch next block
439            if block_end < self.data.len() {
440                #[cfg(target_arch = "x86_64")]
441                unsafe {
442                    std::arch::x86_64::_mm_prefetch(
443                        self.data.as_ptr().add(block_end) as *const i8,
444                        std::arch::x86_64::_MM_HINT_T0,
445                    );
446                }
447            }
448
449            // Process current block
450            for i in (block_start..block_end).step_by(2) {
451                if i + 1 < self.data.len() {
452                    let logical_i0 = self.physical_to_logical(i);
453                    let logical_i1 = logical_i0 | mask;
454                    let physical_i1 = self.logical_to_physical(logical_i1);
455
456                    if physical_i1 < self.data.len() {
457                        let amp0 = self.data[i];
458                        let amp1 = self.data[physical_i1];
459
460                        self.data[i] = gate_matrix[[0, 0]] * amp0 + gate_matrix[[0, 1]] * amp1;
461                        self.data[physical_i1] =
462                            gate_matrix[[1, 0]] * amp0 + gate_matrix[[1, 1]] * amp1;
463
464                        // Track cache access
465                        self.track_cache_access(i);
466                        self.track_cache_access(physical_i1);
467                    }
468                }
469            }
470        }
471
472        Ok(())
473    }
474
475    /// Apply single-qubit gate with Z-order access pattern
476    fn apply_single_qubit_z_order(
477        &mut self,
478        _target: usize,
479        gate_matrix: &Array2<Complex64>,
480        mask: usize,
481    ) -> Result<()> {
482        // Process in Z-order to maximize spatial locality
483        let bits = self.num_qubits;
484        let tile_size = 4; // Process 4x4 tiles for better cache utilization
485
486        for tile_y in (0..(1 << (bits / 2))).step_by(tile_size) {
487            for tile_x in (0..(1 << (bits / 2))).step_by(tile_size) {
488                for y in tile_y..std::cmp::min(tile_y + tile_size, 1 << (bits / 2)) {
489                    for x in tile_x..std::cmp::min(tile_x + tile_size, 1 << (bits / 2)) {
490                        let logical_index = y * (1 << (bits / 2)) + x;
491                        let logical_i0 = logical_index & !mask;
492                        let logical_i1 = logical_i0 | mask;
493
494                        let physical_i0 = self.logical_to_physical(logical_i0);
495                        let physical_i1 = self.logical_to_physical(logical_i1);
496
497                        if physical_i0 < self.data.len() && physical_i1 < self.data.len() {
498                            let amp0 = self.data[physical_i0];
499                            let amp1 = self.data[physical_i1];
500
501                            self.data[physical_i0] =
502                                gate_matrix[[0, 0]] * amp0 + gate_matrix[[0, 1]] * amp1;
503                            self.data[physical_i1] =
504                                gate_matrix[[1, 0]] * amp0 + gate_matrix[[1, 1]] * amp1;
505
506                            self.track_cache_access(physical_i0);
507                            self.track_cache_access(physical_i1);
508                        }
509                    }
510                }
511            }
512        }
513
514        Ok(())
515    }
516
517    /// Apply single-qubit gate with Hilbert curve access pattern
518    fn apply_single_qubit_hilbert(
519        &mut self,
520        _target: usize,
521        gate_matrix: &Array2<Complex64>,
522        mask: usize,
523    ) -> Result<()> {
524        // Process along Hilbert curve for optimal spatial locality
525        let order = self.num_qubits / 2;
526        let curve_length = 1 << self.num_qubits;
527
528        for hilbert_index in (0..curve_length).step_by(2) {
529            let (x, y) = Self::hilbert_index_to_xy(hilbert_index, order);
530            let logical_index = y * (1 << order) + x;
531
532            let logical_i0 = logical_index & !mask;
533            let logical_i1 = logical_i0 | mask;
534
535            let physical_i0 = self.logical_to_physical(logical_i0);
536            let physical_i1 = self.logical_to_physical(logical_i1);
537
538            if physical_i0 < self.data.len() && physical_i1 < self.data.len() {
539                let amp0 = self.data[physical_i0];
540                let amp1 = self.data[physical_i1];
541
542                self.data[physical_i0] = gate_matrix[[0, 0]] * amp0 + gate_matrix[[0, 1]] * amp1;
543                self.data[physical_i1] = gate_matrix[[1, 0]] * amp0 + gate_matrix[[1, 1]] * amp1;
544
545                self.track_cache_access(physical_i0);
546                self.track_cache_access(physical_i1);
547            }
548        }
549
550        Ok(())
551    }
552
553    /// Apply single-qubit gate with strided access for SIMD optimization
554    fn apply_single_qubit_strided(
555        &mut self,
556        _target: usize,
557        gate_matrix: &Array2<Complex64>,
558        mask: usize,
559    ) -> Result<()> {
560        let stride = 8; // SIMD width
561
562        for group_start in (0..self.data.len()).step_by(stride * 2) {
563            // Process SIMD groups
564            for offset in 0..stride {
565                let i = group_start + offset;
566                if i + stride < self.data.len() {
567                    let logical_i0 = self.physical_to_logical(i);
568                    let logical_i1 = logical_i0 | mask;
569                    let physical_i1 = self.logical_to_physical(logical_i1);
570
571                    if physical_i1 < self.data.len() {
572                        let amp0 = self.data[i];
573                        let amp1 = self.data[physical_i1];
574
575                        self.data[i] = gate_matrix[[0, 0]] * amp0 + gate_matrix[[0, 1]] * amp1;
576                        self.data[physical_i1] =
577                            gate_matrix[[1, 0]] * amp0 + gate_matrix[[1, 1]] * amp1;
578
579                        self.track_cache_access(i);
580                        self.track_cache_access(physical_i1);
581                    }
582                }
583            }
584        }
585
586        Ok(())
587    }
588
589    /// Apply single-qubit gate with linear access pattern
590    fn apply_single_qubit_linear(
591        &mut self,
592        _target: usize,
593        gate_matrix: &Array2<Complex64>,
594        mask: usize,
595    ) -> Result<()> {
596        for i in (0..self.data.len()).step_by(2) {
597            let logical_i0 = self.physical_to_logical(i);
598            let logical_i1 = logical_i0 | mask;
599            let physical_i1 = self.logical_to_physical(logical_i1);
600
601            if physical_i1 < self.data.len() {
602                let amp0 = self.data[i];
603                let amp1 = self.data[physical_i1];
604
605                self.data[i] = gate_matrix[[0, 0]] * amp0 + gate_matrix[[0, 1]] * amp1;
606                self.data[physical_i1] = gate_matrix[[1, 0]] * amp0 + gate_matrix[[1, 1]] * amp1;
607
608                self.track_cache_access(i);
609                self.track_cache_access(physical_i1);
610            }
611        }
612
613        Ok(())
614    }
615
616    /// Track cache access for statistics
617    fn track_cache_access(&self, physical_index: usize) {
618        if let Ok(mut pattern) = self.access_pattern.lock() {
619            let cache_line = physical_index
620                / (self.cache_config.l1_line_size / std::mem::size_of::<Complex64>());
621
622            // Update access counts
623            *pattern.line_access_counts.entry(cache_line).or_insert(0) += 1;
624
625            // Update access sequence for locality analysis
626            pattern.access_sequence.push_back(physical_index);
627            if pattern.access_sequence.len() > 1000 {
628                pattern.access_sequence.pop_front();
629            }
630
631            // Simple cache hit estimation (simplified)
632            if pattern.line_access_counts.get(&cache_line).unwrap_or(&0) > &1 {
633                pattern.cache_hits += 1;
634            } else {
635                pattern.cache_misses += 1;
636            }
637        }
638    }
639
640    /// Update access pattern statistics
641    fn update_access_statistics(&self, operation_time: Duration) {
642        if let Ok(mut pattern) = self.access_pattern.lock() {
643            // Calculate temporal locality
644            let total_accesses = pattern.cache_hits + pattern.cache_misses;
645            if total_accesses > 0 {
646                pattern.temporal_locality = pattern.cache_hits as f64 / total_accesses as f64;
647            }
648
649            // Calculate spatial locality (simplified)
650            if pattern.access_sequence.len() > 1 {
651                let mut spatial_hits = 0;
652                let mut total_pairs = 0;
653
654                for window in pattern.access_sequence.as_slices().0.windows(2) {
655                    if let [addr1, addr2] = window {
656                        let line1 = addr1
657                            / (self.cache_config.l1_line_size / std::mem::size_of::<Complex64>());
658                        let line2 = addr2
659                            / (self.cache_config.l1_line_size / std::mem::size_of::<Complex64>());
660
661                        if line1 == line2 || line1.abs_diff(line2) <= 1 {
662                            spatial_hits += 1;
663                        }
664                        total_pairs += 1;
665                    }
666                }
667
668                if total_pairs > 0 {
669                    pattern.spatial_locality = spatial_hits as f64 / total_pairs as f64;
670                }
671            }
672
673            // Detect stride patterns
674            if pattern.access_sequence.len() >= 3 {
675                let recent_accesses: Vec<_> =
676                    pattern.access_sequence.iter().rev().take(10).collect();
677                pattern.detected_strides = Self::detect_strides(&recent_accesses);
678            }
679        }
680    }
681
682    /// Detect stride patterns in memory access
683    fn detect_strides(accesses: &[&usize]) -> Vec<isize> {
684        let mut strides = Vec::new();
685
686        if accesses.len() >= 3 {
687            for window in accesses.windows(3) {
688                if let [addr1, addr2, addr3] = window {
689                    let stride1 = **addr2 as isize - **addr1 as isize;
690                    let stride2 = **addr3 as isize - **addr2 as isize;
691
692                    if stride1 == stride2 && stride1 != 0 {
693                        strides.push(stride1);
694                    }
695                }
696            }
697        }
698
699        strides
700    }
701
702    /// Get cache performance statistics
703    pub fn get_cache_stats(&self) -> Result<CachePerformanceStats> {
704        let pattern = self.access_pattern.lock().unwrap();
705        let total_accesses = pattern.cache_hits + pattern.cache_misses;
706
707        Ok(CachePerformanceStats {
708            cache_hit_rate: if total_accesses > 0 {
709                pattern.cache_hits as f64 / total_accesses as f64
710            } else {
711                0.0
712            },
713            cache_miss_rate: if total_accesses > 0 {
714                pattern.cache_misses as f64 / total_accesses as f64
715            } else {
716                0.0
717            },
718            temporal_locality: pattern.temporal_locality,
719            spatial_locality: pattern.spatial_locality,
720            total_cache_lines_accessed: pattern.line_access_counts.len(),
721            average_accesses_per_line: if !pattern.line_access_counts.is_empty() {
722                pattern.line_access_counts.values().sum::<u64>() as f64
723                    / pattern.line_access_counts.len() as f64
724            } else {
725                0.0
726            },
727            detected_strides: pattern.detected_strides.clone(),
728            current_layout: self.layout,
729        })
730    }
731
732    /// Adapt layout based on access patterns
733    pub fn adapt_cache_layout(&mut self) -> Result<CacheLayoutAdaptationResult> {
734        let stats = self.get_cache_stats()?;
735        let current_performance = stats.cache_hit_rate;
736
737        // Determine optimal layout based on access patterns
738        let recommended_layout = if stats.spatial_locality > 0.8 {
739            CacheOptimizedLayout::Blocked
740        } else if stats.detected_strides.iter().any(|&s| s.abs() == 1) {
741            CacheOptimizedLayout::Linear
742        } else if stats.detected_strides.len() > 2 {
743            CacheOptimizedLayout::Strided
744        } else if stats.temporal_locality < 0.5 {
745            CacheOptimizedLayout::Hilbert
746        } else {
747            CacheOptimizedLayout::ZOrder
748        };
749
750        let layout_changed = recommended_layout != self.layout;
751
752        if layout_changed {
753            // Store old layout for comparison
754            let old_layout = self.layout;
755
756            // Apply new layout
757            let (new_indices, new_inverse) =
758                Self::generate_layout_indices(self.data.len(), recommended_layout)?;
759            self.layout_indices = new_indices;
760            self.inverse_indices = new_inverse;
761            self.layout = recommended_layout;
762
763            // Transform data to new layout
764            self.apply_layout_transformation()?;
765
766            Ok(CacheLayoutAdaptationResult {
767                layout_changed: true,
768                old_layout,
769                new_layout: recommended_layout,
770                performance_before: current_performance,
771                expected_performance_improvement: 0.1, // Simplified estimate
772                adaptation_overhead: Duration::from_millis(1), // Simplified
773            })
774        } else {
775            Ok(CacheLayoutAdaptationResult {
776                layout_changed: false,
777                old_layout: self.layout,
778                new_layout: self.layout,
779                performance_before: current_performance,
780                expected_performance_improvement: 0.0,
781                adaptation_overhead: Duration::from_nanos(0),
782            })
783        }
784    }
785
786    /// Get state vector data (read-only)
787    pub fn data(&self) -> &[Complex64] {
788        &self.data
789    }
790
791    /// Get the current layout
792    pub fn layout(&self) -> CacheOptimizedLayout {
793        self.layout
794    }
795
796    /// Get the number of qubits
797    pub fn num_qubits(&self) -> usize {
798        self.num_qubits
799    }
800}
801
802/// Cache performance statistics
803#[derive(Debug, Clone)]
804pub struct CachePerformanceStats {
805    /// Cache hit rate (0.0 to 1.0)
806    pub cache_hit_rate: f64,
807    /// Cache miss rate (0.0 to 1.0)
808    pub cache_miss_rate: f64,
809    /// Temporal locality score (0.0 to 1.0)
810    pub temporal_locality: f64,
811    /// Spatial locality score (0.0 to 1.0)
812    pub spatial_locality: f64,
813    /// Number of unique cache lines accessed
814    pub total_cache_lines_accessed: usize,
815    /// Average number of accesses per cache line
816    pub average_accesses_per_line: f64,
817    /// Detected stride patterns
818    pub detected_strides: Vec<isize>,
819    /// Current layout being used
820    pub current_layout: CacheOptimizedLayout,
821}
822
823/// Cache layout adaptation result
824#[derive(Debug, Clone)]
825pub struct CacheLayoutAdaptationResult {
826    /// Whether layout was actually changed
827    pub layout_changed: bool,
828    /// Previous layout
829    pub old_layout: CacheOptimizedLayout,
830    /// New layout
831    pub new_layout: CacheOptimizedLayout,
832    /// Performance before adaptation
833    pub performance_before: f64,
834    /// Expected performance improvement
835    pub expected_performance_improvement: f64,
836    /// Time overhead for adaptation
837    pub adaptation_overhead: Duration,
838}
839
840/// Cache-optimized gate operation manager
841#[derive(Debug)]
842pub struct CacheOptimizedGateManager {
843    /// Cache hierarchy configuration
844    cache_config: CacheHierarchyConfig,
845    /// Gate operation statistics
846    operation_stats: HashMap<String, CacheOperationStats>,
847}
848
849impl CacheOptimizedGateManager {
850    /// Create a new cache-optimized gate manager
851    pub fn new(cache_config: CacheHierarchyConfig) -> Self {
852        Self {
853            cache_config,
854            operation_stats: HashMap::new(),
855        }
856    }
857
858    /// Execute a quantum gate with cache optimization
859    pub fn execute_gate(
860        &mut self,
861        state_vector: &mut CacheOptimizedStateVector,
862        gate_name: &str,
863        target_qubits: &[usize],
864        gate_matrix: &Array2<Complex64>,
865    ) -> Result<CacheOperationStats> {
866        let start_time = Instant::now();
867
868        match target_qubits.len() {
869            1 => {
870                state_vector
871                    .apply_single_qubit_gate_cache_optimized(target_qubits[0], gate_matrix)?;
872            }
873            2 => {
874                // Two-qubit gate implementation would go here
875                return Err(SimulatorError::NotImplemented(
876                    "Two-qubit cache-optimized gates not implemented".to_string(),
877                ));
878            }
879            _ => {
880                return Err(SimulatorError::InvalidParameter(
881                    "Only single and two-qubit gates supported".to_string(),
882                ));
883            }
884        }
885
886        let execution_time = start_time.elapsed();
887        let cache_stats = state_vector.get_cache_stats()?;
888
889        let operation_stats = CacheOperationStats {
890            gate_name: gate_name.to_string(),
891            execution_time,
892            cache_hit_rate: cache_stats.cache_hit_rate,
893            spatial_locality: cache_stats.spatial_locality,
894            temporal_locality: cache_stats.temporal_locality,
895            memory_accesses: cache_stats.total_cache_lines_accessed,
896        };
897
898        self.operation_stats
899            .insert(gate_name.to_string(), operation_stats.clone());
900
901        Ok(operation_stats)
902    }
903
904    /// Get comprehensive operation statistics
905    pub fn get_operation_statistics(&self) -> HashMap<String, CacheOperationStats> {
906        self.operation_stats.clone()
907    }
908}
909
910/// Statistics for cache-optimized gate operations
911#[derive(Debug, Clone)]
912pub struct CacheOperationStats {
913    /// Name of the gate operation
914    pub gate_name: String,
915    /// Total execution time
916    pub execution_time: Duration,
917    /// Cache hit rate during operation
918    pub cache_hit_rate: f64,
919    /// Spatial locality score
920    pub spatial_locality: f64,
921    /// Temporal locality score
922    pub temporal_locality: f64,
923    /// Number of memory accesses
924    pub memory_accesses: usize,
925}
926
927#[cfg(test)]
928mod tests {
929    use super::*;
930    use ndarray::Array2;
931
932    #[test]
933    fn test_cache_optimized_state_vector_creation() {
934        let cache_config = CacheHierarchyConfig::default();
935        let memory_config = MemoryOptimizationConfig::default();
936
937        let state_vector = CacheOptimizedStateVector::new(
938            3,
939            CacheOptimizedLayout::Blocked,
940            cache_config,
941            memory_config,
942        )
943        .unwrap();
944
945        assert_eq!(state_vector.num_qubits(), 3);
946        assert_eq!(state_vector.data().len(), 8);
947        assert_eq!(state_vector.layout(), CacheOptimizedLayout::Blocked);
948    }
949
950    #[test]
951    fn test_blocked_layout_indices() {
952        let indices = CacheOptimizedStateVector::generate_blocked_indices(16).unwrap();
953        assert_eq!(indices.len(), 16);
954
955        // Should maintain all indices
956        let mut sorted_indices = indices.clone();
957        sorted_indices.sort();
958        assert_eq!(sorted_indices, (0..16).collect::<Vec<_>>());
959    }
960
961    #[test]
962    fn test_z_order_layout() {
963        let indices = CacheOptimizedStateVector::generate_z_order_indices(16).unwrap();
964        assert_eq!(indices.len(), 16);
965    }
966
967    #[test]
968    fn test_hilbert_curve_layout() {
969        let indices = CacheOptimizedStateVector::generate_hilbert_indices(16).unwrap();
970        assert_eq!(indices.len(), 16);
971    }
972
973    #[test]
974    fn test_bit_reversal_layout() {
975        let indices = CacheOptimizedStateVector::generate_bit_reversal_indices(8).unwrap();
976        assert_eq!(indices.len(), 8);
977
978        // Check that bit reversal is working
979        assert_eq!(indices[1], 4); // 001 -> 100
980        assert_eq!(indices[2], 2); // 010 -> 010
981        assert_eq!(indices[3], 6); // 011 -> 110
982    }
983
984    #[test]
985    fn test_single_qubit_gate_application() {
986        let cache_config = CacheHierarchyConfig::default();
987        let memory_config = MemoryOptimizationConfig::default();
988
989        let mut state_vector = CacheOptimizedStateVector::new(
990            2,
991            CacheOptimizedLayout::Linear,
992            cache_config,
993            memory_config,
994        )
995        .unwrap();
996
997        // Pauli-X gate
998        let gate_matrix = Array2::from_shape_vec(
999            (2, 2),
1000            vec![
1001                Complex64::new(0.0, 0.0),
1002                Complex64::new(1.0, 0.0),
1003                Complex64::new(1.0, 0.0),
1004                Complex64::new(0.0, 0.0),
1005            ],
1006        )
1007        .unwrap();
1008
1009        state_vector
1010            .apply_single_qubit_gate_cache_optimized(0, &gate_matrix)
1011            .unwrap();
1012
1013        // Check that state transformation occurred
1014        let cache_stats = state_vector.get_cache_stats().unwrap();
1015        assert!(cache_stats.total_cache_lines_accessed > 0);
1016    }
1017
1018    #[test]
1019    fn test_cache_statistics() {
1020        let cache_config = CacheHierarchyConfig::default();
1021        let memory_config = MemoryOptimizationConfig::default();
1022
1023        let state_vector = CacheOptimizedStateVector::new(
1024            3,
1025            CacheOptimizedLayout::Blocked,
1026            cache_config,
1027            memory_config,
1028        )
1029        .unwrap();
1030
1031        let stats = state_vector.get_cache_stats().unwrap();
1032        assert!(stats.cache_hit_rate >= 0.0 && stats.cache_hit_rate <= 1.0);
1033        assert!(stats.spatial_locality >= 0.0 && stats.spatial_locality <= 1.0);
1034        assert!(stats.temporal_locality >= 0.0 && stats.temporal_locality <= 1.0);
1035    }
1036
1037    #[test]
1038    fn test_layout_adaptation() {
1039        let cache_config = CacheHierarchyConfig::default();
1040        let memory_config = MemoryOptimizationConfig::default();
1041
1042        let mut state_vector = CacheOptimizedStateVector::new(
1043            3,
1044            CacheOptimizedLayout::Linear,
1045            cache_config,
1046            memory_config,
1047        )
1048        .unwrap();
1049
1050        let adaptation_result = state_vector.adapt_cache_layout().unwrap();
1051
1052        // Adaptation may or may not occur based on access patterns
1053        assert!(adaptation_result.performance_before >= 0.0);
1054        assert!(adaptation_result.adaptation_overhead >= Duration::from_nanos(0));
1055    }
1056
1057    #[test]
1058    fn test_cache_optimized_gate_manager() {
1059        let cache_config = CacheHierarchyConfig::default();
1060        let memory_config = MemoryOptimizationConfig::default();
1061
1062        let mut manager = CacheOptimizedGateManager::new(cache_config.clone());
1063        let mut state_vector = CacheOptimizedStateVector::new(
1064            2,
1065            CacheOptimizedLayout::Blocked,
1066            cache_config,
1067            memory_config,
1068        )
1069        .unwrap();
1070
1071        // Hadamard gate
1072        let gate_matrix = Array2::from_shape_vec(
1073            (2, 2),
1074            vec![
1075                Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1076                Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1077                Complex64::new(1.0 / 2.0_f64.sqrt(), 0.0),
1078                Complex64::new(-1.0 / 2.0_f64.sqrt(), 0.0),
1079            ],
1080        )
1081        .unwrap();
1082
1083        let stats = manager
1084            .execute_gate(&mut state_vector, "H", &[0], &gate_matrix)
1085            .unwrap();
1086
1087        assert_eq!(stats.gate_name, "H");
1088        assert!(stats.execution_time > Duration::from_nanos(0));
1089        assert!(stats.cache_hit_rate >= 0.0 && stats.cache_hit_rate <= 1.0);
1090    }
1091
1092    #[test]
1093    fn test_morton_encoding() {
1094        let encoded = CacheOptimizedStateVector::morton_encode_2d(5, 2); // (1, 1) in 2 bits
1095        assert!(encoded < 16); // Should be within 4-bit range
1096    }
1097
1098    #[test]
1099    fn test_hilbert_coordinate_conversion() {
1100        let (x, y) = CacheOptimizedStateVector::hilbert_index_to_xy(3, 2);
1101        assert!(x < 4 && y < 4); // Should be within 2^2 x 2^2 grid
1102    }
1103
1104    #[test]
1105    fn test_stride_detection() {
1106        let accesses = vec![&0, &4, &8, &12, &16];
1107        let strides = CacheOptimizedStateVector::detect_strides(&accesses);
1108        assert!(strides.contains(&4)); // Should detect stride of 4
1109    }
1110}