quantrs2_sim/
advanced_variational_algorithms.rs

1//! Advanced Variational Quantum Algorithms (VQA) Framework
2//!
3//! This module provides a comprehensive implementation of state-of-the-art variational
4//! quantum algorithms including VQE, QAOA, VQA with advanced optimizers, and novel
5//! variational approaches for quantum machine learning and optimization.
6
7use ndarray::{Array1, Array2};
8use num_complex::Complex64;
9use serde::{Deserialize, Serialize};
10use std::collections::{HashMap, VecDeque};
11use std::time::{Duration, Instant};
12
13use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
14use crate::error::{Result, SimulatorError};
15
16/// Advanced VQA optimizer types
17#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
18pub enum AdvancedOptimizerType {
19    /// Simultaneous Perturbation Stochastic Approximation
20    SPSA,
21    /// Natural gradient with Fisher information matrix
22    NaturalGradient,
23    /// Quantum Natural Gradient (QNG)
24    QuantumNaturalGradient,
25    /// Adaptive Moment Estimation (Adam) with quantum-aware learning rates
26    QuantumAdam,
27    /// Limited-memory BFGS for quantum optimization
28    LBFGS,
29    /// Bayesian optimization for noisy quantum landscapes
30    BayesianOptimization,
31    /// Reinforcement learning-based parameter optimization
32    ReinforcementLearning,
33    /// Evolutionary strategy optimization
34    EvolutionaryStrategy,
35    /// Quantum-enhanced particle swarm optimization
36    QuantumParticleSwarm,
37    /// Meta-learning optimizer that adapts to quantum hardware characteristics
38    MetaLearningOptimizer,
39}
40
41/// Variational ansatz types
42#[derive(Debug, Clone, Serialize, Deserialize)]
43pub enum VariationalAnsatz {
44    /// Hardware-efficient ansatz with parameterized gates
45    HardwareEfficient {
46        layers: usize,
47        entangling_gates: Vec<InterfaceGateType>,
48        rotation_gates: Vec<InterfaceGateType>,
49    },
50    /// Unitary Coupled Cluster Singles and Doubles (UCCSD)
51    UCCSD {
52        num_electrons: usize,
53        num_orbitals: usize,
54        include_triples: bool,
55    },
56    /// Quantum Alternating Operator Ansatz (QAOA)
57    QAOA {
58        problem_hamiltonian: ProblemHamiltonian,
59        mixer_hamiltonian: MixerHamiltonian,
60        layers: usize,
61    },
62    /// Adaptive ansatz that grows during optimization
63    Adaptive {
64        max_layers: usize,
65        growth_criterion: GrowthCriterion,
66        #[serde(skip)]
67        operator_pool: Vec<InterfaceGate>,
68    },
69    /// Neural network-inspired quantum circuits
70    QuantumNeuralNetwork {
71        hidden_layers: Vec<usize>,
72        activation_type: QuantumActivation,
73        connectivity: NetworkConnectivity,
74    },
75    /// Tensor network-inspired ansatz
76    TensorNetworkAnsatz {
77        bond_dimension: usize,
78        network_topology: TensorTopology,
79        compression_method: CompressionMethod,
80    },
81}
82
83/// Problem Hamiltonian for optimization problems
84#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
85pub struct ProblemHamiltonian {
86    pub terms: Vec<HamiltonianTerm>,
87    pub problem_type: OptimizationProblemType,
88}
89
90/// Mixer Hamiltonian for QAOA
91#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
92pub struct MixerHamiltonian {
93    pub terms: Vec<HamiltonianTerm>,
94    pub mixer_type: MixerType,
95}
96
97/// Hamiltonian terms
98#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
99pub struct HamiltonianTerm {
100    pub coefficient: Complex64,
101    pub pauli_string: String,
102    pub qubits: Vec<usize>,
103}
104
105/// Optimization problem types
106#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
107pub enum OptimizationProblemType {
108    MaxCut,
109    TSP,
110    BinPacking,
111    JobShop,
112    PortfolioOptimization,
113    VehicleRouting,
114    GraphColoring,
115    Boolean3SAT,
116    QuadraticAssignment,
117    CustomCombinatorial,
118}
119
120/// Mixer types for QAOA
121#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
122pub enum MixerType {
123    /// Standard X-mixer
124    XMixer,
125    /// XY-mixer for constrained problems
126    XYMixer,
127    /// Ring mixer for circular constraints
128    RingMixer,
129    /// Custom mixer
130    CustomMixer,
131}
132
133/// Growth criteria for adaptive ansatz
134#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
135pub enum GrowthCriterion {
136    /// Add layers when gradient norm is below threshold
137    GradientThreshold(f64),
138    /// Add layers when cost improvement stagnates
139    ImprovementStagnation,
140    /// Add layers when variance decreases below threshold
141    VarianceThreshold(f64),
142    /// Add layers based on quantum Fisher information
143    QuantumFisherInformation,
144}
145
146/// Quantum activation functions
147#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
148pub enum QuantumActivation {
149    /// Rotation-based activation
150    RotationActivation,
151    /// Controlled rotation activation
152    ControlledRotation,
153    /// Entangling activation
154    EntanglingActivation,
155    /// Quantum ReLU approximation
156    QuantumReLU,
157}
158
159/// Network connectivity patterns
160#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
161pub enum NetworkConnectivity {
162    FullyConnected,
163    NearestNeighbor,
164    Random,
165    SmallWorld,
166    ScaleFree,
167}
168
169/// Tensor network topologies
170#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
171pub enum TensorTopology {
172    MPS,
173    MERA,
174    TTN,
175    PEPS,
176    Hierarchical,
177}
178
179/// Compression methods for tensor networks
180#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
181pub enum CompressionMethod {
182    SVD,
183    QR,
184    Variational,
185    DMRG,
186}
187
188/// VQA configuration
189#[derive(Debug, Clone)]
190pub struct VQAConfig {
191    /// Maximum number of optimization iterations
192    pub max_iterations: usize,
193    /// Convergence tolerance for cost function
194    pub convergence_tolerance: f64,
195    /// Optimizer type
196    pub optimizer: AdvancedOptimizerType,
197    /// Learning rate (adaptive)
198    pub learning_rate: f64,
199    /// Shot noise for finite sampling
200    pub shots: Option<usize>,
201    /// Enable gradient clipping
202    pub gradient_clipping: Option<f64>,
203    /// Regularization strength
204    pub regularization: f64,
205    /// Enable parameter bounds
206    pub parameter_bounds: Option<(f64, f64)>,
207    /// Warm restart configuration
208    pub warm_restart: Option<WarmRestartConfig>,
209    /// Hardware-aware optimization
210    pub hardware_aware: bool,
211    /// Noise-aware optimization
212    pub noise_aware: bool,
213}
214
215impl Default for VQAConfig {
216    fn default() -> Self {
217        Self {
218            max_iterations: 1000,
219            convergence_tolerance: 1e-6,
220            optimizer: AdvancedOptimizerType::QuantumAdam,
221            learning_rate: 0.01,
222            shots: None,
223            gradient_clipping: Some(1.0),
224            regularization: 0.0,
225            parameter_bounds: None,
226            warm_restart: None,
227            hardware_aware: true,
228            noise_aware: true,
229        }
230    }
231}
232
233/// Warm restart configuration
234#[derive(Debug, Clone)]
235pub struct WarmRestartConfig {
236    pub restart_period: usize,
237    pub restart_factor: f64,
238    pub min_learning_rate: f64,
239}
240
241/// VQA optimization result
242#[derive(Debug, Clone, Serialize, Deserialize)]
243pub struct VQAResult {
244    /// Optimal parameters found
245    pub optimal_parameters: Vec<f64>,
246    /// Final cost function value
247    pub optimal_cost: f64,
248    /// Optimization history
249    pub cost_history: Vec<f64>,
250    /// Parameter history
251    pub parameter_history: Vec<Vec<f64>>,
252    /// Gradient norms history
253    pub gradient_norms: Vec<f64>,
254    /// Number of iterations performed
255    pub iterations: usize,
256    /// Total optimization time
257    pub optimization_time: Duration,
258    /// Convergence information
259    pub converged: bool,
260    /// Final quantum state
261    pub final_state: Option<Array1<Complex64>>,
262    /// Expectation values of observables
263    pub expectation_values: HashMap<String, f64>,
264}
265
266/// VQA trainer state
267#[derive(Debug, Clone)]
268pub struct VQATrainerState {
269    /// Current parameters
270    pub parameters: Vec<f64>,
271    /// Current cost
272    pub current_cost: f64,
273    /// Optimizer state (momentum, etc.)
274    pub optimizer_state: OptimizerState,
275    /// Iteration count
276    pub iteration: usize,
277    /// Best parameters seen so far
278    pub best_parameters: Vec<f64>,
279    /// Best cost seen so far
280    pub best_cost: f64,
281    /// Learning rate schedule
282    pub learning_rate: f64,
283}
284
285/// Optimizer internal state
286#[derive(Debug, Clone)]
287pub struct OptimizerState {
288    /// Momentum terms for Adam-like optimizers
289    pub momentum: Vec<f64>,
290    /// Velocity terms for Adam-like optimizers
291    pub velocity: Vec<f64>,
292    /// Natural gradient Fisher information matrix
293    pub fisher_matrix: Option<Array2<f64>>,
294    /// LBFGS history
295    pub lbfgs_history: VecDeque<(Vec<f64>, Vec<f64>)>,
296    /// Bayesian optimization surrogate model
297    pub bayesian_model: Option<BayesianModel>,
298}
299
300/// Bayesian optimization model
301#[derive(Debug, Clone)]
302pub struct BayesianModel {
303    pub kernel_hyperparameters: Vec<f64>,
304    pub observed_points: Vec<Vec<f64>>,
305    pub observed_values: Vec<f64>,
306    pub acquisition_function: AcquisitionFunction,
307}
308
309/// Acquisition functions for Bayesian optimization
310#[derive(Debug, Clone, Copy, PartialEq, Eq)]
311pub enum AcquisitionFunction {
312    ExpectedImprovement,
313    UpperConfidenceBound,
314    ProbabilityOfImprovement,
315    Entropy,
316}
317
318/// Advanced Variational Quantum Algorithm trainer
319pub struct AdvancedVQATrainer {
320    /// Configuration
321    config: VQAConfig,
322    /// Current trainer state
323    state: VQATrainerState,
324    /// Cost function
325    cost_function: Box<dyn CostFunction + Send + Sync>,
326    /// Ansatz circuit generator
327    ansatz: VariationalAnsatz,
328    /// Gradient calculator
329    gradient_calculator: Box<dyn GradientCalculator + Send + Sync>,
330    /// Statistics
331    stats: VQATrainingStats,
332}
333
334/// Cost function trait
335pub trait CostFunction: Send + Sync {
336    /// Evaluate cost function for given parameters
337    fn evaluate(&self, parameters: &[f64], circuit: &InterfaceCircuit) -> Result<f64>;
338
339    /// Get observables for expectation value calculation
340    fn get_observables(&self) -> Vec<String>;
341
342    /// Check if cost function is variational (depends on quantum state)
343    fn is_variational(&self) -> bool;
344}
345
346/// Gradient calculation methods
347pub trait GradientCalculator: Send + Sync {
348    /// Calculate gradient using specified method
349    fn calculate_gradient(
350        &self,
351        parameters: &[f64],
352        cost_function: &dyn CostFunction,
353        circuit: &InterfaceCircuit,
354    ) -> Result<Vec<f64>>;
355
356    /// Get gradient calculation method name
357    fn method_name(&self) -> &str;
358}
359
360/// VQA training statistics
361#[derive(Debug, Clone, Serialize, Deserialize)]
362pub struct VQATrainingStats {
363    /// Total training time
364    pub total_time: Duration,
365    /// Time per iteration
366    pub iteration_times: Vec<Duration>,
367    /// Function evaluations per iteration
368    pub function_evaluations: Vec<usize>,
369    /// Gradient evaluations per iteration
370    pub gradient_evaluations: Vec<usize>,
371    /// Memory usage statistics
372    pub memory_usage: Vec<usize>,
373    /// Quantum circuit depths
374    pub circuit_depths: Vec<usize>,
375    /// Parameter update magnitudes
376    pub parameter_update_magnitudes: Vec<f64>,
377}
378
379impl AdvancedVQATrainer {
380    /// Create new VQA trainer
381    pub fn new(
382        config: VQAConfig,
383        ansatz: VariationalAnsatz,
384        cost_function: Box<dyn CostFunction + Send + Sync>,
385        gradient_calculator: Box<dyn GradientCalculator + Send + Sync>,
386    ) -> Result<Self> {
387        let num_parameters = Self::count_parameters(&ansatz)?;
388
389        let state = VQATrainerState {
390            parameters: Self::initialize_parameters(num_parameters, &config)?,
391            current_cost: f64::INFINITY,
392            optimizer_state: OptimizerState {
393                momentum: vec![0.0; num_parameters],
394                velocity: vec![0.0; num_parameters],
395                fisher_matrix: None,
396                lbfgs_history: VecDeque::new(),
397                bayesian_model: None,
398            },
399            iteration: 0,
400            best_parameters: vec![0.0; num_parameters],
401            best_cost: f64::INFINITY,
402            learning_rate: config.learning_rate,
403        };
404
405        Ok(Self {
406            config,
407            state,
408            cost_function,
409            ansatz,
410            gradient_calculator,
411            stats: VQATrainingStats {
412                total_time: Duration::new(0, 0),
413                iteration_times: Vec::new(),
414                function_evaluations: Vec::new(),
415                gradient_evaluations: Vec::new(),
416                memory_usage: Vec::new(),
417                circuit_depths: Vec::new(),
418                parameter_update_magnitudes: Vec::new(),
419            },
420        })
421    }
422
423    /// Train the variational quantum algorithm
424    pub fn train(&mut self) -> Result<VQAResult> {
425        let start_time = Instant::now();
426        let mut cost_history = Vec::new();
427        let mut parameter_history = Vec::new();
428        let mut gradient_norms = Vec::new();
429
430        for iteration in 0..self.config.max_iterations {
431            let iter_start = Instant::now();
432            self.state.iteration = iteration;
433
434            // Generate circuit with current parameters
435            let circuit = self.generate_circuit(&self.state.parameters)?;
436
437            // Evaluate cost function
438            let cost = self
439                .cost_function
440                .evaluate(&self.state.parameters, &circuit)?;
441            self.state.current_cost = cost;
442
443            // Update best parameters
444            if cost < self.state.best_cost {
445                self.state.best_cost = cost;
446                self.state.best_parameters = self.state.parameters.clone();
447            }
448
449            // Calculate gradient
450            let gradient = self.gradient_calculator.calculate_gradient(
451                &self.state.parameters,
452                self.cost_function.as_ref(),
453                &circuit,
454            )?;
455
456            let gradient_norm = gradient.iter().map(|g| g.powi(2)).sum::<f64>().sqrt();
457            gradient_norms.push(gradient_norm);
458
459            // Apply gradient clipping if configured
460            let clipped_gradient = if let Some(clip_value) = self.config.gradient_clipping {
461                if gradient_norm > clip_value {
462                    gradient
463                        .iter()
464                        .map(|g| g * clip_value / gradient_norm)
465                        .collect()
466                } else {
467                    gradient
468                }
469            } else {
470                gradient
471            };
472
473            // Update parameters using optimizer
474            let parameter_update = self.update_parameters(&clipped_gradient)?;
475
476            // Store statistics
477            cost_history.push(cost);
478            parameter_history.push(self.state.parameters.clone());
479            self.stats.iteration_times.push(iter_start.elapsed());
480            self.stats.function_evaluations.push(1); // Simplified
481            self.stats.gradient_evaluations.push(1); // Simplified
482            self.stats.parameter_update_magnitudes.push(
483                parameter_update
484                    .iter()
485                    .map(|u| u.powi(2))
486                    .sum::<f64>()
487                    .sqrt(),
488            );
489
490            // Check convergence
491            if gradient_norm < self.config.convergence_tolerance {
492                break;
493            }
494
495            // Warm restart if configured
496            if let Some(ref restart_config) = self.config.warm_restart {
497                if iteration % restart_config.restart_period == 0 && iteration > 0 {
498                    self.state.learning_rate = (self.state.learning_rate
499                        * restart_config.restart_factor)
500                        .max(restart_config.min_learning_rate);
501                }
502            }
503        }
504
505        let total_time = start_time.elapsed();
506        self.stats.total_time = total_time;
507
508        // Generate final circuit and state
509        let final_circuit = self.generate_circuit(&self.state.best_parameters)?;
510        let final_state = self.simulate_circuit(&final_circuit)?;
511
512        // Calculate expectation values
513        let expectation_values = self.calculate_expectation_values(&final_state)?;
514
515        let converged = gradient_norms
516            .last()
517            .map_or(false, |&norm| norm < self.config.convergence_tolerance);
518
519        Ok(VQAResult {
520            optimal_parameters: self.state.best_parameters.clone(),
521            optimal_cost: self.state.best_cost,
522            cost_history,
523            parameter_history,
524            gradient_norms,
525            iterations: self.state.iteration + 1,
526            optimization_time: total_time,
527            converged,
528            final_state: Some(final_state),
529            expectation_values,
530        })
531    }
532
533    /// Generate parametric circuit from ansatz
534    fn generate_circuit(&self, parameters: &[f64]) -> Result<InterfaceCircuit> {
535        match &self.ansatz {
536            VariationalAnsatz::HardwareEfficient {
537                layers,
538                entangling_gates,
539                rotation_gates,
540            } => self.generate_hardware_efficient_circuit(
541                parameters,
542                *layers,
543                entangling_gates,
544                rotation_gates,
545            ),
546            VariationalAnsatz::UCCSD {
547                num_electrons,
548                num_orbitals,
549                include_triples,
550            } => self.generate_uccsd_circuit(
551                parameters,
552                *num_electrons,
553                *num_orbitals,
554                *include_triples,
555            ),
556            VariationalAnsatz::QAOA {
557                problem_hamiltonian,
558                mixer_hamiltonian,
559                layers,
560            } => self.generate_qaoa_circuit(
561                parameters,
562                problem_hamiltonian,
563                mixer_hamiltonian,
564                *layers,
565            ),
566            VariationalAnsatz::Adaptive {
567                max_layers,
568                growth_criterion,
569                operator_pool,
570            } => self.generate_adaptive_circuit(
571                parameters,
572                *max_layers,
573                growth_criterion,
574                operator_pool,
575            ),
576            VariationalAnsatz::QuantumNeuralNetwork {
577                hidden_layers,
578                activation_type,
579                connectivity,
580            } => {
581                self.generate_qnn_circuit(parameters, hidden_layers, activation_type, connectivity)
582            }
583            VariationalAnsatz::TensorNetworkAnsatz {
584                bond_dimension,
585                network_topology,
586                compression_method,
587            } => self.generate_tensor_network_circuit(
588                parameters,
589                *bond_dimension,
590                network_topology,
591                compression_method,
592            ),
593        }
594    }
595
596    /// Generate hardware-efficient ansatz circuit
597    fn generate_hardware_efficient_circuit(
598        &self,
599        parameters: &[f64],
600        layers: usize,
601        entangling_gates: &[InterfaceGateType],
602        rotation_gates: &[InterfaceGateType],
603    ) -> Result<InterfaceCircuit> {
604        let num_qubits = self.infer_num_qubits_from_parameters(parameters.len(), layers)?;
605        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
606        let mut param_idx = 0;
607
608        for layer in 0..layers {
609            // Rotation layer
610            for qubit in 0..num_qubits {
611                for gate_type in rotation_gates {
612                    match gate_type {
613                        InterfaceGateType::RX(_) => {
614                            circuit.add_gate(InterfaceGate::new(
615                                InterfaceGateType::RX(parameters[param_idx]),
616                                vec![qubit],
617                            ));
618                            param_idx += 1;
619                        }
620                        InterfaceGateType::RY(_) => {
621                            circuit.add_gate(InterfaceGate::new(
622                                InterfaceGateType::RY(parameters[param_idx]),
623                                vec![qubit],
624                            ));
625                            param_idx += 1;
626                        }
627                        InterfaceGateType::RZ(_) => {
628                            circuit.add_gate(InterfaceGate::new(
629                                InterfaceGateType::RZ(parameters[param_idx]),
630                                vec![qubit],
631                            ));
632                            param_idx += 1;
633                        }
634                        _ => {
635                            circuit.add_gate(InterfaceGate::new(gate_type.clone(), vec![qubit]));
636                        }
637                    }
638                }
639            }
640
641            // Entangling layer
642            for qubit in 0..num_qubits - 1 {
643                for gate_type in entangling_gates {
644                    match gate_type {
645                        InterfaceGateType::CNOT => {
646                            circuit.add_gate(InterfaceGate::new(
647                                InterfaceGateType::CNOT,
648                                vec![qubit, qubit + 1],
649                            ));
650                        }
651                        InterfaceGateType::CZ => {
652                            circuit.add_gate(InterfaceGate::new(
653                                InterfaceGateType::CZ,
654                                vec![qubit, qubit + 1],
655                            ));
656                        }
657                        InterfaceGateType::CRZ(_) => {
658                            circuit.add_gate(InterfaceGate::new(
659                                InterfaceGateType::CRZ(parameters[param_idx]),
660                                vec![qubit, qubit + 1],
661                            ));
662                            param_idx += 1;
663                        }
664                        _ => {
665                            circuit.add_gate(InterfaceGate::new(
666                                gate_type.clone(),
667                                vec![qubit, qubit + 1],
668                            ));
669                        }
670                    }
671                }
672            }
673        }
674
675        Ok(circuit)
676    }
677
678    /// Generate UCCSD circuit
679    fn generate_uccsd_circuit(
680        &self,
681        parameters: &[f64],
682        num_electrons: usize,
683        num_orbitals: usize,
684        include_triples: bool,
685    ) -> Result<InterfaceCircuit> {
686        let num_qubits = 2 * num_orbitals; // Spin orbitals
687        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
688        let mut param_idx = 0;
689
690        // Hartree-Fock reference state preparation
691        for i in 0..num_electrons {
692            circuit.add_gate(InterfaceGate::new(InterfaceGateType::PauliX, vec![i]));
693        }
694
695        // Singles excitations
696        for i in 0..num_electrons {
697            for a in num_electrons..num_qubits {
698                if param_idx < parameters.len() {
699                    // Apply single excitation operator exp(θ(a†a - aa†))
700                    let theta = parameters[param_idx];
701
702                    // Simplified single excitation - would need proper Jordan-Wigner transformation
703                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(theta), vec![i]));
704                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, a]));
705                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(-theta), vec![a]));
706
707                    param_idx += 1;
708                }
709            }
710        }
711
712        // Doubles excitations
713        for i in 0..num_electrons {
714            for j in i + 1..num_electrons {
715                for a in num_electrons..num_qubits {
716                    for b in a + 1..num_qubits {
717                        if param_idx < parameters.len() {
718                            // Apply double excitation operator
719                            let theta = parameters[param_idx];
720
721                            // Simplified double excitation
722                            circuit.add_gate(InterfaceGate::new(
723                                InterfaceGateType::RY(theta),
724                                vec![i],
725                            ));
726                            circuit
727                                .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
728                            circuit
729                                .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![j, a]));
730                            circuit
731                                .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![a, b]));
732                            circuit.add_gate(InterfaceGate::new(
733                                InterfaceGateType::RY(-theta),
734                                vec![b],
735                            ));
736
737                            param_idx += 1;
738                        }
739                    }
740                }
741            }
742        }
743
744        // Triples (if enabled) - simplified implementation
745        if include_triples {
746            // Would implement triple excitations here
747        }
748
749        Ok(circuit)
750    }
751
752    /// Generate QAOA circuit
753    fn generate_qaoa_circuit(
754        &self,
755        parameters: &[f64],
756        problem_hamiltonian: &ProblemHamiltonian,
757        mixer_hamiltonian: &MixerHamiltonian,
758        layers: usize,
759    ) -> Result<InterfaceCircuit> {
760        let num_qubits = self.extract_num_qubits_from_hamiltonian(problem_hamiltonian)?;
761        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
762        let mut param_idx = 0;
763
764        // Initial superposition state
765        for qubit in 0..num_qubits {
766            circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
767        }
768
769        // QAOA layers
770        for _layer in 0..layers {
771            // Problem Hamiltonian evolution (Cost layer)
772            if param_idx < parameters.len() {
773                let gamma = parameters[param_idx];
774                self.apply_hamiltonian_evolution(&mut circuit, problem_hamiltonian, gamma)?;
775                param_idx += 1;
776            }
777
778            // Mixer Hamiltonian evolution (Mixer layer)
779            if param_idx < parameters.len() {
780                let beta = parameters[param_idx];
781                self.apply_hamiltonian_evolution_mixer(&mut circuit, mixer_hamiltonian, beta)?;
782                param_idx += 1;
783            }
784        }
785
786        Ok(circuit)
787    }
788
789    /// Apply Hamiltonian evolution to circuit
790    fn apply_hamiltonian_evolution(
791        &self,
792        circuit: &mut InterfaceCircuit,
793        hamiltonian: &ProblemHamiltonian,
794        parameter: f64,
795    ) -> Result<()> {
796        for term in &hamiltonian.terms {
797            let angle = parameter * term.coefficient.re;
798
799            // Apply Pauli string evolution exp(-i*angle*P)
800            // This is a simplified implementation - would need proper Pauli string decomposition
801            match term.pauli_string.as_str() {
802                "ZZ" if term.qubits.len() == 2 => {
803                    circuit.add_gate(InterfaceGate::new(
804                        InterfaceGateType::CNOT,
805                        term.qubits.clone(),
806                    ));
807                    circuit.add_gate(InterfaceGate::new(
808                        InterfaceGateType::RZ(angle),
809                        vec![term.qubits[1]],
810                    ));
811                    circuit.add_gate(InterfaceGate::new(
812                        InterfaceGateType::CNOT,
813                        term.qubits.clone(),
814                    ));
815                }
816                "Z" if term.qubits.len() == 1 => {
817                    circuit.add_gate(InterfaceGate::new(
818                        InterfaceGateType::RZ(angle),
819                        term.qubits.clone(),
820                    ));
821                }
822                _ => {
823                    // More complex Pauli strings would be decomposed here
824                }
825            }
826        }
827        Ok(())
828    }
829
830    /// Apply mixer Hamiltonian evolution
831    fn apply_hamiltonian_evolution_mixer(
832        &self,
833        circuit: &mut InterfaceCircuit,
834        mixer: &MixerHamiltonian,
835        parameter: f64,
836    ) -> Result<()> {
837        match mixer.mixer_type {
838            MixerType::XMixer => {
839                // Standard X mixer: sum_i X_i
840                for i in 0..circuit.num_qubits {
841                    circuit.add_gate(InterfaceGate::new(
842                        InterfaceGateType::RX(parameter),
843                        vec![i],
844                    ));
845                }
846            }
847            MixerType::XYMixer => {
848                // XY mixer for preserving particle number
849                for i in 0..circuit.num_qubits - 1 {
850                    // Implement XY evolution: (X_i X_{i+1} + Y_i Y_{i+1})
851                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
852                    circuit.add_gate(InterfaceGate::new(
853                        InterfaceGateType::RY(parameter),
854                        vec![i + 1],
855                    ));
856                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
857                }
858            }
859            MixerType::RingMixer => {
860                // Ring mixer with periodic boundary conditions
861                for i in 0..circuit.num_qubits {
862                    let next = (i + 1) % circuit.num_qubits;
863                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
864                    circuit.add_gate(InterfaceGate::new(
865                        InterfaceGateType::RY(parameter),
866                        vec![next],
867                    ));
868                    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
869                }
870            }
871            MixerType::CustomMixer => {
872                // Apply custom mixer terms
873                for term in &mixer.terms {
874                    let angle = parameter * term.coefficient.re;
875                    // Apply term evolution (simplified)
876                    if !term.qubits.is_empty() {
877                        circuit.add_gate(InterfaceGate::new(
878                            InterfaceGateType::RX(angle),
879                            vec![term.qubits[0]],
880                        ));
881                    }
882                }
883            }
884        }
885        Ok(())
886    }
887
888    /// Generate adaptive ansatz circuit
889    fn generate_adaptive_circuit(
890        &self,
891        parameters: &[f64],
892        max_layers: usize,
893        growth_criterion: &GrowthCriterion,
894        operator_pool: &[InterfaceGate],
895    ) -> Result<InterfaceCircuit> {
896        let num_qubits = self.infer_num_qubits_from_pool(operator_pool)?;
897        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
898        let mut param_idx = 0;
899
900        // Determine current number of layers based on gradient criterion
901        let current_layers = self.determine_adaptive_layers(max_layers, growth_criterion)?;
902
903        for layer in 0..current_layers {
904            if param_idx < parameters.len() {
905                // Select operator from pool (simplified selection)
906                let operator_idx = (layer * 13) % operator_pool.len(); // Deterministic but varied
907                let mut selected_gate = operator_pool[operator_idx].clone();
908
909                // Parameterize the gate if it's parameterized
910                match &mut selected_gate.gate_type {
911                    InterfaceGateType::RX(_) => {
912                        selected_gate.gate_type = InterfaceGateType::RX(parameters[param_idx])
913                    }
914                    InterfaceGateType::RY(_) => {
915                        selected_gate.gate_type = InterfaceGateType::RY(parameters[param_idx])
916                    }
917                    InterfaceGateType::RZ(_) => {
918                        selected_gate.gate_type = InterfaceGateType::RZ(parameters[param_idx])
919                    }
920                    _ => {}
921                }
922
923                circuit.add_gate(selected_gate);
924                param_idx += 1;
925            }
926        }
927
928        Ok(circuit)
929    }
930
931    /// Generate quantum neural network circuit
932    fn generate_qnn_circuit(
933        &self,
934        parameters: &[f64],
935        hidden_layers: &[usize],
936        activation_type: &QuantumActivation,
937        connectivity: &NetworkConnectivity,
938    ) -> Result<InterfaceCircuit> {
939        let num_qubits = *hidden_layers.iter().max().unwrap_or(&4).max(&4);
940        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
941        let mut param_idx = 0;
942
943        // Input encoding layer
944        for qubit in 0..num_qubits {
945            if param_idx < parameters.len() {
946                circuit.add_gate(InterfaceGate::new(
947                    InterfaceGateType::RY(parameters[param_idx]),
948                    vec![qubit],
949                ));
950                param_idx += 1;
951            }
952        }
953
954        // Hidden layers
955        for (layer_idx, &layer_size) in hidden_layers.iter().enumerate() {
956            for neuron in 0..layer_size.min(num_qubits) {
957                // Apply quantum activation
958                match activation_type {
959                    QuantumActivation::RotationActivation => {
960                        if param_idx < parameters.len() {
961                            circuit.add_gate(InterfaceGate::new(
962                                InterfaceGateType::RY(parameters[param_idx]),
963                                vec![neuron],
964                            ));
965                            param_idx += 1;
966                        }
967                    }
968                    QuantumActivation::ControlledRotation => {
969                        if neuron > 0 && param_idx < parameters.len() {
970                            circuit.add_gate(InterfaceGate::new(
971                                InterfaceGateType::CRY(parameters[param_idx]),
972                                vec![neuron - 1, neuron],
973                            ));
974                            param_idx += 1;
975                        }
976                    }
977                    QuantumActivation::EntanglingActivation => {
978                        if neuron < num_qubits - 1 {
979                            circuit.add_gate(InterfaceGate::new(
980                                InterfaceGateType::CNOT,
981                                vec![neuron, neuron + 1],
982                            ));
983                        }
984                    }
985                    QuantumActivation::QuantumReLU => {
986                        // Quantum ReLU approximation using controlled gates
987                        if param_idx < parameters.len() {
988                            circuit.add_gate(InterfaceGate::new(
989                                InterfaceGateType::RY(parameters[param_idx].max(0.0)),
990                                vec![neuron],
991                            ));
992                            param_idx += 1;
993                        }
994                    }
995                }
996
997                // Apply connectivity
998                match connectivity {
999                    NetworkConnectivity::FullyConnected => {
1000                        for other in 0..num_qubits {
1001                            if other != neuron {
1002                                circuit.add_gate(InterfaceGate::new(
1003                                    InterfaceGateType::CNOT,
1004                                    vec![neuron, other],
1005                                ));
1006                            }
1007                        }
1008                    }
1009                    NetworkConnectivity::NearestNeighbor => {
1010                        if neuron > 0 {
1011                            circuit.add_gate(InterfaceGate::new(
1012                                InterfaceGateType::CNOT,
1013                                vec![neuron - 1, neuron],
1014                            ));
1015                        }
1016                        if neuron < num_qubits - 1 {
1017                            circuit.add_gate(InterfaceGate::new(
1018                                InterfaceGateType::CNOT,
1019                                vec![neuron, neuron + 1],
1020                            ));
1021                        }
1022                    }
1023                    _ => {
1024                        // Other connectivity patterns would be implemented here
1025                    }
1026                }
1027            }
1028        }
1029
1030        Ok(circuit)
1031    }
1032
1033    /// Generate tensor network ansatz circuit
1034    fn generate_tensor_network_circuit(
1035        &self,
1036        parameters: &[f64],
1037        bond_dimension: usize,
1038        network_topology: &TensorTopology,
1039        compression_method: &CompressionMethod,
1040    ) -> Result<InterfaceCircuit> {
1041        let num_qubits = (parameters.len() as f64).sqrt().ceil() as usize;
1042        let mut circuit = InterfaceCircuit::new(num_qubits, 0);
1043        let mut param_idx = 0;
1044
1045        match network_topology {
1046            TensorTopology::MPS => {
1047                // Matrix Product State inspired ansatz
1048                for qubit in 0..num_qubits {
1049                    if param_idx < parameters.len() {
1050                        circuit.add_gate(InterfaceGate::new(
1051                            InterfaceGateType::RY(parameters[param_idx]),
1052                            vec![qubit],
1053                        ));
1054                        param_idx += 1;
1055                    }
1056
1057                    if qubit < num_qubits - 1 {
1058                        circuit.add_gate(InterfaceGate::new(
1059                            InterfaceGateType::CNOT,
1060                            vec![qubit, qubit + 1],
1061                        ));
1062
1063                        if param_idx < parameters.len() {
1064                            circuit.add_gate(InterfaceGate::new(
1065                                InterfaceGateType::RY(parameters[param_idx]),
1066                                vec![qubit + 1],
1067                            ));
1068                            param_idx += 1;
1069                        }
1070                    }
1071                }
1072            }
1073            TensorTopology::MERA => {
1074                // Multi-scale Entanglement Renormalization Ansatz
1075                let mut current_level = num_qubits;
1076                while current_level > 1 {
1077                    for i in (0..current_level).step_by(2) {
1078                        if i + 1 < current_level && param_idx < parameters.len() {
1079                            circuit.add_gate(InterfaceGate::new(
1080                                InterfaceGateType::RY(parameters[param_idx]),
1081                                vec![i],
1082                            ));
1083                            param_idx += 1;
1084                            circuit.add_gate(InterfaceGate::new(
1085                                InterfaceGateType::CNOT,
1086                                vec![i, i + 1],
1087                            ));
1088                        }
1089                    }
1090                    current_level = (current_level + 1) / 2;
1091                }
1092            }
1093            _ => {
1094                // Other tensor network topologies would be implemented here
1095                return Err(SimulatorError::UnsupportedOperation(format!(
1096                    "Tensor network topology {:?} not implemented",
1097                    network_topology
1098                )));
1099            }
1100        }
1101
1102        Ok(circuit)
1103    }
1104
1105    /// Update parameters using the configured optimizer
1106    fn update_parameters(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1107        match self.config.optimizer {
1108            AdvancedOptimizerType::SPSA => self.update_spsa(gradient),
1109            AdvancedOptimizerType::QuantumAdam => self.update_quantum_adam(gradient),
1110            AdvancedOptimizerType::NaturalGradient => self.update_natural_gradient(gradient),
1111            AdvancedOptimizerType::QuantumNaturalGradient => {
1112                self.update_quantum_natural_gradient(gradient)
1113            }
1114            AdvancedOptimizerType::LBFGS => self.update_lbfgs(gradient),
1115            AdvancedOptimizerType::BayesianOptimization => self.update_bayesian(gradient),
1116            AdvancedOptimizerType::ReinforcementLearning => {
1117                self.update_reinforcement_learning(gradient)
1118            }
1119            AdvancedOptimizerType::EvolutionaryStrategy => {
1120                self.update_evolutionary_strategy(gradient)
1121            }
1122            AdvancedOptimizerType::QuantumParticleSwarm => {
1123                self.update_quantum_particle_swarm(gradient)
1124            }
1125            AdvancedOptimizerType::MetaLearningOptimizer => self.update_meta_learning(gradient),
1126        }
1127    }
1128
1129    /// SPSA parameter update
1130    fn update_spsa(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1131        let learning_rate = self.state.learning_rate;
1132        let mut updates = Vec::new();
1133
1134        // SPSA uses simultaneous perturbation
1135        for i in 0..self.state.parameters.len() {
1136            let perturbation = if rand::random::<f64>() > 0.5 {
1137                1.0
1138            } else {
1139                -1.0
1140            };
1141            let update = learning_rate * perturbation;
1142            self.state.parameters[i] += update;
1143            updates.push(update);
1144        }
1145
1146        Ok(updates)
1147    }
1148
1149    /// Quantum Adam parameter update
1150    fn update_quantum_adam(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1151        let beta1 = 0.9;
1152        let beta2 = 0.999;
1153        let epsilon = 1e-8;
1154        let learning_rate = self.state.learning_rate;
1155        let mut updates = Vec::new();
1156
1157        for i in 0..self.state.parameters.len() {
1158            // Update biased first moment estimate
1159            self.state.optimizer_state.momentum[i] =
1160                beta1 * self.state.optimizer_state.momentum[i] + (1.0 - beta1) * gradient[i];
1161
1162            // Update biased second raw moment estimate
1163            self.state.optimizer_state.velocity[i] = beta2 * self.state.optimizer_state.velocity[i]
1164                + (1.0 - beta2) * gradient[i].powi(2);
1165
1166            // Compute bias-corrected first moment estimate
1167            let m_hat = self.state.optimizer_state.momentum[i]
1168                / (1.0 - beta1.powi(self.state.iteration as i32 + 1));
1169
1170            // Compute bias-corrected second raw moment estimate
1171            let v_hat = self.state.optimizer_state.velocity[i]
1172                / (1.0 - beta2.powi(self.state.iteration as i32 + 1));
1173
1174            // Quantum-aware learning rate adaptation
1175            let quantum_factor = 1.0 / (1.0 + 0.1 * (self.state.iteration as f64).sqrt());
1176            let effective_lr = learning_rate * quantum_factor;
1177
1178            // Update parameters
1179            let update = effective_lr * m_hat / (v_hat.sqrt() + epsilon);
1180            self.state.parameters[i] -= update;
1181            updates.push(update);
1182        }
1183
1184        Ok(updates)
1185    }
1186
1187    /// Natural gradient parameter update
1188    fn update_natural_gradient(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1189        // Compute Fisher information matrix if not cached
1190        if self.state.optimizer_state.fisher_matrix.is_none() {
1191            self.state.optimizer_state.fisher_matrix =
1192                Some(self.compute_fisher_information_matrix()?);
1193        }
1194
1195        let fisher_matrix = self.state.optimizer_state.fisher_matrix.as_ref().unwrap();
1196
1197        // Solve Fisher * update = gradient
1198        let natural_gradient = self.solve_linear_system(fisher_matrix, gradient)?;
1199
1200        let mut updates = Vec::new();
1201        for i in 0..self.state.parameters.len() {
1202            let update = self.state.learning_rate * natural_gradient[i];
1203            self.state.parameters[i] -= update;
1204            updates.push(update);
1205        }
1206
1207        Ok(updates)
1208    }
1209
1210    /// Quantum natural gradient parameter update
1211    fn update_quantum_natural_gradient(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1212        // Quantum natural gradient uses quantum Fisher information
1213        let qfi_matrix = self.compute_quantum_fisher_information_matrix()?;
1214
1215        // Regularized inversion to handle singular matrices
1216        let regularized_qfi = self.regularize_matrix(&qfi_matrix, 1e-6)?;
1217
1218        let natural_gradient = self.solve_linear_system(&regularized_qfi, gradient)?;
1219
1220        let mut updates = Vec::new();
1221        for i in 0..self.state.parameters.len() {
1222            let update = self.state.learning_rate * natural_gradient[i];
1223            self.state.parameters[i] -= update;
1224            updates.push(update);
1225        }
1226
1227        Ok(updates)
1228    }
1229
1230    /// L-BFGS parameter update
1231    fn update_lbfgs(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1232        let max_history = 10;
1233
1234        // Store gradient and parameter differences
1235        if !self.state.optimizer_state.lbfgs_history.is_empty() {
1236            let (prev_params, prev_grad) = self.state.optimizer_state.lbfgs_history.back().unwrap();
1237            let s = self
1238                .state
1239                .parameters
1240                .iter()
1241                .zip(prev_params)
1242                .map(|(x, px)| x - px)
1243                .collect::<Vec<_>>();
1244            let y = gradient
1245                .iter()
1246                .zip(prev_grad)
1247                .map(|(g, pg)| g - pg)
1248                .collect::<Vec<_>>();
1249
1250            self.state.optimizer_state.lbfgs_history.push_back((s, y));
1251
1252            if self.state.optimizer_state.lbfgs_history.len() > max_history {
1253                self.state.optimizer_state.lbfgs_history.pop_front();
1254            }
1255        }
1256
1257        // L-BFGS two-loop recursion (simplified)
1258        let mut q = gradient.to_vec();
1259        let mut alphas = Vec::new();
1260
1261        // First loop
1262        for (s, y) in self.state.optimizer_state.lbfgs_history.iter().rev() {
1263            let sy = s.iter().zip(y).map(|(si, yi)| si * yi).sum::<f64>();
1264            if sy.abs() > 1e-10 {
1265                let alpha = s.iter().zip(&q).map(|(si, qi)| si * qi).sum::<f64>() / sy;
1266                alphas.push(alpha);
1267                for i in 0..q.len() {
1268                    q[i] -= alpha * y[i];
1269                }
1270            } else {
1271                alphas.push(0.0);
1272            }
1273        }
1274
1275        // Scale by initial Hessian approximation (identity)
1276        // In practice, would use a better scaling
1277
1278        // Second loop
1279        alphas.reverse();
1280        for ((s, y), alpha) in self
1281            .state
1282            .optimizer_state
1283            .lbfgs_history
1284            .iter()
1285            .zip(alphas.iter())
1286        {
1287            let sy = s.iter().zip(y).map(|(si, yi)| si * yi).sum::<f64>();
1288            if sy.abs() > 1e-10 {
1289                let beta = y.iter().zip(&q).map(|(yi, qi)| yi * qi).sum::<f64>() / sy;
1290                for i in 0..q.len() {
1291                    q[i] += (alpha - beta) * s[i];
1292                }
1293            }
1294        }
1295
1296        // Update parameters
1297        let mut updates = Vec::new();
1298        for i in 0..self.state.parameters.len() {
1299            let update = self.state.learning_rate * q[i];
1300            self.state.parameters[i] -= update;
1301            updates.push(update);
1302        }
1303
1304        // Store current state for next iteration
1305        self.state
1306            .optimizer_state
1307            .lbfgs_history
1308            .push_back((self.state.parameters.clone(), gradient.to_vec()));
1309
1310        Ok(updates)
1311    }
1312
1313    /// Bayesian optimization parameter update
1314    fn update_bayesian(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1315        // Initialize Bayesian model if not present
1316        if self.state.optimizer_state.bayesian_model.is_none() {
1317            self.state.optimizer_state.bayesian_model = Some(BayesianModel {
1318                kernel_hyperparameters: vec![1.0, 1.0], // length scale, variance
1319                observed_points: Vec::new(),
1320                observed_values: Vec::new(),
1321                acquisition_function: AcquisitionFunction::ExpectedImprovement,
1322            });
1323        }
1324
1325        // Add current observation
1326        if let Some(ref mut model) = self.state.optimizer_state.bayesian_model {
1327            model.observed_points.push(self.state.parameters.clone());
1328            model.observed_values.push(self.state.current_cost);
1329        }
1330
1331        // Find next point using acquisition function (simplified)
1332        let next_parameters = self
1333            .state
1334            .parameters
1335            .iter()
1336            .map(|p| p + (rand::random::<f64>() - 0.5) * 0.1)
1337            .collect::<Vec<_>>();
1338
1339        let updates = next_parameters
1340            .iter()
1341            .zip(&self.state.parameters)
1342            .map(|(new, old)| new - old)
1343            .collect();
1344
1345        self.state.parameters = next_parameters;
1346
1347        Ok(updates)
1348    }
1349
1350    /// Reinforcement learning parameter update
1351    fn update_reinforcement_learning(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1352        // Simple policy gradient approach
1353        let reward = -self.state.current_cost; // Negative cost as reward
1354        let baseline = self.compute_baseline_reward()?;
1355        let advantage = reward - baseline;
1356
1357        let mut updates = Vec::new();
1358        for i in 0..self.state.parameters.len() {
1359            // Policy gradient: ∇θ log π(a|s) * advantage
1360            let update = self.state.learning_rate * gradient[i] * advantage;
1361            self.state.parameters[i] += update;
1362            updates.push(update);
1363        }
1364
1365        Ok(updates)
1366    }
1367
1368    /// Evolutionary strategy parameter update
1369    fn update_evolutionary_strategy(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1370        let population_size = 20;
1371        let sigma = 0.1; // Mutation strength
1372        let mut population = Vec::new();
1373        let mut fitness_values = Vec::new();
1374
1375        // Generate population around current parameters
1376        for _ in 0..population_size {
1377            let mut candidate = self.state.parameters.clone();
1378            for param in &mut candidate {
1379                *param += sigma * (rand::random::<f64>() - 0.5) * 2.0;
1380            }
1381            population.push(candidate);
1382        }
1383
1384        // Evaluate fitness (simplified - would need parallel evaluation)
1385        for candidate in &population {
1386            let circuit = self.generate_circuit(candidate)?;
1387            let fitness = -self.cost_function.evaluate(candidate, &circuit)?; // Negative cost
1388            fitness_values.push(fitness);
1389        }
1390
1391        // Select best candidates
1392        let mut indices: Vec<usize> = (0..population_size).collect();
1393        indices.sort_by(|&a, &b| fitness_values[b].partial_cmp(&fitness_values[a]).unwrap());
1394
1395        // Update parameters using weighted average of top candidates
1396        let top_n = population_size / 4;
1397        let mut new_parameters = vec![0.0; self.state.parameters.len()];
1398        let mut total_weight = 0.0;
1399
1400        for &idx in indices.iter().take(top_n) {
1401            let weight = fitness_values[idx];
1402            total_weight += weight;
1403            for i in 0..new_parameters.len() {
1404                new_parameters[i] += weight * population[idx][i];
1405            }
1406        }
1407
1408        for param in &mut new_parameters {
1409            *param /= total_weight;
1410        }
1411
1412        let updates = new_parameters
1413            .iter()
1414            .zip(&self.state.parameters)
1415            .map(|(new, old)| new - old)
1416            .collect();
1417
1418        self.state.parameters = new_parameters;
1419
1420        Ok(updates)
1421    }
1422
1423    /// Quantum particle swarm parameter update
1424    fn update_quantum_particle_swarm(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1425        // Quantum-enhanced PSO with superposition of positions
1426        let inertia = 0.9;
1427        let cognitive = 2.0;
1428        let social = 2.0;
1429
1430        // Update velocity with quantum enhancement
1431        for i in 0..self.state.parameters.len() {
1432            let quantum_factor = (2.0 * std::f64::consts::PI * rand::random::<f64>())
1433                .cos()
1434                .abs();
1435
1436            // Update velocity (stored in momentum)
1437            self.state.optimizer_state.momentum[i] = inertia
1438                * self.state.optimizer_state.momentum[i]
1439                + cognitive
1440                    * rand::random::<f64>()
1441                    * (self.state.best_parameters[i] - self.state.parameters[i])
1442                    * quantum_factor
1443                + social
1444                    * rand::random::<f64>()
1445                    * (self.state.best_parameters[i] - self.state.parameters[i]);
1446        }
1447
1448        // Update position
1449        let mut updates = Vec::new();
1450        for i in 0..self.state.parameters.len() {
1451            let update = self.state.optimizer_state.momentum[i];
1452            self.state.parameters[i] += update;
1453            updates.push(update);
1454        }
1455
1456        Ok(updates)
1457    }
1458
1459    /// Meta-learning optimizer parameter update
1460    fn update_meta_learning(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1461        // Adapt learning rate based on gradient history and cost landscape
1462        let gradient_norm = gradient.iter().map(|g| g.powi(2)).sum::<f64>().sqrt();
1463
1464        // Meta-learning rule: adapt learning rate based on gradient consistency
1465        if self.state.iteration > 10 {
1466            let recent_gradients = &self.stats.parameter_update_magnitudes;
1467            let recent_avg = recent_gradients.iter().rev().take(5).sum::<f64>() / 5.0;
1468
1469            if gradient_norm > 2.0 * recent_avg {
1470                self.state.learning_rate *= 0.8; // Reduce learning rate for large gradients
1471            } else if gradient_norm < 0.5 * recent_avg {
1472                self.state.learning_rate *= 1.1; // Increase learning rate for small gradients
1473            }
1474        }
1475
1476        // Use adaptive Adam-like update with meta-learned parameters
1477        self.update_quantum_adam(gradient)
1478    }
1479
1480    /// Helper methods
1481    fn count_parameters(ansatz: &VariationalAnsatz) -> Result<usize> {
1482        match ansatz {
1483            VariationalAnsatz::HardwareEfficient {
1484                layers,
1485                rotation_gates,
1486                ..
1487            } => {
1488                // Simplified parameter counting
1489                Ok(layers * rotation_gates.len() * 4) // Assume 4 qubits
1490            }
1491            VariationalAnsatz::UCCSD {
1492                num_electrons,
1493                num_orbitals,
1494                include_triples,
1495            } => {
1496                let singles = num_electrons * (2 * num_orbitals - num_electrons);
1497                let doubles = num_electrons
1498                    * (num_electrons - 1)
1499                    * (2 * num_orbitals - num_electrons)
1500                    * (2 * num_orbitals - num_electrons - 1)
1501                    / 4;
1502                let triples = if *include_triples { doubles / 10 } else { 0 }; // Rough estimate
1503                Ok(singles + doubles + triples)
1504            }
1505            VariationalAnsatz::QAOA { layers, .. } => {
1506                Ok(2 * layers) // gamma and beta for each layer
1507            }
1508            VariationalAnsatz::Adaptive { max_layers, .. } => Ok(*max_layers),
1509            VariationalAnsatz::QuantumNeuralNetwork { hidden_layers, .. } => {
1510                Ok(hidden_layers.iter().sum::<usize>())
1511            }
1512            VariationalAnsatz::TensorNetworkAnsatz { bond_dimension, .. } => {
1513                Ok(bond_dimension * 4) // Simplified
1514            }
1515        }
1516    }
1517
1518    fn initialize_parameters(num_parameters: usize, config: &VQAConfig) -> Result<Vec<f64>> {
1519        let mut parameters = Vec::with_capacity(num_parameters);
1520
1521        for _ in 0..num_parameters {
1522            let param = if let Some((min, max)) = config.parameter_bounds {
1523                min + (max - min) * rand::random::<f64>()
1524            } else {
1525                (rand::random::<f64>() - 0.5) * 2.0 * std::f64::consts::PI
1526            };
1527            parameters.push(param);
1528        }
1529
1530        Ok(parameters)
1531    }
1532
1533    fn infer_num_qubits_from_parameters(&self, num_params: usize, layers: usize) -> Result<usize> {
1534        // Simple heuristic - would need proper calculation based on ansatz
1535        Ok((num_params as f64 / layers as f64).sqrt().ceil() as usize)
1536    }
1537
1538    fn extract_num_qubits_from_hamiltonian(
1539        &self,
1540        hamiltonian: &ProblemHamiltonian,
1541    ) -> Result<usize> {
1542        Ok(hamiltonian
1543            .terms
1544            .iter()
1545            .flat_map(|term| &term.qubits)
1546            .max()
1547            .unwrap_or(&0)
1548            + 1)
1549    }
1550
1551    fn infer_num_qubits_from_pool(&self, operator_pool: &[InterfaceGate]) -> Result<usize> {
1552        Ok(operator_pool
1553            .iter()
1554            .flat_map(|gate| &gate.qubits)
1555            .max()
1556            .unwrap_or(&0)
1557            + 1)
1558    }
1559
1560    fn determine_adaptive_layers(
1561        &self,
1562        max_layers: usize,
1563        _growth_criterion: &GrowthCriterion,
1564    ) -> Result<usize> {
1565        // Simplified adaptive layer determination
1566        let current_layers = (self.state.iteration / 10).min(max_layers);
1567        Ok(current_layers.max(1))
1568    }
1569
1570    fn simulate_circuit(&self, circuit: &InterfaceCircuit) -> Result<Array1<Complex64>> {
1571        // Simplified simulation - would integrate with actual simulator
1572        let state_size = 1 << circuit.num_qubits;
1573        let mut state = Array1::zeros(state_size);
1574        state[0] = Complex64::new(1.0, 0.0); // |0...0> state
1575        Ok(state)
1576    }
1577
1578    fn calculate_expectation_values(
1579        &self,
1580        _state: &Array1<Complex64>,
1581    ) -> Result<HashMap<String, f64>> {
1582        let mut expectations = HashMap::new();
1583
1584        for observable in self.cost_function.get_observables() {
1585            // Simplified expectation value calculation
1586            expectations.insert(observable, 0.0);
1587        }
1588
1589        Ok(expectations)
1590    }
1591
1592    fn compute_fisher_information_matrix(&self) -> Result<Array2<f64>> {
1593        let n = self.state.parameters.len();
1594        Ok(Array2::eye(n)) // Simplified - would compute actual FIM
1595    }
1596
1597    fn compute_quantum_fisher_information_matrix(&self) -> Result<Array2<f64>> {
1598        let n = self.state.parameters.len();
1599        Ok(Array2::eye(n)) // Simplified - would compute actual QFIM
1600    }
1601
1602    fn regularize_matrix(&self, matrix: &Array2<f64>, regularization: f64) -> Result<Array2<f64>> {
1603        let mut regularized = matrix.clone();
1604        for i in 0..matrix.nrows() {
1605            regularized[[i, i]] += regularization;
1606        }
1607        Ok(regularized)
1608    }
1609
1610    fn solve_linear_system(&self, matrix: &Array2<f64>, rhs: &[f64]) -> Result<Vec<f64>> {
1611        // Simplified linear system solver - would use proper numerical methods
1612        Ok(rhs.to_vec())
1613    }
1614
1615    fn optimize_acquisition_function(&self, _model: &BayesianModel) -> Result<Vec<f64>> {
1616        // Simplified acquisition function optimization
1617        Ok(self.state.parameters.clone())
1618    }
1619
1620    fn compute_baseline_reward(&self) -> Result<f64> {
1621        // Simplified baseline - would use value function approximation
1622        Ok(0.0)
1623    }
1624}
1625
1626/// Example implementations of cost functions
1627/// Ising model cost function for QAOA
1628pub struct IsingCostFunction {
1629    pub problem_hamiltonian: ProblemHamiltonian,
1630}
1631
1632impl CostFunction for IsingCostFunction {
1633    fn evaluate(&self, _parameters: &[f64], circuit: &InterfaceCircuit) -> Result<f64> {
1634        // Simplified Ising model evaluation
1635        let num_qubits = circuit.num_qubits;
1636        let mut cost = 0.0;
1637
1638        // Evaluate each term in the Hamiltonian
1639        for term in &self.problem_hamiltonian.terms {
1640            match term.pauli_string.as_str() {
1641                "ZZ" if term.qubits.len() == 2 => {
1642                    cost += term.coefficient.re; // Simplified
1643                }
1644                "Z" if term.qubits.len() == 1 => {
1645                    cost += term.coefficient.re; // Simplified
1646                }
1647                _ => {}
1648            }
1649        }
1650
1651        Ok(cost)
1652    }
1653
1654    fn get_observables(&self) -> Vec<String> {
1655        self.problem_hamiltonian
1656            .terms
1657            .iter()
1658            .map(|term| term.pauli_string.clone())
1659            .collect()
1660    }
1661
1662    fn is_variational(&self) -> bool {
1663        true
1664    }
1665}
1666
1667/// Example gradient calculators
1668/// Finite difference gradient calculator
1669pub struct FiniteDifferenceGradient {
1670    pub epsilon: f64,
1671}
1672
1673impl GradientCalculator for FiniteDifferenceGradient {
1674    fn calculate_gradient(
1675        &self,
1676        parameters: &[f64],
1677        cost_function: &dyn CostFunction,
1678        circuit: &InterfaceCircuit,
1679    ) -> Result<Vec<f64>> {
1680        let mut gradient = Vec::with_capacity(parameters.len());
1681
1682        for i in 0..parameters.len() {
1683            let mut params_plus = parameters.to_vec();
1684            let mut params_minus = parameters.to_vec();
1685
1686            params_plus[i] += self.epsilon;
1687            params_minus[i] -= self.epsilon;
1688
1689            // Would need to regenerate circuits with new parameters
1690            let cost_plus = cost_function.evaluate(&params_plus, circuit)?;
1691            let cost_minus = cost_function.evaluate(&params_minus, circuit)?;
1692
1693            let grad = (cost_plus - cost_minus) / (2.0 * self.epsilon);
1694            gradient.push(grad);
1695        }
1696
1697        Ok(gradient)
1698    }
1699
1700    fn method_name(&self) -> &str {
1701        "FiniteDifference"
1702    }
1703}
1704
1705/// Parameter shift rule gradient calculator
1706pub struct ParameterShiftGradient;
1707
1708impl GradientCalculator for ParameterShiftGradient {
1709    fn calculate_gradient(
1710        &self,
1711        parameters: &[f64],
1712        cost_function: &dyn CostFunction,
1713        circuit: &InterfaceCircuit,
1714    ) -> Result<Vec<f64>> {
1715        let shift = std::f64::consts::PI / 2.0;
1716        let mut gradient = Vec::with_capacity(parameters.len());
1717
1718        for i in 0..parameters.len() {
1719            let mut params_plus = parameters.to_vec();
1720            let mut params_minus = parameters.to_vec();
1721
1722            params_plus[i] += shift;
1723            params_minus[i] -= shift;
1724
1725            // Would need to regenerate circuits with new parameters
1726            let cost_plus = cost_function.evaluate(&params_plus, circuit)?;
1727            let cost_minus = cost_function.evaluate(&params_minus, circuit)?;
1728
1729            let grad = (cost_plus - cost_minus) / 2.0;
1730            gradient.push(grad);
1731        }
1732
1733        Ok(gradient)
1734    }
1735
1736    fn method_name(&self) -> &str {
1737        "ParameterShift"
1738    }
1739}
1740
1741/// Benchmark function for VQA performance
1742pub fn benchmark_advanced_vqa() -> Result<HashMap<String, f64>> {
1743    let mut results = HashMap::new();
1744
1745    // Test hardware-efficient ansatz
1746    let start = Instant::now();
1747    let ansatz = VariationalAnsatz::HardwareEfficient {
1748        layers: 3,
1749        entangling_gates: vec![InterfaceGateType::CNOT],
1750        rotation_gates: vec![InterfaceGateType::RY(0.0)],
1751    };
1752
1753    let config = VQAConfig::default();
1754    let cost_function = Box::new(IsingCostFunction {
1755        problem_hamiltonian: ProblemHamiltonian {
1756            terms: vec![HamiltonianTerm {
1757                coefficient: Complex64::new(-1.0, 0.0),
1758                pauli_string: "ZZ".to_string(),
1759                qubits: vec![0, 1],
1760            }],
1761            problem_type: OptimizationProblemType::MaxCut,
1762        },
1763    });
1764    let gradient_calculator = Box::new(FiniteDifferenceGradient { epsilon: 1e-4 });
1765
1766    let mut trainer = AdvancedVQATrainer::new(config, ansatz, cost_function, gradient_calculator)?;
1767    let _result = trainer.train()?;
1768
1769    let hardware_efficient_time = start.elapsed().as_millis() as f64;
1770    results.insert(
1771        "hardware_efficient_vqa".to_string(),
1772        hardware_efficient_time,
1773    );
1774
1775    Ok(results)
1776}
1777
1778#[cfg(test)]
1779mod tests {
1780    use super::*;
1781
1782    #[test]
1783    fn test_vqa_trainer_creation() {
1784        let ansatz = VariationalAnsatz::HardwareEfficient {
1785            layers: 2,
1786            entangling_gates: vec![InterfaceGateType::CNOT],
1787            rotation_gates: vec![InterfaceGateType::RY(0.0)],
1788        };
1789
1790        let config = VQAConfig::default();
1791        let cost_function = Box::new(IsingCostFunction {
1792            problem_hamiltonian: ProblemHamiltonian {
1793                terms: vec![],
1794                problem_type: OptimizationProblemType::MaxCut,
1795            },
1796        });
1797        let gradient_calculator = Box::new(FiniteDifferenceGradient { epsilon: 1e-4 });
1798
1799        let trainer = AdvancedVQATrainer::new(config, ansatz, cost_function, gradient_calculator);
1800        assert!(trainer.is_ok());
1801    }
1802
1803    #[test]
1804    fn test_parameter_counting() {
1805        let ansatz = VariationalAnsatz::HardwareEfficient {
1806            layers: 3,
1807            entangling_gates: vec![InterfaceGateType::CNOT],
1808            rotation_gates: vec![InterfaceGateType::RY(0.0)],
1809        };
1810
1811        let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1812        assert!(count > 0);
1813    }
1814
1815    #[test]
1816    fn test_uccsd_ansatz() {
1817        let ansatz = VariationalAnsatz::UCCSD {
1818            num_electrons: 2,
1819            num_orbitals: 4,
1820            include_triples: false,
1821        };
1822
1823        let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1824        assert!(count > 0);
1825    }
1826
1827    #[test]
1828    fn test_qaoa_ansatz() {
1829        let ansatz = VariationalAnsatz::QAOA {
1830            problem_hamiltonian: ProblemHamiltonian {
1831                terms: vec![],
1832                problem_type: OptimizationProblemType::MaxCut,
1833            },
1834            mixer_hamiltonian: MixerHamiltonian {
1835                terms: vec![],
1836                mixer_type: MixerType::XMixer,
1837            },
1838            layers: 3,
1839        };
1840
1841        let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1842        assert_eq!(count, 6); // 2 parameters per layer
1843    }
1844
1845    #[test]
1846    fn test_finite_difference_gradient() {
1847        let gradient_calc = FiniteDifferenceGradient { epsilon: 1e-4 };
1848        assert_eq!(gradient_calc.method_name(), "FiniteDifference");
1849    }
1850
1851    #[test]
1852    fn test_parameter_shift_gradient() {
1853        let gradient_calc = ParameterShiftGradient;
1854        assert_eq!(gradient_calc.method_name(), "ParameterShift");
1855    }
1856
1857    #[test]
1858    fn test_ising_cost_function() {
1859        let cost_function = IsingCostFunction {
1860            problem_hamiltonian: ProblemHamiltonian {
1861                terms: vec![HamiltonianTerm {
1862                    coefficient: Complex64::new(-1.0, 0.0),
1863                    pauli_string: "ZZ".to_string(),
1864                    qubits: vec![0, 1],
1865                }],
1866                problem_type: OptimizationProblemType::MaxCut,
1867            },
1868        };
1869
1870        assert!(cost_function.is_variational());
1871        assert!(!cost_function.get_observables().is_empty());
1872    }
1873
1874    #[test]
1875    fn test_optimizer_types() {
1876        let optimizers = [
1877            AdvancedOptimizerType::SPSA,
1878            AdvancedOptimizerType::QuantumAdam,
1879            AdvancedOptimizerType::NaturalGradient,
1880            AdvancedOptimizerType::BayesianOptimization,
1881        ];
1882
1883        for optimizer in &optimizers {
1884            println!("Testing optimizer: {:?}", optimizer);
1885        }
1886    }
1887}