1use ndarray::{Array1, Array2};
8use num_complex::Complex64;
9use serde::{Deserialize, Serialize};
10use std::collections::{HashMap, VecDeque};
11use std::time::{Duration, Instant};
12
13use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
14use crate::error::{Result, SimulatorError};
15
16#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
18pub enum AdvancedOptimizerType {
19 SPSA,
21 NaturalGradient,
23 QuantumNaturalGradient,
25 QuantumAdam,
27 LBFGS,
29 BayesianOptimization,
31 ReinforcementLearning,
33 EvolutionaryStrategy,
35 QuantumParticleSwarm,
37 MetaLearningOptimizer,
39}
40
41#[derive(Debug, Clone, Serialize, Deserialize)]
43pub enum VariationalAnsatz {
44 HardwareEfficient {
46 layers: usize,
47 entangling_gates: Vec<InterfaceGateType>,
48 rotation_gates: Vec<InterfaceGateType>,
49 },
50 UCCSD {
52 num_electrons: usize,
53 num_orbitals: usize,
54 include_triples: bool,
55 },
56 QAOA {
58 problem_hamiltonian: ProblemHamiltonian,
59 mixer_hamiltonian: MixerHamiltonian,
60 layers: usize,
61 },
62 Adaptive {
64 max_layers: usize,
65 growth_criterion: GrowthCriterion,
66 #[serde(skip)]
67 operator_pool: Vec<InterfaceGate>,
68 },
69 QuantumNeuralNetwork {
71 hidden_layers: Vec<usize>,
72 activation_type: QuantumActivation,
73 connectivity: NetworkConnectivity,
74 },
75 TensorNetworkAnsatz {
77 bond_dimension: usize,
78 network_topology: TensorTopology,
79 compression_method: CompressionMethod,
80 },
81}
82
83#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
85pub struct ProblemHamiltonian {
86 pub terms: Vec<HamiltonianTerm>,
87 pub problem_type: OptimizationProblemType,
88}
89
90#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
92pub struct MixerHamiltonian {
93 pub terms: Vec<HamiltonianTerm>,
94 pub mixer_type: MixerType,
95}
96
97#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
99pub struct HamiltonianTerm {
100 pub coefficient: Complex64,
101 pub pauli_string: String,
102 pub qubits: Vec<usize>,
103}
104
105#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
107pub enum OptimizationProblemType {
108 MaxCut,
109 TSP,
110 BinPacking,
111 JobShop,
112 PortfolioOptimization,
113 VehicleRouting,
114 GraphColoring,
115 Boolean3SAT,
116 QuadraticAssignment,
117 CustomCombinatorial,
118}
119
120#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
122pub enum MixerType {
123 XMixer,
125 XYMixer,
127 RingMixer,
129 CustomMixer,
131}
132
133#[derive(Debug, Clone, Copy, PartialEq, Serialize, Deserialize)]
135pub enum GrowthCriterion {
136 GradientThreshold(f64),
138 ImprovementStagnation,
140 VarianceThreshold(f64),
142 QuantumFisherInformation,
144}
145
146#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
148pub enum QuantumActivation {
149 RotationActivation,
151 ControlledRotation,
153 EntanglingActivation,
155 QuantumReLU,
157}
158
159#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
161pub enum NetworkConnectivity {
162 FullyConnected,
163 NearestNeighbor,
164 Random,
165 SmallWorld,
166 ScaleFree,
167}
168
169#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
171pub enum TensorTopology {
172 MPS,
173 MERA,
174 TTN,
175 PEPS,
176 Hierarchical,
177}
178
179#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
181pub enum CompressionMethod {
182 SVD,
183 QR,
184 Variational,
185 DMRG,
186}
187
188#[derive(Debug, Clone)]
190pub struct VQAConfig {
191 pub max_iterations: usize,
193 pub convergence_tolerance: f64,
195 pub optimizer: AdvancedOptimizerType,
197 pub learning_rate: f64,
199 pub shots: Option<usize>,
201 pub gradient_clipping: Option<f64>,
203 pub regularization: f64,
205 pub parameter_bounds: Option<(f64, f64)>,
207 pub warm_restart: Option<WarmRestartConfig>,
209 pub hardware_aware: bool,
211 pub noise_aware: bool,
213}
214
215impl Default for VQAConfig {
216 fn default() -> Self {
217 Self {
218 max_iterations: 1000,
219 convergence_tolerance: 1e-6,
220 optimizer: AdvancedOptimizerType::QuantumAdam,
221 learning_rate: 0.01,
222 shots: None,
223 gradient_clipping: Some(1.0),
224 regularization: 0.0,
225 parameter_bounds: None,
226 warm_restart: None,
227 hardware_aware: true,
228 noise_aware: true,
229 }
230 }
231}
232
233#[derive(Debug, Clone)]
235pub struct WarmRestartConfig {
236 pub restart_period: usize,
237 pub restart_factor: f64,
238 pub min_learning_rate: f64,
239}
240
241#[derive(Debug, Clone, Serialize, Deserialize)]
243pub struct VQAResult {
244 pub optimal_parameters: Vec<f64>,
246 pub optimal_cost: f64,
248 pub cost_history: Vec<f64>,
250 pub parameter_history: Vec<Vec<f64>>,
252 pub gradient_norms: Vec<f64>,
254 pub iterations: usize,
256 pub optimization_time: Duration,
258 pub converged: bool,
260 pub final_state: Option<Array1<Complex64>>,
262 pub expectation_values: HashMap<String, f64>,
264}
265
266#[derive(Debug, Clone)]
268pub struct VQATrainerState {
269 pub parameters: Vec<f64>,
271 pub current_cost: f64,
273 pub optimizer_state: OptimizerState,
275 pub iteration: usize,
277 pub best_parameters: Vec<f64>,
279 pub best_cost: f64,
281 pub learning_rate: f64,
283}
284
285#[derive(Debug, Clone)]
287pub struct OptimizerState {
288 pub momentum: Vec<f64>,
290 pub velocity: Vec<f64>,
292 pub fisher_matrix: Option<Array2<f64>>,
294 pub lbfgs_history: VecDeque<(Vec<f64>, Vec<f64>)>,
296 pub bayesian_model: Option<BayesianModel>,
298}
299
300#[derive(Debug, Clone)]
302pub struct BayesianModel {
303 pub kernel_hyperparameters: Vec<f64>,
304 pub observed_points: Vec<Vec<f64>>,
305 pub observed_values: Vec<f64>,
306 pub acquisition_function: AcquisitionFunction,
307}
308
309#[derive(Debug, Clone, Copy, PartialEq, Eq)]
311pub enum AcquisitionFunction {
312 ExpectedImprovement,
313 UpperConfidenceBound,
314 ProbabilityOfImprovement,
315 Entropy,
316}
317
318pub struct AdvancedVQATrainer {
320 config: VQAConfig,
322 state: VQATrainerState,
324 cost_function: Box<dyn CostFunction + Send + Sync>,
326 ansatz: VariationalAnsatz,
328 gradient_calculator: Box<dyn GradientCalculator + Send + Sync>,
330 stats: VQATrainingStats,
332}
333
334pub trait CostFunction: Send + Sync {
336 fn evaluate(&self, parameters: &[f64], circuit: &InterfaceCircuit) -> Result<f64>;
338
339 fn get_observables(&self) -> Vec<String>;
341
342 fn is_variational(&self) -> bool;
344}
345
346pub trait GradientCalculator: Send + Sync {
348 fn calculate_gradient(
350 &self,
351 parameters: &[f64],
352 cost_function: &dyn CostFunction,
353 circuit: &InterfaceCircuit,
354 ) -> Result<Vec<f64>>;
355
356 fn method_name(&self) -> &str;
358}
359
360#[derive(Debug, Clone, Serialize, Deserialize)]
362pub struct VQATrainingStats {
363 pub total_time: Duration,
365 pub iteration_times: Vec<Duration>,
367 pub function_evaluations: Vec<usize>,
369 pub gradient_evaluations: Vec<usize>,
371 pub memory_usage: Vec<usize>,
373 pub circuit_depths: Vec<usize>,
375 pub parameter_update_magnitudes: Vec<f64>,
377}
378
379impl AdvancedVQATrainer {
380 pub fn new(
382 config: VQAConfig,
383 ansatz: VariationalAnsatz,
384 cost_function: Box<dyn CostFunction + Send + Sync>,
385 gradient_calculator: Box<dyn GradientCalculator + Send + Sync>,
386 ) -> Result<Self> {
387 let num_parameters = Self::count_parameters(&ansatz)?;
388
389 let state = VQATrainerState {
390 parameters: Self::initialize_parameters(num_parameters, &config)?,
391 current_cost: f64::INFINITY,
392 optimizer_state: OptimizerState {
393 momentum: vec![0.0; num_parameters],
394 velocity: vec![0.0; num_parameters],
395 fisher_matrix: None,
396 lbfgs_history: VecDeque::new(),
397 bayesian_model: None,
398 },
399 iteration: 0,
400 best_parameters: vec![0.0; num_parameters],
401 best_cost: f64::INFINITY,
402 learning_rate: config.learning_rate,
403 };
404
405 Ok(Self {
406 config,
407 state,
408 cost_function,
409 ansatz,
410 gradient_calculator,
411 stats: VQATrainingStats {
412 total_time: Duration::new(0, 0),
413 iteration_times: Vec::new(),
414 function_evaluations: Vec::new(),
415 gradient_evaluations: Vec::new(),
416 memory_usage: Vec::new(),
417 circuit_depths: Vec::new(),
418 parameter_update_magnitudes: Vec::new(),
419 },
420 })
421 }
422
423 pub fn train(&mut self) -> Result<VQAResult> {
425 let start_time = Instant::now();
426 let mut cost_history = Vec::new();
427 let mut parameter_history = Vec::new();
428 let mut gradient_norms = Vec::new();
429
430 for iteration in 0..self.config.max_iterations {
431 let iter_start = Instant::now();
432 self.state.iteration = iteration;
433
434 let circuit = self.generate_circuit(&self.state.parameters)?;
436
437 let cost = self
439 .cost_function
440 .evaluate(&self.state.parameters, &circuit)?;
441 self.state.current_cost = cost;
442
443 if cost < self.state.best_cost {
445 self.state.best_cost = cost;
446 self.state.best_parameters = self.state.parameters.clone();
447 }
448
449 let gradient = self.gradient_calculator.calculate_gradient(
451 &self.state.parameters,
452 self.cost_function.as_ref(),
453 &circuit,
454 )?;
455
456 let gradient_norm = gradient.iter().map(|g| g.powi(2)).sum::<f64>().sqrt();
457 gradient_norms.push(gradient_norm);
458
459 let clipped_gradient = if let Some(clip_value) = self.config.gradient_clipping {
461 if gradient_norm > clip_value {
462 gradient
463 .iter()
464 .map(|g| g * clip_value / gradient_norm)
465 .collect()
466 } else {
467 gradient
468 }
469 } else {
470 gradient
471 };
472
473 let parameter_update = self.update_parameters(&clipped_gradient)?;
475
476 cost_history.push(cost);
478 parameter_history.push(self.state.parameters.clone());
479 self.stats.iteration_times.push(iter_start.elapsed());
480 self.stats.function_evaluations.push(1); self.stats.gradient_evaluations.push(1); self.stats.parameter_update_magnitudes.push(
483 parameter_update
484 .iter()
485 .map(|u| u.powi(2))
486 .sum::<f64>()
487 .sqrt(),
488 );
489
490 if gradient_norm < self.config.convergence_tolerance {
492 break;
493 }
494
495 if let Some(ref restart_config) = self.config.warm_restart {
497 if iteration % restart_config.restart_period == 0 && iteration > 0 {
498 self.state.learning_rate = (self.state.learning_rate
499 * restart_config.restart_factor)
500 .max(restart_config.min_learning_rate);
501 }
502 }
503 }
504
505 let total_time = start_time.elapsed();
506 self.stats.total_time = total_time;
507
508 let final_circuit = self.generate_circuit(&self.state.best_parameters)?;
510 let final_state = self.simulate_circuit(&final_circuit)?;
511
512 let expectation_values = self.calculate_expectation_values(&final_state)?;
514
515 let converged = gradient_norms
516 .last()
517 .map_or(false, |&norm| norm < self.config.convergence_tolerance);
518
519 Ok(VQAResult {
520 optimal_parameters: self.state.best_parameters.clone(),
521 optimal_cost: self.state.best_cost,
522 cost_history,
523 parameter_history,
524 gradient_norms,
525 iterations: self.state.iteration + 1,
526 optimization_time: total_time,
527 converged,
528 final_state: Some(final_state),
529 expectation_values,
530 })
531 }
532
533 fn generate_circuit(&self, parameters: &[f64]) -> Result<InterfaceCircuit> {
535 match &self.ansatz {
536 VariationalAnsatz::HardwareEfficient {
537 layers,
538 entangling_gates,
539 rotation_gates,
540 } => self.generate_hardware_efficient_circuit(
541 parameters,
542 *layers,
543 entangling_gates,
544 rotation_gates,
545 ),
546 VariationalAnsatz::UCCSD {
547 num_electrons,
548 num_orbitals,
549 include_triples,
550 } => self.generate_uccsd_circuit(
551 parameters,
552 *num_electrons,
553 *num_orbitals,
554 *include_triples,
555 ),
556 VariationalAnsatz::QAOA {
557 problem_hamiltonian,
558 mixer_hamiltonian,
559 layers,
560 } => self.generate_qaoa_circuit(
561 parameters,
562 problem_hamiltonian,
563 mixer_hamiltonian,
564 *layers,
565 ),
566 VariationalAnsatz::Adaptive {
567 max_layers,
568 growth_criterion,
569 operator_pool,
570 } => self.generate_adaptive_circuit(
571 parameters,
572 *max_layers,
573 growth_criterion,
574 operator_pool,
575 ),
576 VariationalAnsatz::QuantumNeuralNetwork {
577 hidden_layers,
578 activation_type,
579 connectivity,
580 } => {
581 self.generate_qnn_circuit(parameters, hidden_layers, activation_type, connectivity)
582 }
583 VariationalAnsatz::TensorNetworkAnsatz {
584 bond_dimension,
585 network_topology,
586 compression_method,
587 } => self.generate_tensor_network_circuit(
588 parameters,
589 *bond_dimension,
590 network_topology,
591 compression_method,
592 ),
593 }
594 }
595
596 fn generate_hardware_efficient_circuit(
598 &self,
599 parameters: &[f64],
600 layers: usize,
601 entangling_gates: &[InterfaceGateType],
602 rotation_gates: &[InterfaceGateType],
603 ) -> Result<InterfaceCircuit> {
604 let num_qubits = self.infer_num_qubits_from_parameters(parameters.len(), layers)?;
605 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
606 let mut param_idx = 0;
607
608 for layer in 0..layers {
609 for qubit in 0..num_qubits {
611 for gate_type in rotation_gates {
612 match gate_type {
613 InterfaceGateType::RX(_) => {
614 circuit.add_gate(InterfaceGate::new(
615 InterfaceGateType::RX(parameters[param_idx]),
616 vec![qubit],
617 ));
618 param_idx += 1;
619 }
620 InterfaceGateType::RY(_) => {
621 circuit.add_gate(InterfaceGate::new(
622 InterfaceGateType::RY(parameters[param_idx]),
623 vec![qubit],
624 ));
625 param_idx += 1;
626 }
627 InterfaceGateType::RZ(_) => {
628 circuit.add_gate(InterfaceGate::new(
629 InterfaceGateType::RZ(parameters[param_idx]),
630 vec![qubit],
631 ));
632 param_idx += 1;
633 }
634 _ => {
635 circuit.add_gate(InterfaceGate::new(gate_type.clone(), vec![qubit]));
636 }
637 }
638 }
639 }
640
641 for qubit in 0..num_qubits - 1 {
643 for gate_type in entangling_gates {
644 match gate_type {
645 InterfaceGateType::CNOT => {
646 circuit.add_gate(InterfaceGate::new(
647 InterfaceGateType::CNOT,
648 vec![qubit, qubit + 1],
649 ));
650 }
651 InterfaceGateType::CZ => {
652 circuit.add_gate(InterfaceGate::new(
653 InterfaceGateType::CZ,
654 vec![qubit, qubit + 1],
655 ));
656 }
657 InterfaceGateType::CRZ(_) => {
658 circuit.add_gate(InterfaceGate::new(
659 InterfaceGateType::CRZ(parameters[param_idx]),
660 vec![qubit, qubit + 1],
661 ));
662 param_idx += 1;
663 }
664 _ => {
665 circuit.add_gate(InterfaceGate::new(
666 gate_type.clone(),
667 vec![qubit, qubit + 1],
668 ));
669 }
670 }
671 }
672 }
673 }
674
675 Ok(circuit)
676 }
677
678 fn generate_uccsd_circuit(
680 &self,
681 parameters: &[f64],
682 num_electrons: usize,
683 num_orbitals: usize,
684 include_triples: bool,
685 ) -> Result<InterfaceCircuit> {
686 let num_qubits = 2 * num_orbitals; let mut circuit = InterfaceCircuit::new(num_qubits, 0);
688 let mut param_idx = 0;
689
690 for i in 0..num_electrons {
692 circuit.add_gate(InterfaceGate::new(InterfaceGateType::PauliX, vec![i]));
693 }
694
695 for i in 0..num_electrons {
697 for a in num_electrons..num_qubits {
698 if param_idx < parameters.len() {
699 let theta = parameters[param_idx];
701
702 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(theta), vec![i]));
704 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, a]));
705 circuit.add_gate(InterfaceGate::new(InterfaceGateType::RY(-theta), vec![a]));
706
707 param_idx += 1;
708 }
709 }
710 }
711
712 for i in 0..num_electrons {
714 for j in i + 1..num_electrons {
715 for a in num_electrons..num_qubits {
716 for b in a + 1..num_qubits {
717 if param_idx < parameters.len() {
718 let theta = parameters[param_idx];
720
721 circuit.add_gate(InterfaceGate::new(
723 InterfaceGateType::RY(theta),
724 vec![i],
725 ));
726 circuit
727 .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, j]));
728 circuit
729 .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![j, a]));
730 circuit
731 .add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![a, b]));
732 circuit.add_gate(InterfaceGate::new(
733 InterfaceGateType::RY(-theta),
734 vec![b],
735 ));
736
737 param_idx += 1;
738 }
739 }
740 }
741 }
742 }
743
744 if include_triples {
746 }
748
749 Ok(circuit)
750 }
751
752 fn generate_qaoa_circuit(
754 &self,
755 parameters: &[f64],
756 problem_hamiltonian: &ProblemHamiltonian,
757 mixer_hamiltonian: &MixerHamiltonian,
758 layers: usize,
759 ) -> Result<InterfaceCircuit> {
760 let num_qubits = self.extract_num_qubits_from_hamiltonian(problem_hamiltonian)?;
761 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
762 let mut param_idx = 0;
763
764 for qubit in 0..num_qubits {
766 circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![qubit]));
767 }
768
769 for _layer in 0..layers {
771 if param_idx < parameters.len() {
773 let gamma = parameters[param_idx];
774 self.apply_hamiltonian_evolution(&mut circuit, problem_hamiltonian, gamma)?;
775 param_idx += 1;
776 }
777
778 if param_idx < parameters.len() {
780 let beta = parameters[param_idx];
781 self.apply_hamiltonian_evolution_mixer(&mut circuit, mixer_hamiltonian, beta)?;
782 param_idx += 1;
783 }
784 }
785
786 Ok(circuit)
787 }
788
789 fn apply_hamiltonian_evolution(
791 &self,
792 circuit: &mut InterfaceCircuit,
793 hamiltonian: &ProblemHamiltonian,
794 parameter: f64,
795 ) -> Result<()> {
796 for term in &hamiltonian.terms {
797 let angle = parameter * term.coefficient.re;
798
799 match term.pauli_string.as_str() {
802 "ZZ" if term.qubits.len() == 2 => {
803 circuit.add_gate(InterfaceGate::new(
804 InterfaceGateType::CNOT,
805 term.qubits.clone(),
806 ));
807 circuit.add_gate(InterfaceGate::new(
808 InterfaceGateType::RZ(angle),
809 vec![term.qubits[1]],
810 ));
811 circuit.add_gate(InterfaceGate::new(
812 InterfaceGateType::CNOT,
813 term.qubits.clone(),
814 ));
815 }
816 "Z" if term.qubits.len() == 1 => {
817 circuit.add_gate(InterfaceGate::new(
818 InterfaceGateType::RZ(angle),
819 term.qubits.clone(),
820 ));
821 }
822 _ => {
823 }
825 }
826 }
827 Ok(())
828 }
829
830 fn apply_hamiltonian_evolution_mixer(
832 &self,
833 circuit: &mut InterfaceCircuit,
834 mixer: &MixerHamiltonian,
835 parameter: f64,
836 ) -> Result<()> {
837 match mixer.mixer_type {
838 MixerType::XMixer => {
839 for i in 0..circuit.num_qubits {
841 circuit.add_gate(InterfaceGate::new(
842 InterfaceGateType::RX(parameter),
843 vec![i],
844 ));
845 }
846 }
847 MixerType::XYMixer => {
848 for i in 0..circuit.num_qubits - 1 {
850 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
852 circuit.add_gate(InterfaceGate::new(
853 InterfaceGateType::RY(parameter),
854 vec![i + 1],
855 ));
856 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, i + 1]));
857 }
858 }
859 MixerType::RingMixer => {
860 for i in 0..circuit.num_qubits {
862 let next = (i + 1) % circuit.num_qubits;
863 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
864 circuit.add_gate(InterfaceGate::new(
865 InterfaceGateType::RY(parameter),
866 vec![next],
867 ));
868 circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![i, next]));
869 }
870 }
871 MixerType::CustomMixer => {
872 for term in &mixer.terms {
874 let angle = parameter * term.coefficient.re;
875 if !term.qubits.is_empty() {
877 circuit.add_gate(InterfaceGate::new(
878 InterfaceGateType::RX(angle),
879 vec![term.qubits[0]],
880 ));
881 }
882 }
883 }
884 }
885 Ok(())
886 }
887
888 fn generate_adaptive_circuit(
890 &self,
891 parameters: &[f64],
892 max_layers: usize,
893 growth_criterion: &GrowthCriterion,
894 operator_pool: &[InterfaceGate],
895 ) -> Result<InterfaceCircuit> {
896 let num_qubits = self.infer_num_qubits_from_pool(operator_pool)?;
897 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
898 let mut param_idx = 0;
899
900 let current_layers = self.determine_adaptive_layers(max_layers, growth_criterion)?;
902
903 for layer in 0..current_layers {
904 if param_idx < parameters.len() {
905 let operator_idx = (layer * 13) % operator_pool.len(); let mut selected_gate = operator_pool[operator_idx].clone();
908
909 match &mut selected_gate.gate_type {
911 InterfaceGateType::RX(_) => {
912 selected_gate.gate_type = InterfaceGateType::RX(parameters[param_idx])
913 }
914 InterfaceGateType::RY(_) => {
915 selected_gate.gate_type = InterfaceGateType::RY(parameters[param_idx])
916 }
917 InterfaceGateType::RZ(_) => {
918 selected_gate.gate_type = InterfaceGateType::RZ(parameters[param_idx])
919 }
920 _ => {}
921 }
922
923 circuit.add_gate(selected_gate);
924 param_idx += 1;
925 }
926 }
927
928 Ok(circuit)
929 }
930
931 fn generate_qnn_circuit(
933 &self,
934 parameters: &[f64],
935 hidden_layers: &[usize],
936 activation_type: &QuantumActivation,
937 connectivity: &NetworkConnectivity,
938 ) -> Result<InterfaceCircuit> {
939 let num_qubits = *hidden_layers.iter().max().unwrap_or(&4).max(&4);
940 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
941 let mut param_idx = 0;
942
943 for qubit in 0..num_qubits {
945 if param_idx < parameters.len() {
946 circuit.add_gate(InterfaceGate::new(
947 InterfaceGateType::RY(parameters[param_idx]),
948 vec![qubit],
949 ));
950 param_idx += 1;
951 }
952 }
953
954 for (layer_idx, &layer_size) in hidden_layers.iter().enumerate() {
956 for neuron in 0..layer_size.min(num_qubits) {
957 match activation_type {
959 QuantumActivation::RotationActivation => {
960 if param_idx < parameters.len() {
961 circuit.add_gate(InterfaceGate::new(
962 InterfaceGateType::RY(parameters[param_idx]),
963 vec![neuron],
964 ));
965 param_idx += 1;
966 }
967 }
968 QuantumActivation::ControlledRotation => {
969 if neuron > 0 && param_idx < parameters.len() {
970 circuit.add_gate(InterfaceGate::new(
971 InterfaceGateType::CRY(parameters[param_idx]),
972 vec![neuron - 1, neuron],
973 ));
974 param_idx += 1;
975 }
976 }
977 QuantumActivation::EntanglingActivation => {
978 if neuron < num_qubits - 1 {
979 circuit.add_gate(InterfaceGate::new(
980 InterfaceGateType::CNOT,
981 vec![neuron, neuron + 1],
982 ));
983 }
984 }
985 QuantumActivation::QuantumReLU => {
986 if param_idx < parameters.len() {
988 circuit.add_gate(InterfaceGate::new(
989 InterfaceGateType::RY(parameters[param_idx].max(0.0)),
990 vec![neuron],
991 ));
992 param_idx += 1;
993 }
994 }
995 }
996
997 match connectivity {
999 NetworkConnectivity::FullyConnected => {
1000 for other in 0..num_qubits {
1001 if other != neuron {
1002 circuit.add_gate(InterfaceGate::new(
1003 InterfaceGateType::CNOT,
1004 vec![neuron, other],
1005 ));
1006 }
1007 }
1008 }
1009 NetworkConnectivity::NearestNeighbor => {
1010 if neuron > 0 {
1011 circuit.add_gate(InterfaceGate::new(
1012 InterfaceGateType::CNOT,
1013 vec![neuron - 1, neuron],
1014 ));
1015 }
1016 if neuron < num_qubits - 1 {
1017 circuit.add_gate(InterfaceGate::new(
1018 InterfaceGateType::CNOT,
1019 vec![neuron, neuron + 1],
1020 ));
1021 }
1022 }
1023 _ => {
1024 }
1026 }
1027 }
1028 }
1029
1030 Ok(circuit)
1031 }
1032
1033 fn generate_tensor_network_circuit(
1035 &self,
1036 parameters: &[f64],
1037 bond_dimension: usize,
1038 network_topology: &TensorTopology,
1039 compression_method: &CompressionMethod,
1040 ) -> Result<InterfaceCircuit> {
1041 let num_qubits = (parameters.len() as f64).sqrt().ceil() as usize;
1042 let mut circuit = InterfaceCircuit::new(num_qubits, 0);
1043 let mut param_idx = 0;
1044
1045 match network_topology {
1046 TensorTopology::MPS => {
1047 for qubit in 0..num_qubits {
1049 if param_idx < parameters.len() {
1050 circuit.add_gate(InterfaceGate::new(
1051 InterfaceGateType::RY(parameters[param_idx]),
1052 vec![qubit],
1053 ));
1054 param_idx += 1;
1055 }
1056
1057 if qubit < num_qubits - 1 {
1058 circuit.add_gate(InterfaceGate::new(
1059 InterfaceGateType::CNOT,
1060 vec![qubit, qubit + 1],
1061 ));
1062
1063 if param_idx < parameters.len() {
1064 circuit.add_gate(InterfaceGate::new(
1065 InterfaceGateType::RY(parameters[param_idx]),
1066 vec![qubit + 1],
1067 ));
1068 param_idx += 1;
1069 }
1070 }
1071 }
1072 }
1073 TensorTopology::MERA => {
1074 let mut current_level = num_qubits;
1076 while current_level > 1 {
1077 for i in (0..current_level).step_by(2) {
1078 if i + 1 < current_level && param_idx < parameters.len() {
1079 circuit.add_gate(InterfaceGate::new(
1080 InterfaceGateType::RY(parameters[param_idx]),
1081 vec![i],
1082 ));
1083 param_idx += 1;
1084 circuit.add_gate(InterfaceGate::new(
1085 InterfaceGateType::CNOT,
1086 vec![i, i + 1],
1087 ));
1088 }
1089 }
1090 current_level = (current_level + 1) / 2;
1091 }
1092 }
1093 _ => {
1094 return Err(SimulatorError::UnsupportedOperation(format!(
1096 "Tensor network topology {:?} not implemented",
1097 network_topology
1098 )));
1099 }
1100 }
1101
1102 Ok(circuit)
1103 }
1104
1105 fn update_parameters(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1107 match self.config.optimizer {
1108 AdvancedOptimizerType::SPSA => self.update_spsa(gradient),
1109 AdvancedOptimizerType::QuantumAdam => self.update_quantum_adam(gradient),
1110 AdvancedOptimizerType::NaturalGradient => self.update_natural_gradient(gradient),
1111 AdvancedOptimizerType::QuantumNaturalGradient => {
1112 self.update_quantum_natural_gradient(gradient)
1113 }
1114 AdvancedOptimizerType::LBFGS => self.update_lbfgs(gradient),
1115 AdvancedOptimizerType::BayesianOptimization => self.update_bayesian(gradient),
1116 AdvancedOptimizerType::ReinforcementLearning => {
1117 self.update_reinforcement_learning(gradient)
1118 }
1119 AdvancedOptimizerType::EvolutionaryStrategy => {
1120 self.update_evolutionary_strategy(gradient)
1121 }
1122 AdvancedOptimizerType::QuantumParticleSwarm => {
1123 self.update_quantum_particle_swarm(gradient)
1124 }
1125 AdvancedOptimizerType::MetaLearningOptimizer => self.update_meta_learning(gradient),
1126 }
1127 }
1128
1129 fn update_spsa(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1131 let learning_rate = self.state.learning_rate;
1132 let mut updates = Vec::new();
1133
1134 for i in 0..self.state.parameters.len() {
1136 let perturbation = if rand::random::<f64>() > 0.5 {
1137 1.0
1138 } else {
1139 -1.0
1140 };
1141 let update = learning_rate * perturbation;
1142 self.state.parameters[i] += update;
1143 updates.push(update);
1144 }
1145
1146 Ok(updates)
1147 }
1148
1149 fn update_quantum_adam(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1151 let beta1 = 0.9;
1152 let beta2 = 0.999;
1153 let epsilon = 1e-8;
1154 let learning_rate = self.state.learning_rate;
1155 let mut updates = Vec::new();
1156
1157 for i in 0..self.state.parameters.len() {
1158 self.state.optimizer_state.momentum[i] =
1160 beta1 * self.state.optimizer_state.momentum[i] + (1.0 - beta1) * gradient[i];
1161
1162 self.state.optimizer_state.velocity[i] = beta2 * self.state.optimizer_state.velocity[i]
1164 + (1.0 - beta2) * gradient[i].powi(2);
1165
1166 let m_hat = self.state.optimizer_state.momentum[i]
1168 / (1.0 - beta1.powi(self.state.iteration as i32 + 1));
1169
1170 let v_hat = self.state.optimizer_state.velocity[i]
1172 / (1.0 - beta2.powi(self.state.iteration as i32 + 1));
1173
1174 let quantum_factor = 1.0 / (1.0 + 0.1 * (self.state.iteration as f64).sqrt());
1176 let effective_lr = learning_rate * quantum_factor;
1177
1178 let update = effective_lr * m_hat / (v_hat.sqrt() + epsilon);
1180 self.state.parameters[i] -= update;
1181 updates.push(update);
1182 }
1183
1184 Ok(updates)
1185 }
1186
1187 fn update_natural_gradient(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1189 if self.state.optimizer_state.fisher_matrix.is_none() {
1191 self.state.optimizer_state.fisher_matrix =
1192 Some(self.compute_fisher_information_matrix()?);
1193 }
1194
1195 let fisher_matrix = self.state.optimizer_state.fisher_matrix.as_ref().unwrap();
1196
1197 let natural_gradient = self.solve_linear_system(fisher_matrix, gradient)?;
1199
1200 let mut updates = Vec::new();
1201 for i in 0..self.state.parameters.len() {
1202 let update = self.state.learning_rate * natural_gradient[i];
1203 self.state.parameters[i] -= update;
1204 updates.push(update);
1205 }
1206
1207 Ok(updates)
1208 }
1209
1210 fn update_quantum_natural_gradient(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1212 let qfi_matrix = self.compute_quantum_fisher_information_matrix()?;
1214
1215 let regularized_qfi = self.regularize_matrix(&qfi_matrix, 1e-6)?;
1217
1218 let natural_gradient = self.solve_linear_system(®ularized_qfi, gradient)?;
1219
1220 let mut updates = Vec::new();
1221 for i in 0..self.state.parameters.len() {
1222 let update = self.state.learning_rate * natural_gradient[i];
1223 self.state.parameters[i] -= update;
1224 updates.push(update);
1225 }
1226
1227 Ok(updates)
1228 }
1229
1230 fn update_lbfgs(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1232 let max_history = 10;
1233
1234 if !self.state.optimizer_state.lbfgs_history.is_empty() {
1236 let (prev_params, prev_grad) = self.state.optimizer_state.lbfgs_history.back().unwrap();
1237 let s = self
1238 .state
1239 .parameters
1240 .iter()
1241 .zip(prev_params)
1242 .map(|(x, px)| x - px)
1243 .collect::<Vec<_>>();
1244 let y = gradient
1245 .iter()
1246 .zip(prev_grad)
1247 .map(|(g, pg)| g - pg)
1248 .collect::<Vec<_>>();
1249
1250 self.state.optimizer_state.lbfgs_history.push_back((s, y));
1251
1252 if self.state.optimizer_state.lbfgs_history.len() > max_history {
1253 self.state.optimizer_state.lbfgs_history.pop_front();
1254 }
1255 }
1256
1257 let mut q = gradient.to_vec();
1259 let mut alphas = Vec::new();
1260
1261 for (s, y) in self.state.optimizer_state.lbfgs_history.iter().rev() {
1263 let sy = s.iter().zip(y).map(|(si, yi)| si * yi).sum::<f64>();
1264 if sy.abs() > 1e-10 {
1265 let alpha = s.iter().zip(&q).map(|(si, qi)| si * qi).sum::<f64>() / sy;
1266 alphas.push(alpha);
1267 for i in 0..q.len() {
1268 q[i] -= alpha * y[i];
1269 }
1270 } else {
1271 alphas.push(0.0);
1272 }
1273 }
1274
1275 alphas.reverse();
1280 for ((s, y), alpha) in self
1281 .state
1282 .optimizer_state
1283 .lbfgs_history
1284 .iter()
1285 .zip(alphas.iter())
1286 {
1287 let sy = s.iter().zip(y).map(|(si, yi)| si * yi).sum::<f64>();
1288 if sy.abs() > 1e-10 {
1289 let beta = y.iter().zip(&q).map(|(yi, qi)| yi * qi).sum::<f64>() / sy;
1290 for i in 0..q.len() {
1291 q[i] += (alpha - beta) * s[i];
1292 }
1293 }
1294 }
1295
1296 let mut updates = Vec::new();
1298 for i in 0..self.state.parameters.len() {
1299 let update = self.state.learning_rate * q[i];
1300 self.state.parameters[i] -= update;
1301 updates.push(update);
1302 }
1303
1304 self.state
1306 .optimizer_state
1307 .lbfgs_history
1308 .push_back((self.state.parameters.clone(), gradient.to_vec()));
1309
1310 Ok(updates)
1311 }
1312
1313 fn update_bayesian(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1315 if self.state.optimizer_state.bayesian_model.is_none() {
1317 self.state.optimizer_state.bayesian_model = Some(BayesianModel {
1318 kernel_hyperparameters: vec![1.0, 1.0], observed_points: Vec::new(),
1320 observed_values: Vec::new(),
1321 acquisition_function: AcquisitionFunction::ExpectedImprovement,
1322 });
1323 }
1324
1325 if let Some(ref mut model) = self.state.optimizer_state.bayesian_model {
1327 model.observed_points.push(self.state.parameters.clone());
1328 model.observed_values.push(self.state.current_cost);
1329 }
1330
1331 let next_parameters = self
1333 .state
1334 .parameters
1335 .iter()
1336 .map(|p| p + (rand::random::<f64>() - 0.5) * 0.1)
1337 .collect::<Vec<_>>();
1338
1339 let updates = next_parameters
1340 .iter()
1341 .zip(&self.state.parameters)
1342 .map(|(new, old)| new - old)
1343 .collect();
1344
1345 self.state.parameters = next_parameters;
1346
1347 Ok(updates)
1348 }
1349
1350 fn update_reinforcement_learning(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1352 let reward = -self.state.current_cost; let baseline = self.compute_baseline_reward()?;
1355 let advantage = reward - baseline;
1356
1357 let mut updates = Vec::new();
1358 for i in 0..self.state.parameters.len() {
1359 let update = self.state.learning_rate * gradient[i] * advantage;
1361 self.state.parameters[i] += update;
1362 updates.push(update);
1363 }
1364
1365 Ok(updates)
1366 }
1367
1368 fn update_evolutionary_strategy(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1370 let population_size = 20;
1371 let sigma = 0.1; let mut population = Vec::new();
1373 let mut fitness_values = Vec::new();
1374
1375 for _ in 0..population_size {
1377 let mut candidate = self.state.parameters.clone();
1378 for param in &mut candidate {
1379 *param += sigma * (rand::random::<f64>() - 0.5) * 2.0;
1380 }
1381 population.push(candidate);
1382 }
1383
1384 for candidate in &population {
1386 let circuit = self.generate_circuit(candidate)?;
1387 let fitness = -self.cost_function.evaluate(candidate, &circuit)?; fitness_values.push(fitness);
1389 }
1390
1391 let mut indices: Vec<usize> = (0..population_size).collect();
1393 indices.sort_by(|&a, &b| fitness_values[b].partial_cmp(&fitness_values[a]).unwrap());
1394
1395 let top_n = population_size / 4;
1397 let mut new_parameters = vec![0.0; self.state.parameters.len()];
1398 let mut total_weight = 0.0;
1399
1400 for &idx in indices.iter().take(top_n) {
1401 let weight = fitness_values[idx];
1402 total_weight += weight;
1403 for i in 0..new_parameters.len() {
1404 new_parameters[i] += weight * population[idx][i];
1405 }
1406 }
1407
1408 for param in &mut new_parameters {
1409 *param /= total_weight;
1410 }
1411
1412 let updates = new_parameters
1413 .iter()
1414 .zip(&self.state.parameters)
1415 .map(|(new, old)| new - old)
1416 .collect();
1417
1418 self.state.parameters = new_parameters;
1419
1420 Ok(updates)
1421 }
1422
1423 fn update_quantum_particle_swarm(&mut self, _gradient: &[f64]) -> Result<Vec<f64>> {
1425 let inertia = 0.9;
1427 let cognitive = 2.0;
1428 let social = 2.0;
1429
1430 for i in 0..self.state.parameters.len() {
1432 let quantum_factor = (2.0 * std::f64::consts::PI * rand::random::<f64>())
1433 .cos()
1434 .abs();
1435
1436 self.state.optimizer_state.momentum[i] = inertia
1438 * self.state.optimizer_state.momentum[i]
1439 + cognitive
1440 * rand::random::<f64>()
1441 * (self.state.best_parameters[i] - self.state.parameters[i])
1442 * quantum_factor
1443 + social
1444 * rand::random::<f64>()
1445 * (self.state.best_parameters[i] - self.state.parameters[i]);
1446 }
1447
1448 let mut updates = Vec::new();
1450 for i in 0..self.state.parameters.len() {
1451 let update = self.state.optimizer_state.momentum[i];
1452 self.state.parameters[i] += update;
1453 updates.push(update);
1454 }
1455
1456 Ok(updates)
1457 }
1458
1459 fn update_meta_learning(&mut self, gradient: &[f64]) -> Result<Vec<f64>> {
1461 let gradient_norm = gradient.iter().map(|g| g.powi(2)).sum::<f64>().sqrt();
1463
1464 if self.state.iteration > 10 {
1466 let recent_gradients = &self.stats.parameter_update_magnitudes;
1467 let recent_avg = recent_gradients.iter().rev().take(5).sum::<f64>() / 5.0;
1468
1469 if gradient_norm > 2.0 * recent_avg {
1470 self.state.learning_rate *= 0.8; } else if gradient_norm < 0.5 * recent_avg {
1472 self.state.learning_rate *= 1.1; }
1474 }
1475
1476 self.update_quantum_adam(gradient)
1478 }
1479
1480 fn count_parameters(ansatz: &VariationalAnsatz) -> Result<usize> {
1482 match ansatz {
1483 VariationalAnsatz::HardwareEfficient {
1484 layers,
1485 rotation_gates,
1486 ..
1487 } => {
1488 Ok(layers * rotation_gates.len() * 4) }
1491 VariationalAnsatz::UCCSD {
1492 num_electrons,
1493 num_orbitals,
1494 include_triples,
1495 } => {
1496 let singles = num_electrons * (2 * num_orbitals - num_electrons);
1497 let doubles = num_electrons
1498 * (num_electrons - 1)
1499 * (2 * num_orbitals - num_electrons)
1500 * (2 * num_orbitals - num_electrons - 1)
1501 / 4;
1502 let triples = if *include_triples { doubles / 10 } else { 0 }; Ok(singles + doubles + triples)
1504 }
1505 VariationalAnsatz::QAOA { layers, .. } => {
1506 Ok(2 * layers) }
1508 VariationalAnsatz::Adaptive { max_layers, .. } => Ok(*max_layers),
1509 VariationalAnsatz::QuantumNeuralNetwork { hidden_layers, .. } => {
1510 Ok(hidden_layers.iter().sum::<usize>())
1511 }
1512 VariationalAnsatz::TensorNetworkAnsatz { bond_dimension, .. } => {
1513 Ok(bond_dimension * 4) }
1515 }
1516 }
1517
1518 fn initialize_parameters(num_parameters: usize, config: &VQAConfig) -> Result<Vec<f64>> {
1519 let mut parameters = Vec::with_capacity(num_parameters);
1520
1521 for _ in 0..num_parameters {
1522 let param = if let Some((min, max)) = config.parameter_bounds {
1523 min + (max - min) * rand::random::<f64>()
1524 } else {
1525 (rand::random::<f64>() - 0.5) * 2.0 * std::f64::consts::PI
1526 };
1527 parameters.push(param);
1528 }
1529
1530 Ok(parameters)
1531 }
1532
1533 fn infer_num_qubits_from_parameters(&self, num_params: usize, layers: usize) -> Result<usize> {
1534 Ok((num_params as f64 / layers as f64).sqrt().ceil() as usize)
1536 }
1537
1538 fn extract_num_qubits_from_hamiltonian(
1539 &self,
1540 hamiltonian: &ProblemHamiltonian,
1541 ) -> Result<usize> {
1542 Ok(hamiltonian
1543 .terms
1544 .iter()
1545 .flat_map(|term| &term.qubits)
1546 .max()
1547 .unwrap_or(&0)
1548 + 1)
1549 }
1550
1551 fn infer_num_qubits_from_pool(&self, operator_pool: &[InterfaceGate]) -> Result<usize> {
1552 Ok(operator_pool
1553 .iter()
1554 .flat_map(|gate| &gate.qubits)
1555 .max()
1556 .unwrap_or(&0)
1557 + 1)
1558 }
1559
1560 fn determine_adaptive_layers(
1561 &self,
1562 max_layers: usize,
1563 _growth_criterion: &GrowthCriterion,
1564 ) -> Result<usize> {
1565 let current_layers = (self.state.iteration / 10).min(max_layers);
1567 Ok(current_layers.max(1))
1568 }
1569
1570 fn simulate_circuit(&self, circuit: &InterfaceCircuit) -> Result<Array1<Complex64>> {
1571 let state_size = 1 << circuit.num_qubits;
1573 let mut state = Array1::zeros(state_size);
1574 state[0] = Complex64::new(1.0, 0.0); Ok(state)
1576 }
1577
1578 fn calculate_expectation_values(
1579 &self,
1580 _state: &Array1<Complex64>,
1581 ) -> Result<HashMap<String, f64>> {
1582 let mut expectations = HashMap::new();
1583
1584 for observable in self.cost_function.get_observables() {
1585 expectations.insert(observable, 0.0);
1587 }
1588
1589 Ok(expectations)
1590 }
1591
1592 fn compute_fisher_information_matrix(&self) -> Result<Array2<f64>> {
1593 let n = self.state.parameters.len();
1594 Ok(Array2::eye(n)) }
1596
1597 fn compute_quantum_fisher_information_matrix(&self) -> Result<Array2<f64>> {
1598 let n = self.state.parameters.len();
1599 Ok(Array2::eye(n)) }
1601
1602 fn regularize_matrix(&self, matrix: &Array2<f64>, regularization: f64) -> Result<Array2<f64>> {
1603 let mut regularized = matrix.clone();
1604 for i in 0..matrix.nrows() {
1605 regularized[[i, i]] += regularization;
1606 }
1607 Ok(regularized)
1608 }
1609
1610 fn solve_linear_system(&self, matrix: &Array2<f64>, rhs: &[f64]) -> Result<Vec<f64>> {
1611 Ok(rhs.to_vec())
1613 }
1614
1615 fn optimize_acquisition_function(&self, _model: &BayesianModel) -> Result<Vec<f64>> {
1616 Ok(self.state.parameters.clone())
1618 }
1619
1620 fn compute_baseline_reward(&self) -> Result<f64> {
1621 Ok(0.0)
1623 }
1624}
1625
1626pub struct IsingCostFunction {
1629 pub problem_hamiltonian: ProblemHamiltonian,
1630}
1631
1632impl CostFunction for IsingCostFunction {
1633 fn evaluate(&self, _parameters: &[f64], circuit: &InterfaceCircuit) -> Result<f64> {
1634 let num_qubits = circuit.num_qubits;
1636 let mut cost = 0.0;
1637
1638 for term in &self.problem_hamiltonian.terms {
1640 match term.pauli_string.as_str() {
1641 "ZZ" if term.qubits.len() == 2 => {
1642 cost += term.coefficient.re; }
1644 "Z" if term.qubits.len() == 1 => {
1645 cost += term.coefficient.re; }
1647 _ => {}
1648 }
1649 }
1650
1651 Ok(cost)
1652 }
1653
1654 fn get_observables(&self) -> Vec<String> {
1655 self.problem_hamiltonian
1656 .terms
1657 .iter()
1658 .map(|term| term.pauli_string.clone())
1659 .collect()
1660 }
1661
1662 fn is_variational(&self) -> bool {
1663 true
1664 }
1665}
1666
1667pub struct FiniteDifferenceGradient {
1670 pub epsilon: f64,
1671}
1672
1673impl GradientCalculator for FiniteDifferenceGradient {
1674 fn calculate_gradient(
1675 &self,
1676 parameters: &[f64],
1677 cost_function: &dyn CostFunction,
1678 circuit: &InterfaceCircuit,
1679 ) -> Result<Vec<f64>> {
1680 let mut gradient = Vec::with_capacity(parameters.len());
1681
1682 for i in 0..parameters.len() {
1683 let mut params_plus = parameters.to_vec();
1684 let mut params_minus = parameters.to_vec();
1685
1686 params_plus[i] += self.epsilon;
1687 params_minus[i] -= self.epsilon;
1688
1689 let cost_plus = cost_function.evaluate(¶ms_plus, circuit)?;
1691 let cost_minus = cost_function.evaluate(¶ms_minus, circuit)?;
1692
1693 let grad = (cost_plus - cost_minus) / (2.0 * self.epsilon);
1694 gradient.push(grad);
1695 }
1696
1697 Ok(gradient)
1698 }
1699
1700 fn method_name(&self) -> &str {
1701 "FiniteDifference"
1702 }
1703}
1704
1705pub struct ParameterShiftGradient;
1707
1708impl GradientCalculator for ParameterShiftGradient {
1709 fn calculate_gradient(
1710 &self,
1711 parameters: &[f64],
1712 cost_function: &dyn CostFunction,
1713 circuit: &InterfaceCircuit,
1714 ) -> Result<Vec<f64>> {
1715 let shift = std::f64::consts::PI / 2.0;
1716 let mut gradient = Vec::with_capacity(parameters.len());
1717
1718 for i in 0..parameters.len() {
1719 let mut params_plus = parameters.to_vec();
1720 let mut params_minus = parameters.to_vec();
1721
1722 params_plus[i] += shift;
1723 params_minus[i] -= shift;
1724
1725 let cost_plus = cost_function.evaluate(¶ms_plus, circuit)?;
1727 let cost_minus = cost_function.evaluate(¶ms_minus, circuit)?;
1728
1729 let grad = (cost_plus - cost_minus) / 2.0;
1730 gradient.push(grad);
1731 }
1732
1733 Ok(gradient)
1734 }
1735
1736 fn method_name(&self) -> &str {
1737 "ParameterShift"
1738 }
1739}
1740
1741pub fn benchmark_advanced_vqa() -> Result<HashMap<String, f64>> {
1743 let mut results = HashMap::new();
1744
1745 let start = Instant::now();
1747 let ansatz = VariationalAnsatz::HardwareEfficient {
1748 layers: 3,
1749 entangling_gates: vec![InterfaceGateType::CNOT],
1750 rotation_gates: vec![InterfaceGateType::RY(0.0)],
1751 };
1752
1753 let config = VQAConfig::default();
1754 let cost_function = Box::new(IsingCostFunction {
1755 problem_hamiltonian: ProblemHamiltonian {
1756 terms: vec![HamiltonianTerm {
1757 coefficient: Complex64::new(-1.0, 0.0),
1758 pauli_string: "ZZ".to_string(),
1759 qubits: vec![0, 1],
1760 }],
1761 problem_type: OptimizationProblemType::MaxCut,
1762 },
1763 });
1764 let gradient_calculator = Box::new(FiniteDifferenceGradient { epsilon: 1e-4 });
1765
1766 let mut trainer = AdvancedVQATrainer::new(config, ansatz, cost_function, gradient_calculator)?;
1767 let _result = trainer.train()?;
1768
1769 let hardware_efficient_time = start.elapsed().as_millis() as f64;
1770 results.insert(
1771 "hardware_efficient_vqa".to_string(),
1772 hardware_efficient_time,
1773 );
1774
1775 Ok(results)
1776}
1777
1778#[cfg(test)]
1779mod tests {
1780 use super::*;
1781
1782 #[test]
1783 fn test_vqa_trainer_creation() {
1784 let ansatz = VariationalAnsatz::HardwareEfficient {
1785 layers: 2,
1786 entangling_gates: vec![InterfaceGateType::CNOT],
1787 rotation_gates: vec![InterfaceGateType::RY(0.0)],
1788 };
1789
1790 let config = VQAConfig::default();
1791 let cost_function = Box::new(IsingCostFunction {
1792 problem_hamiltonian: ProblemHamiltonian {
1793 terms: vec![],
1794 problem_type: OptimizationProblemType::MaxCut,
1795 },
1796 });
1797 let gradient_calculator = Box::new(FiniteDifferenceGradient { epsilon: 1e-4 });
1798
1799 let trainer = AdvancedVQATrainer::new(config, ansatz, cost_function, gradient_calculator);
1800 assert!(trainer.is_ok());
1801 }
1802
1803 #[test]
1804 fn test_parameter_counting() {
1805 let ansatz = VariationalAnsatz::HardwareEfficient {
1806 layers: 3,
1807 entangling_gates: vec![InterfaceGateType::CNOT],
1808 rotation_gates: vec![InterfaceGateType::RY(0.0)],
1809 };
1810
1811 let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1812 assert!(count > 0);
1813 }
1814
1815 #[test]
1816 fn test_uccsd_ansatz() {
1817 let ansatz = VariationalAnsatz::UCCSD {
1818 num_electrons: 2,
1819 num_orbitals: 4,
1820 include_triples: false,
1821 };
1822
1823 let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1824 assert!(count > 0);
1825 }
1826
1827 #[test]
1828 fn test_qaoa_ansatz() {
1829 let ansatz = VariationalAnsatz::QAOA {
1830 problem_hamiltonian: ProblemHamiltonian {
1831 terms: vec![],
1832 problem_type: OptimizationProblemType::MaxCut,
1833 },
1834 mixer_hamiltonian: MixerHamiltonian {
1835 terms: vec![],
1836 mixer_type: MixerType::XMixer,
1837 },
1838 layers: 3,
1839 };
1840
1841 let count = AdvancedVQATrainer::count_parameters(&ansatz).unwrap();
1842 assert_eq!(count, 6); }
1844
1845 #[test]
1846 fn test_finite_difference_gradient() {
1847 let gradient_calc = FiniteDifferenceGradient { epsilon: 1e-4 };
1848 assert_eq!(gradient_calc.method_name(), "FiniteDifference");
1849 }
1850
1851 #[test]
1852 fn test_parameter_shift_gradient() {
1853 let gradient_calc = ParameterShiftGradient;
1854 assert_eq!(gradient_calc.method_name(), "ParameterShift");
1855 }
1856
1857 #[test]
1858 fn test_ising_cost_function() {
1859 let cost_function = IsingCostFunction {
1860 problem_hamiltonian: ProblemHamiltonian {
1861 terms: vec![HamiltonianTerm {
1862 coefficient: Complex64::new(-1.0, 0.0),
1863 pauli_string: "ZZ".to_string(),
1864 qubits: vec![0, 1],
1865 }],
1866 problem_type: OptimizationProblemType::MaxCut,
1867 },
1868 };
1869
1870 assert!(cost_function.is_variational());
1871 assert!(!cost_function.get_observables().is_empty());
1872 }
1873
1874 #[test]
1875 fn test_optimizer_types() {
1876 let optimizers = [
1877 AdvancedOptimizerType::SPSA,
1878 AdvancedOptimizerType::QuantumAdam,
1879 AdvancedOptimizerType::NaturalGradient,
1880 AdvancedOptimizerType::BayesianOptimization,
1881 ];
1882
1883 for optimizer in &optimizers {
1884 println!("Testing optimizer: {:?}", optimizer);
1885 }
1886 }
1887}