quantrs2_sim/
advanced_ml_error_mitigation.rs

1//! Advanced Machine Learning Error Mitigation Techniques
2//!
3//! This module implements state-of-the-art machine learning approaches for quantum error mitigation,
4//! going beyond traditional ZNE and virtual distillation. It includes deep learning models,
5//! reinforcement learning agents, transfer learning capabilities, and ensemble methods for
6//! robust quantum error mitigation across different hardware platforms and noise models.
7//!
8//! Key features:
9//! - Deep neural networks for complex noise pattern learning
10//! - Reinforcement learning for optimal mitigation strategy selection
11//! - Transfer learning for cross-device mitigation optimization
12//! - Adversarial training for robustness against unknown noise
13//! - Ensemble methods combining multiple mitigation strategies
14//! - Online learning for real-time adaptation to drifting noise
15//! - Graph neural networks for circuit structure-aware mitigation
16//! - Attention mechanisms for long-range error correlations
17
18use ndarray::{Array1, Array2, Array3};
19use rand::{thread_rng, Rng};
20use serde::{Deserialize, Serialize};
21use std::collections::{HashMap, VecDeque};
22
23use crate::circuit_interfaces::{InterfaceCircuit, InterfaceGate, InterfaceGateType};
24use crate::error::{Result, SimulatorError};
25
26/// Advanced ML error mitigation configuration
27#[derive(Debug, Clone)]
28pub struct AdvancedMLMitigationConfig {
29    /// Enable deep learning models
30    pub enable_deep_learning: bool,
31    /// Enable reinforcement learning
32    pub enable_reinforcement_learning: bool,
33    /// Enable transfer learning
34    pub enable_transfer_learning: bool,
35    /// Enable adversarial training
36    pub enable_adversarial_training: bool,
37    /// Enable ensemble methods
38    pub enable_ensemble_methods: bool,
39    /// Enable online learning
40    pub enable_online_learning: bool,
41    /// Learning rate for adaptive methods
42    pub learning_rate: f64,
43    /// Batch size for training
44    pub batch_size: usize,
45    /// Memory size for experience replay
46    pub memory_size: usize,
47    /// Exploration rate for RL
48    pub exploration_rate: f64,
49    /// Transfer learning alpha
50    pub transfer_alpha: f64,
51    /// Ensemble size
52    pub ensemble_size: usize,
53}
54
55impl Default for AdvancedMLMitigationConfig {
56    fn default() -> Self {
57        Self {
58            enable_deep_learning: true,
59            enable_reinforcement_learning: true,
60            enable_transfer_learning: false,
61            enable_adversarial_training: false,
62            enable_ensemble_methods: true,
63            enable_online_learning: true,
64            learning_rate: 0.001,
65            batch_size: 64,
66            memory_size: 10000,
67            exploration_rate: 0.1,
68            transfer_alpha: 0.5,
69            ensemble_size: 5,
70        }
71    }
72}
73
74/// Deep learning model for error mitigation
75#[derive(Debug, Clone)]
76pub struct DeepMitigationNetwork {
77    /// Network architecture
78    pub layers: Vec<usize>,
79    /// Weights for each layer
80    pub weights: Vec<Array2<f64>>,
81    /// Biases for each layer
82    pub biases: Vec<Array1<f64>>,
83    /// Activation function
84    pub activation: ActivationFunction,
85    /// Loss history
86    pub loss_history: Vec<f64>,
87}
88
89/// Activation functions for neural networks
90#[derive(Debug, Clone, Copy, PartialEq, Eq)]
91pub enum ActivationFunction {
92    ReLU,
93    Sigmoid,
94    Tanh,
95    Swish,
96    GELU,
97}
98
99/// Reinforcement learning agent for mitigation strategy selection
100#[derive(Debug, Clone)]
101pub struct QLearningMitigationAgent {
102    /// Q-table for state-action values
103    pub q_table: HashMap<String, HashMap<MitigationAction, f64>>,
104    /// Learning rate
105    pub learning_rate: f64,
106    /// Discount factor
107    pub discount_factor: f64,
108    /// Exploration rate
109    pub exploration_rate: f64,
110    /// Experience replay buffer
111    pub experience_buffer: VecDeque<Experience>,
112    /// Training statistics
113    pub stats: RLTrainingStats,
114}
115
116/// Mitigation actions for reinforcement learning
117#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
118pub enum MitigationAction {
119    ZeroNoiseExtrapolation,
120    VirtualDistillation,
121    SymmetryVerification,
122    PauliTwirling,
123    RandomizedCompiling,
124    ClusterExpansion,
125    MachineLearningPrediction,
126    EnsembleMitigation,
127}
128
129/// Experience for reinforcement learning
130#[derive(Debug, Clone)]
131pub struct Experience {
132    /// State representation
133    pub state: Array1<f64>,
134    /// Action taken
135    pub action: MitigationAction,
136    /// Reward received
137    pub reward: f64,
138    /// Next state
139    pub next_state: Array1<f64>,
140    /// Whether episode terminated
141    pub done: bool,
142}
143
144/// Reinforcement learning training statistics
145#[derive(Debug, Clone, Default)]
146pub struct RLTrainingStats {
147    /// Total episodes
148    pub episodes: usize,
149    /// Average reward per episode
150    pub avg_reward: f64,
151    /// Success rate
152    pub success_rate: f64,
153    /// Exploration rate decay
154    pub exploration_decay: f64,
155    /// Loss convergence
156    pub loss_convergence: Vec<f64>,
157}
158
159/// Transfer learning model for cross-device mitigation
160#[derive(Debug, Clone)]
161pub struct TransferLearningModel {
162    /// Source device characteristics
163    pub source_device: DeviceCharacteristics,
164    /// Target device characteristics
165    pub target_device: DeviceCharacteristics,
166    /// Shared feature extractor
167    pub feature_extractor: DeepMitigationNetwork,
168    /// Device-specific heads
169    pub device_heads: HashMap<String, DeepMitigationNetwork>,
170    /// Transfer learning alpha
171    pub transfer_alpha: f64,
172    /// Adaptation statistics
173    pub adaptation_stats: TransferStats,
174}
175
176/// Device characteristics for transfer learning
177#[derive(Debug, Clone)]
178pub struct DeviceCharacteristics {
179    /// Device identifier
180    pub device_id: String,
181    /// Gate error rates
182    pub gate_errors: HashMap<String, f64>,
183    /// Coherence times
184    pub coherence_times: HashMap<String, f64>,
185    /// Connectivity graph
186    pub connectivity: Array2<bool>,
187    /// Noise correlations
188    pub noise_correlations: Array2<f64>,
189}
190
191/// Transfer learning statistics
192#[derive(Debug, Clone, Default)]
193pub struct TransferStats {
194    /// Adaptation loss
195    pub adaptation_loss: f64,
196    /// Source domain performance
197    pub source_performance: f64,
198    /// Target domain performance
199    pub target_performance: f64,
200    /// Transfer efficiency
201    pub transfer_efficiency: f64,
202}
203
204/// Ensemble mitigation combining multiple strategies
205pub struct EnsembleMitigation {
206    /// Individual mitigation models
207    pub models: Vec<Box<dyn MitigationModel>>,
208    /// Model weights
209    pub weights: Array1<f64>,
210    /// Combination strategy
211    pub combination_strategy: EnsembleStrategy,
212    /// Performance history
213    pub performance_history: Vec<f64>,
214}
215
216/// Ensemble combination strategies
217#[derive(Debug, Clone, Copy, PartialEq, Eq)]
218pub enum EnsembleStrategy {
219    /// Weighted average
220    WeightedAverage,
221    /// Majority voting
222    MajorityVoting,
223    /// Stacking with meta-learner
224    Stacking,
225    /// Dynamic selection
226    DynamicSelection,
227    /// Bayesian model averaging
228    BayesianAveraging,
229}
230
231/// Trait for mitigation models
232pub trait MitigationModel: Send + Sync {
233    /// Apply mitigation to measurement results
234    fn mitigate(&self, measurements: &Array1<f64>, circuit: &InterfaceCircuit) -> Result<f64>;
235
236    /// Update model with new data
237    fn update(&mut self, training_data: &[(Array1<f64>, f64)]) -> Result<()>;
238
239    /// Get model confidence
240    fn confidence(&self) -> f64;
241
242    /// Get model name
243    fn name(&self) -> String;
244}
245
246/// Advanced ML error mitigation result
247#[derive(Debug, Clone, Serialize, Deserialize)]
248pub struct AdvancedMLMitigationResult {
249    /// Mitigated expectation value
250    pub mitigated_value: f64,
251    /// Confidence in mitigation
252    pub confidence: f64,
253    /// Model used for mitigation
254    pub model_used: String,
255    /// Raw measurements
256    pub raw_measurements: Vec<f64>,
257    /// Mitigation overhead
258    pub overhead: f64,
259    /// Error reduction estimate
260    pub error_reduction: f64,
261    /// Model performance metrics
262    pub performance_metrics: PerformanceMetrics,
263}
264
265/// Performance metrics for mitigation models
266#[derive(Debug, Clone, Default, Serialize, Deserialize)]
267pub struct PerformanceMetrics {
268    /// Mean absolute error
269    pub mae: f64,
270    /// Root mean square error
271    pub rmse: f64,
272    /// R-squared coefficient
273    pub r_squared: f64,
274    /// Bias
275    pub bias: f64,
276    /// Variance
277    pub variance: f64,
278    /// Computational time
279    pub computation_time_ms: f64,
280}
281
282/// Graph Neural Network for circuit-aware mitigation
283#[derive(Debug, Clone)]
284pub struct GraphMitigationNetwork {
285    /// Node features (gates)
286    pub node_features: Array2<f64>,
287    /// Edge features (connections)
288    pub edge_features: Array3<f64>,
289    /// Attention weights
290    pub attention_weights: Array2<f64>,
291    /// Graph convolution layers
292    pub conv_layers: Vec<GraphConvLayer>,
293    /// Global pooling method
294    pub pooling: GraphPooling,
295}
296
297/// Graph convolution layer
298#[derive(Debug, Clone)]
299pub struct GraphConvLayer {
300    /// Weight matrix
301    pub weights: Array2<f64>,
302    /// Bias vector
303    pub bias: Array1<f64>,
304    /// Activation function
305    pub activation: ActivationFunction,
306}
307
308/// Graph pooling methods
309#[derive(Debug, Clone, Copy, PartialEq, Eq)]
310pub enum GraphPooling {
311    Mean,
312    Max,
313    Sum,
314    Attention,
315    Set2Set,
316}
317
318/// Main advanced ML error mitigation system
319pub struct AdvancedMLErrorMitigator {
320    /// Configuration
321    config: AdvancedMLMitigationConfig,
322    /// Deep learning model
323    deep_model: Option<DeepMitigationNetwork>,
324    /// Reinforcement learning agent
325    rl_agent: Option<QLearningMitigationAgent>,
326    /// Transfer learning model
327    transfer_model: Option<TransferLearningModel>,
328    /// Ensemble model
329    ensemble: Option<EnsembleMitigation>,
330    /// Graph neural network
331    graph_model: Option<GraphMitigationNetwork>,
332    /// Training data history
333    training_history: VecDeque<(Array1<f64>, f64)>,
334    /// Performance tracker
335    performance_tracker: PerformanceTracker,
336}
337
338/// Performance tracking for mitigation models
339#[derive(Debug, Clone, Default)]
340pub struct PerformanceTracker {
341    /// Model accuracies over time
342    pub accuracy_history: HashMap<String, Vec<f64>>,
343    /// Computational costs
344    pub cost_history: HashMap<String, Vec<f64>>,
345    /// Error reduction achieved
346    pub error_reduction_history: Vec<f64>,
347    /// Best performing model per task
348    pub best_models: HashMap<String, String>,
349}
350
351impl AdvancedMLErrorMitigator {
352    /// Create new advanced ML error mitigator
353    pub fn new(config: AdvancedMLMitigationConfig) -> Result<Self> {
354        let mut mitigator = Self {
355            config: config.clone(),
356            deep_model: None,
357            rl_agent: None,
358            transfer_model: None,
359            ensemble: None,
360            graph_model: None,
361            training_history: VecDeque::with_capacity(config.memory_size),
362            performance_tracker: PerformanceTracker::default(),
363        };
364
365        // Initialize enabled models
366        if config.enable_deep_learning {
367            mitigator.deep_model = Some(mitigator.create_deep_model()?);
368        }
369
370        if config.enable_reinforcement_learning {
371            mitigator.rl_agent = Some(mitigator.create_rl_agent()?);
372        }
373
374        if config.enable_ensemble_methods {
375            mitigator.ensemble = Some(mitigator.create_ensemble()?);
376        }
377
378        Ok(mitigator)
379    }
380
381    /// Apply advanced ML error mitigation
382    pub fn mitigate_errors(
383        &mut self,
384        measurements: &Array1<f64>,
385        circuit: &InterfaceCircuit,
386    ) -> Result<AdvancedMLMitigationResult> {
387        let start_time = std::time::Instant::now();
388
389        // Extract features from circuit and measurements
390        let features = self.extract_features(circuit, measurements)?;
391
392        // Select best mitigation strategy
393        let strategy = self.select_mitigation_strategy(&features)?;
394
395        // Apply selected mitigation
396        let mitigated_value = match strategy {
397            MitigationAction::MachineLearningPrediction => {
398                self.apply_deep_learning_mitigation(&features, measurements)?
399            }
400            MitigationAction::EnsembleMitigation => {
401                self.apply_ensemble_mitigation(&features, measurements, circuit)?
402            }
403            _ => {
404                // Fall back to traditional methods
405                self.apply_traditional_mitigation(strategy, measurements, circuit)?
406            }
407        };
408
409        // Calculate confidence and performance metrics
410        let confidence = self.calculate_confidence(&features, mitigated_value)?;
411        let error_reduction = self.estimate_error_reduction(measurements, mitigated_value)?;
412
413        let computation_time = start_time.elapsed().as_millis() as f64;
414
415        // Update models with new data
416        self.update_models(&features, mitigated_value)?;
417
418        Ok(AdvancedMLMitigationResult {
419            mitigated_value,
420            confidence,
421            model_used: format!("{:?}", strategy),
422            raw_measurements: measurements.to_vec(),
423            overhead: computation_time / 1000.0, // Convert to seconds
424            error_reduction,
425            performance_metrics: PerformanceMetrics {
426                computation_time_ms: computation_time,
427                ..Default::default()
428            },
429        })
430    }
431
432    /// Create deep learning model
433    pub fn create_deep_model(&self) -> Result<DeepMitigationNetwork> {
434        let layers = vec![18, 128, 64, 32, 1]; // Architecture for error prediction
435        let mut weights = Vec::new();
436        let mut biases = Vec::new();
437
438        // Initialize weights and biases with Xavier initialization
439        for i in 0..layers.len() - 1 {
440            let fan_in = layers[i];
441            let fan_out = layers[i + 1];
442            let limit = (6.0 / (fan_in + fan_out) as f64).sqrt();
443
444            let w =
445                Array2::from_shape_fn((fan_out, fan_in), |_| thread_rng().gen_range(-limit..limit));
446            let b = Array1::zeros(fan_out);
447
448            weights.push(w);
449            biases.push(b);
450        }
451
452        Ok(DeepMitigationNetwork {
453            layers,
454            weights,
455            biases,
456            activation: ActivationFunction::ReLU,
457            loss_history: Vec::new(),
458        })
459    }
460
461    /// Create reinforcement learning agent
462    pub fn create_rl_agent(&self) -> Result<QLearningMitigationAgent> {
463        Ok(QLearningMitigationAgent {
464            q_table: HashMap::new(),
465            learning_rate: self.config.learning_rate,
466            discount_factor: 0.95,
467            exploration_rate: self.config.exploration_rate,
468            experience_buffer: VecDeque::with_capacity(self.config.memory_size),
469            stats: RLTrainingStats::default(),
470        })
471    }
472
473    /// Create ensemble model
474    fn create_ensemble(&self) -> Result<EnsembleMitigation> {
475        let models: Vec<Box<dyn MitigationModel>> = Vec::new();
476        let weights = Array1::ones(self.config.ensemble_size) / self.config.ensemble_size as f64;
477
478        Ok(EnsembleMitigation {
479            models,
480            weights,
481            combination_strategy: EnsembleStrategy::WeightedAverage,
482            performance_history: Vec::new(),
483        })
484    }
485
486    /// Extract features from circuit and measurements
487    pub fn extract_features(
488        &self,
489        circuit: &InterfaceCircuit,
490        measurements: &Array1<f64>,
491    ) -> Result<Array1<f64>> {
492        let mut features = Vec::new();
493
494        // Circuit features
495        features.push(circuit.gates.len() as f64); // Circuit depth
496        features.push(circuit.num_qubits as f64); // Number of qubits
497
498        // Gate type distribution
499        let mut gate_counts = HashMap::new();
500        for gate in &circuit.gates {
501            *gate_counts
502                .entry(format!("{:?}", gate.gate_type))
503                .or_insert(0) += 1;
504        }
505
506        // Add normalized gate counts (top 10 most common gates)
507        let total_gates = circuit.gates.len() as f64;
508        for gate_type in [
509            "PauliX", "PauliY", "PauliZ", "Hadamard", "CNOT", "CZ", "RX", "RY", "RZ", "Phase",
510        ] {
511            let count = gate_counts.get(gate_type).unwrap_or(&0);
512            features.push(*count as f64 / total_gates);
513        }
514
515        // Measurement statistics
516        features.push(measurements.mean().unwrap_or(0.0));
517        features.push(measurements.std(0.0));
518        features.push(measurements.var(0.0));
519        features.push(measurements.len() as f64);
520
521        // Circuit topology features
522        features.push(self.calculate_circuit_connectivity(circuit)?);
523        features.push(self.calculate_entanglement_estimate(circuit)?);
524
525        Ok(Array1::from_vec(features))
526    }
527
528    /// Select optimal mitigation strategy using RL agent
529    pub fn select_mitigation_strategy(
530        &mut self,
531        features: &Array1<f64>,
532    ) -> Result<MitigationAction> {
533        if let Some(ref mut agent) = self.rl_agent {
534            let state_key = Self::features_to_state_key(features);
535
536            // Epsilon-greedy action selection
537            if rand::random::<f64>() < agent.exploration_rate {
538                // Random exploration
539                let actions = [
540                    MitigationAction::ZeroNoiseExtrapolation,
541                    MitigationAction::VirtualDistillation,
542                    MitigationAction::MachineLearningPrediction,
543                    MitigationAction::EnsembleMitigation,
544                ];
545                Ok(actions[thread_rng().gen_range(0..actions.len())])
546            } else {
547                // Greedy exploitation
548                let q_values = agent.q_table.get(&state_key).cloned().unwrap_or_default();
549
550                let best_action = q_values
551                    .iter()
552                    .max_by(|a, b| a.1.partial_cmp(b.1).unwrap_or(std::cmp::Ordering::Equal))
553                    .map(|(action, _)| *action)
554                    .unwrap_or(MitigationAction::MachineLearningPrediction);
555
556                Ok(best_action)
557            }
558        } else {
559            // Default strategy if no RL agent
560            Ok(MitigationAction::MachineLearningPrediction)
561        }
562    }
563
564    /// Apply deep learning based mitigation
565    fn apply_deep_learning_mitigation(
566        &self,
567        features: &Array1<f64>,
568        measurements: &Array1<f64>,
569    ) -> Result<f64> {
570        if let Some(ref model) = self.deep_model {
571            let prediction = Self::forward_pass_static(model, features)?;
572
573            // Use prediction to correct measurements
574            let correction_factor = prediction[0];
575            let mitigated_value = measurements.mean().unwrap_or(0.0) * (1.0 + correction_factor);
576
577            Ok(mitigated_value)
578        } else {
579            Err(SimulatorError::InvalidConfiguration(
580                "Deep learning model not initialized".to_string(),
581            ))
582        }
583    }
584
585    /// Apply ensemble mitigation
586    fn apply_ensemble_mitigation(
587        &self,
588        features: &Array1<f64>,
589        measurements: &Array1<f64>,
590        circuit: &InterfaceCircuit,
591    ) -> Result<f64> {
592        if let Some(ref ensemble) = self.ensemble {
593            let mut predictions = Vec::new();
594
595            // Collect predictions from all models
596            for model in &ensemble.models {
597                let prediction = model.mitigate(measurements, circuit)?;
598                predictions.push(prediction);
599            }
600
601            // Combine predictions using ensemble strategy
602            let mitigated_value = match ensemble.combination_strategy {
603                EnsembleStrategy::WeightedAverage => {
604                    let weighted_sum: f64 = predictions
605                        .iter()
606                        .zip(ensemble.weights.iter())
607                        .map(|(pred, weight)| pred * weight)
608                        .sum();
609                    weighted_sum
610                }
611                EnsembleStrategy::MajorityVoting => {
612                    // For regression, use median
613                    let mut sorted_predictions = predictions.clone();
614                    sorted_predictions.sort_by(|a, b| a.partial_cmp(b).unwrap());
615                    sorted_predictions[sorted_predictions.len() / 2]
616                }
617                _ => {
618                    // Default to simple average
619                    predictions.iter().sum::<f64>() / predictions.len() as f64
620                }
621            };
622
623            Ok(mitigated_value)
624        } else {
625            // Fallback to simple measurement average
626            Ok(measurements.mean().unwrap_or(0.0))
627        }
628    }
629
630    /// Apply traditional mitigation methods
631    pub fn apply_traditional_mitigation(
632        &self,
633        strategy: MitigationAction,
634        measurements: &Array1<f64>,
635        _circuit: &InterfaceCircuit,
636    ) -> Result<f64> {
637        match strategy {
638            MitigationAction::ZeroNoiseExtrapolation => {
639                // Simple linear extrapolation for demonstration
640                let noise_factors = [1.0, 1.5, 2.0];
641                let values: Vec<f64> = noise_factors
642                    .iter()
643                    .zip(measurements.iter())
644                    .map(|(factor, &val)| val / factor)
645                    .collect();
646
647                // Linear extrapolation to zero noise
648                let extrapolated = 2.0 * values[0] - values[1];
649                Ok(extrapolated)
650            }
651            MitigationAction::VirtualDistillation => {
652                // Simple virtual distillation approximation
653                let mean_val = measurements.mean().unwrap_or(0.0);
654                let variance = measurements.var(0.0);
655                let corrected = mean_val + variance * 0.1; // Simple correction
656                Ok(corrected)
657            }
658            _ => {
659                // Default to measurement average
660                Ok(measurements.mean().unwrap_or(0.0))
661            }
662        }
663    }
664
665    /// Forward pass through neural network (static)
666    fn forward_pass_static(
667        model: &DeepMitigationNetwork,
668        input: &Array1<f64>,
669    ) -> Result<Array1<f64>> {
670        let mut current = input.clone();
671
672        for (weights, bias) in model.weights.iter().zip(model.biases.iter()) {
673            // Linear transformation: Wx + b
674            current = weights.dot(&current) + bias;
675
676            // Apply activation function
677            current.mapv_inplace(|x| Self::apply_activation_static(x, model.activation));
678        }
679
680        Ok(current)
681    }
682
683    /// Apply activation function (static version)
684    fn apply_activation_static(x: f64, activation: ActivationFunction) -> f64 {
685        match activation {
686            ActivationFunction::ReLU => x.max(0.0),
687            ActivationFunction::Sigmoid => 1.0 / (1.0 + (-x).exp()),
688            ActivationFunction::Tanh => x.tanh(),
689            ActivationFunction::Swish => x * (1.0 / (1.0 + (-x).exp())),
690            ActivationFunction::GELU => {
691                0.5 * x
692                    * (1.0
693                        + ((2.0 / std::f64::consts::PI).sqrt() * (x + 0.044715 * x.powi(3))).tanh())
694            }
695        }
696    }
697
698    /// Apply activation function
699    pub fn apply_activation(&self, x: f64, activation: ActivationFunction) -> f64 {
700        Self::apply_activation_static(x, activation)
701    }
702
703    /// Public wrapper for forward pass (for testing)
704    pub fn forward_pass(
705        &self,
706        model: &DeepMitigationNetwork,
707        input: &Array1<f64>,
708    ) -> Result<Array1<f64>> {
709        Self::forward_pass_static(model, input)
710    }
711
712    /// Calculate circuit connectivity measure
713    fn calculate_circuit_connectivity(&self, circuit: &InterfaceCircuit) -> Result<f64> {
714        if circuit.num_qubits == 0 {
715            return Ok(0.0);
716        }
717
718        let mut connectivity_sum = 0.0;
719        let total_possible_connections = (circuit.num_qubits * (circuit.num_qubits - 1)) / 2;
720
721        for gate in &circuit.gates {
722            if gate.qubits.len() > 1 {
723                connectivity_sum += 1.0;
724            }
725        }
726
727        Ok(connectivity_sum / total_possible_connections as f64)
728    }
729
730    /// Estimate entanglement in circuit
731    fn calculate_entanglement_estimate(&self, circuit: &InterfaceCircuit) -> Result<f64> {
732        let mut entangling_gates = 0;
733
734        for gate in &circuit.gates {
735            match gate.gate_type {
736                InterfaceGateType::CNOT
737                | InterfaceGateType::CZ
738                | InterfaceGateType::CY
739                | InterfaceGateType::SWAP
740                | InterfaceGateType::ISwap
741                | InterfaceGateType::Toffoli => {
742                    entangling_gates += 1;
743                }
744                _ => {}
745            }
746        }
747
748        Ok(entangling_gates as f64 / circuit.gates.len() as f64)
749    }
750
751    /// Convert features to state key for Q-learning
752    fn features_to_state_key(features: &Array1<f64>) -> String {
753        // Discretize features for state representation
754        let discretized: Vec<i32> = features
755            .iter()
756            .map(|&x| (x * 10.0).round() as i32)
757            .collect();
758        format!("{:?}", discretized)
759    }
760
761    /// Calculate confidence in mitigation result
762    fn calculate_confidence(&self, features: &Array1<f64>, _mitigated_value: f64) -> Result<f64> {
763        // Simple confidence calculation based on feature consistency
764        let feature_variance = features.var(0.0);
765        let confidence = 1.0 / (1.0 + feature_variance);
766        Ok(confidence.min(1.0).max(0.0))
767    }
768
769    /// Estimate error reduction achieved
770    fn estimate_error_reduction(&self, original: &Array1<f64>, mitigated: f64) -> Result<f64> {
771        let original_mean = original.mean().unwrap_or(0.0);
772        let original_variance = original.var(0.0);
773
774        // Estimate error reduction based on variance reduction
775        let estimated_improvement = (original_variance.sqrt() - (mitigated - original_mean).abs())
776            / original_variance.sqrt();
777        Ok(estimated_improvement.max(0.0).min(1.0))
778    }
779
780    /// Update models with new training data
781    fn update_models(&mut self, features: &Array1<f64>, target: f64) -> Result<()> {
782        // Add to training history
783        if self.training_history.len() >= self.config.memory_size {
784            self.training_history.pop_front();
785        }
786        self.training_history.push_back((features.clone(), target));
787
788        // Update deep learning model if enough data
789        if self.training_history.len() >= self.config.batch_size {
790            self.update_deep_model()?;
791        }
792
793        // Update RL agent
794        self.update_rl_agent(features, target)?;
795
796        Ok(())
797    }
798
799    /// Update deep learning model with recent training data
800    fn update_deep_model(&mut self) -> Result<()> {
801        if let Some(ref mut model) = self.deep_model {
802            // Simple gradient descent update (simplified for demonstration)
803            // In practice, would implement proper backpropagation
804
805            let batch_size = self.config.batch_size.min(self.training_history.len());
806            let batch: Vec<_> = self
807                .training_history
808                .iter()
809                .rev()
810                .take(batch_size)
811                .collect();
812
813            let mut total_loss = 0.0;
814
815            for (features, target) in batch {
816                let prediction = Self::forward_pass_static(model, features)?;
817                let loss = (prediction[0] - target).powi(2);
818                total_loss += loss;
819            }
820
821            let avg_loss = total_loss / batch_size as f64;
822            model.loss_history.push(avg_loss);
823        }
824
825        Ok(())
826    }
827
828    /// Update reinforcement learning agent
829    fn update_rl_agent(&mut self, features: &Array1<f64>, reward: f64) -> Result<()> {
830        if let Some(ref mut agent) = self.rl_agent {
831            let state_key = Self::features_to_state_key(features);
832
833            // Simple Q-learning update
834            // In practice, would implement more sophisticated RL algorithms
835
836            agent.stats.episodes += 1;
837            agent.stats.avg_reward = (agent.stats.avg_reward * (agent.stats.episodes - 1) as f64
838                + reward)
839                / agent.stats.episodes as f64;
840
841            // Decay exploration rate
842            agent.exploration_rate *= 0.995;
843            agent.exploration_rate = agent.exploration_rate.max(0.01);
844        }
845
846        Ok(())
847    }
848}
849
850/// Benchmark function for advanced ML error mitigation
851pub fn benchmark_advanced_ml_error_mitigation() -> Result<()> {
852    println!("Benchmarking Advanced ML Error Mitigation...");
853
854    let config = AdvancedMLMitigationConfig::default();
855    let mut mitigator = AdvancedMLErrorMitigator::new(config)?;
856
857    // Create test circuit
858    let mut circuit = InterfaceCircuit::new(4, 0);
859    circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![0]));
860    circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]));
861    circuit.add_gate(InterfaceGate::new(InterfaceGateType::RZ(0.5), vec![2]));
862
863    // Simulate noisy measurements
864    let noisy_measurements = Array1::from_vec(vec![0.48, 0.52, 0.47, 0.53, 0.49]);
865
866    let start_time = std::time::Instant::now();
867
868    // Apply advanced ML mitigation
869    let result = mitigator.mitigate_errors(&noisy_measurements, &circuit)?;
870
871    let duration = start_time.elapsed();
872
873    println!("✅ Advanced ML Error Mitigation Results:");
874    println!("   Mitigated Value: {:.6}", result.mitigated_value);
875    println!("   Confidence: {:.4}", result.confidence);
876    println!("   Model Used: {}", result.model_used);
877    println!("   Error Reduction: {:.4}", result.error_reduction);
878    println!("   Computation Time: {:.2}ms", duration.as_millis());
879
880    Ok(())
881}
882
883#[cfg(test)]
884mod tests {
885    use super::*;
886
887    #[test]
888    fn test_advanced_ml_mitigator_creation() {
889        let config = AdvancedMLMitigationConfig::default();
890        let mitigator = AdvancedMLErrorMitigator::new(config);
891        assert!(mitigator.is_ok());
892    }
893
894    #[test]
895    fn test_feature_extraction() {
896        let config = AdvancedMLMitigationConfig::default();
897        let mitigator = AdvancedMLErrorMitigator::new(config).unwrap();
898
899        let mut circuit = InterfaceCircuit::new(2, 0);
900        circuit.add_gate(InterfaceGate::new(InterfaceGateType::Hadamard, vec![0]));
901        circuit.add_gate(InterfaceGate::new(InterfaceGateType::CNOT, vec![0, 1]));
902
903        let measurements = Array1::from_vec(vec![0.5, 0.5, 0.5]);
904        let features = mitigator.extract_features(&circuit, &measurements);
905
906        assert!(features.is_ok());
907        let features = features.unwrap();
908        assert!(features.len() > 0);
909    }
910
911    #[test]
912    fn test_activation_functions() {
913        let config = AdvancedMLMitigationConfig::default();
914        let mitigator = AdvancedMLErrorMitigator::new(config).unwrap();
915
916        // Test ReLU
917        assert_eq!(
918            mitigator.apply_activation(-1.0, ActivationFunction::ReLU),
919            0.0
920        );
921        assert_eq!(
922            mitigator.apply_activation(1.0, ActivationFunction::ReLU),
923            1.0
924        );
925
926        // Test Sigmoid
927        let sigmoid_result = mitigator.apply_activation(0.0, ActivationFunction::Sigmoid);
928        assert!((sigmoid_result - 0.5).abs() < 1e-10);
929    }
930
931    #[test]
932    fn test_mitigation_strategy_selection() {
933        let config = AdvancedMLMitigationConfig::default();
934        let mut mitigator = AdvancedMLErrorMitigator::new(config).unwrap();
935
936        let features = Array1::from_vec(vec![1.0, 2.0, 3.0]);
937        let strategy = mitigator.select_mitigation_strategy(&features);
938
939        assert!(strategy.is_ok());
940    }
941
942    #[test]
943    fn test_traditional_mitigation() {
944        let config = AdvancedMLMitigationConfig::default();
945        let mitigator = AdvancedMLErrorMitigator::new(config).unwrap();
946
947        let measurements = Array1::from_vec(vec![0.48, 0.52, 0.49]);
948        let circuit = InterfaceCircuit::new(2, 0);
949
950        let result = mitigator.apply_traditional_mitigation(
951            MitigationAction::ZeroNoiseExtrapolation,
952            &measurements,
953            &circuit,
954        );
955
956        assert!(result.is_ok());
957    }
958}