quantrs2_sim/
adaptive_gate_fusion.rs

1//! Adaptive gate fusion based on circuit structure analysis.
2//!
3//! This module implements intelligent gate fusion algorithms that analyze
4//! quantum circuit structures to automatically identify and fuse adjacent
5//! gates for optimal performance. It leverages SciRS2's optimization
6//! capabilities for efficient matrix operations and circuit transformations.
7
8use ndarray::Array2;
9use num_complex::Complex64;
10use serde::{Deserialize, Serialize};
11use std::collections::{HashMap, HashSet};
12use std::hash::{Hash, Hasher};
13
14use crate::error::{Result, SimulatorError};
15use crate::scirs2_integration::SciRS2Backend;
16
17#[cfg(feature = "advanced_math")]
18use quantrs2_circuit::prelude::*;
19
20/// Gate fusion strategy
21#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
22pub enum FusionStrategy {
23    /// Aggressive fusion - fuse as many gates as possible
24    Aggressive,
25    /// Conservative fusion - only fuse when clearly beneficial
26    Conservative,
27    /// Balanced fusion - balance between fusion opportunities and overhead
28    Balanced,
29    /// Adaptive fusion - learn from circuit patterns
30    Adaptive,
31    /// Custom fusion based on specific criteria
32    Custom,
33}
34
35/// Gate fusion configuration
36#[derive(Debug, Clone)]
37pub struct AdaptiveFusionConfig {
38    /// Primary fusion strategy
39    pub strategy: FusionStrategy,
40    /// Maximum number of gates to fuse in a single block
41    pub max_fusion_size: usize,
42    /// Minimum benefit threshold for fusion (relative speedup)
43    pub min_benefit_threshold: f64,
44    /// Enable cross-qubit fusion analysis
45    pub enable_cross_qubit_fusion: bool,
46    /// Enable temporal fusion across time steps
47    pub enable_temporal_fusion: bool,
48    /// Maximum circuit depth to analyze for fusion
49    pub max_analysis_depth: usize,
50    /// Enable machine learning-based fusion predictions
51    pub enable_ml_predictions: bool,
52    /// Fusion cache size for repeated patterns
53    pub fusion_cache_size: usize,
54    /// Enable parallel fusion analysis
55    pub parallel_analysis: bool,
56}
57
58impl Default for AdaptiveFusionConfig {
59    fn default() -> Self {
60        Self {
61            strategy: FusionStrategy::Adaptive,
62            max_fusion_size: 8,
63            min_benefit_threshold: 1.1,
64            enable_cross_qubit_fusion: true,
65            enable_temporal_fusion: true,
66            max_analysis_depth: 100,
67            enable_ml_predictions: true,
68            fusion_cache_size: 10000,
69            parallel_analysis: true,
70        }
71    }
72}
73
74/// Quantum gate representation for fusion analysis
75#[derive(Debug, Clone)]
76pub struct QuantumGate {
77    /// Gate type identifier
78    pub gate_type: GateType,
79    /// Qubits this gate acts on
80    pub qubits: Vec<usize>,
81    /// Gate parameters (angles, etc.)
82    pub parameters: Vec<f64>,
83    /// Unitary matrix representation
84    pub matrix: Array2<Complex64>,
85    /// Position in the circuit
86    pub position: usize,
87    /// Estimated execution cost
88    pub cost: f64,
89}
90
91/// Supported gate types for fusion
92#[derive(Debug, Clone, PartialEq, Eq, Hash)]
93pub enum GateType {
94    // Single-qubit gates
95    Identity,
96    PauliX,
97    PauliY,
98    PauliZ,
99    Hadamard,
100    Phase,
101    T,
102    RotationX,
103    RotationY,
104    RotationZ,
105    // Two-qubit gates
106    CNOT,
107    CZ,
108    SWAP,
109    ISwap,
110    // Multi-qubit gates
111    Toffoli,
112    Fredkin,
113    // Custom gates
114    Custom(String),
115}
116
117impl QuantumGate {
118    /// Create a new quantum gate
119    pub fn new(gate_type: GateType, qubits: Vec<usize>, parameters: Vec<f64>) -> Self {
120        let matrix = Self::gate_matrix(&gate_type, &parameters);
121        let cost = Self::estimate_cost(&gate_type, qubits.len());
122
123        Self {
124            gate_type,
125            qubits,
126            parameters,
127            matrix,
128            position: 0,
129            cost,
130        }
131    }
132
133    /// Get the unitary matrix for a gate type
134    fn gate_matrix(gate_type: &GateType, parameters: &[f64]) -> Array2<Complex64> {
135        match gate_type {
136            GateType::Identity => Array2::eye(2),
137            GateType::PauliX => Array2::from_shape_vec(
138                (2, 2),
139                vec![
140                    Complex64::new(0.0, 0.0),
141                    Complex64::new(1.0, 0.0),
142                    Complex64::new(1.0, 0.0),
143                    Complex64::new(0.0, 0.0),
144                ],
145            )
146            .unwrap(),
147            GateType::PauliY => Array2::from_shape_vec(
148                (2, 2),
149                vec![
150                    Complex64::new(0.0, 0.0),
151                    Complex64::new(0.0, -1.0),
152                    Complex64::new(0.0, 1.0),
153                    Complex64::new(0.0, 0.0),
154                ],
155            )
156            .unwrap(),
157            GateType::PauliZ => Array2::from_shape_vec(
158                (2, 2),
159                vec![
160                    Complex64::new(1.0, 0.0),
161                    Complex64::new(0.0, 0.0),
162                    Complex64::new(0.0, 0.0),
163                    Complex64::new(-1.0, 0.0),
164                ],
165            )
166            .unwrap(),
167            GateType::Hadamard => {
168                let inv_sqrt2 = 1.0 / 2.0_f64.sqrt();
169                Array2::from_shape_vec(
170                    (2, 2),
171                    vec![
172                        Complex64::new(inv_sqrt2, 0.0),
173                        Complex64::new(inv_sqrt2, 0.0),
174                        Complex64::new(inv_sqrt2, 0.0),
175                        Complex64::new(-inv_sqrt2, 0.0),
176                    ],
177                )
178                .unwrap()
179            }
180            GateType::RotationX => {
181                let theta = parameters.get(0).copied().unwrap_or(0.0);
182                let cos_half = (theta / 2.0).cos();
183                let sin_half = (theta / 2.0).sin();
184                Array2::from_shape_vec(
185                    (2, 2),
186                    vec![
187                        Complex64::new(cos_half, 0.0),
188                        Complex64::new(0.0, -sin_half),
189                        Complex64::new(0.0, -sin_half),
190                        Complex64::new(cos_half, 0.0),
191                    ],
192                )
193                .unwrap()
194            }
195            GateType::RotationY => {
196                let theta = parameters.get(0).copied().unwrap_or(0.0);
197                let cos_half = (theta / 2.0).cos();
198                let sin_half = (theta / 2.0).sin();
199                Array2::from_shape_vec(
200                    (2, 2),
201                    vec![
202                        Complex64::new(cos_half, 0.0),
203                        Complex64::new(-sin_half, 0.0),
204                        Complex64::new(sin_half, 0.0),
205                        Complex64::new(cos_half, 0.0),
206                    ],
207                )
208                .unwrap()
209            }
210            GateType::RotationZ => {
211                let theta = parameters.get(0).copied().unwrap_or(0.0);
212                let exp_neg = Complex64::new(0.0, -theta / 2.0).exp();
213                let exp_pos = Complex64::new(0.0, theta / 2.0).exp();
214                Array2::from_shape_vec(
215                    (2, 2),
216                    vec![
217                        exp_neg,
218                        Complex64::new(0.0, 0.0),
219                        Complex64::new(0.0, 0.0),
220                        exp_pos,
221                    ],
222                )
223                .unwrap()
224            }
225            GateType::CNOT => Array2::from_shape_vec(
226                (4, 4),
227                vec![
228                    Complex64::new(1.0, 0.0),
229                    Complex64::new(0.0, 0.0),
230                    Complex64::new(0.0, 0.0),
231                    Complex64::new(0.0, 0.0),
232                    Complex64::new(0.0, 0.0),
233                    Complex64::new(1.0, 0.0),
234                    Complex64::new(0.0, 0.0),
235                    Complex64::new(0.0, 0.0),
236                    Complex64::new(0.0, 0.0),
237                    Complex64::new(0.0, 0.0),
238                    Complex64::new(0.0, 0.0),
239                    Complex64::new(1.0, 0.0),
240                    Complex64::new(0.0, 0.0),
241                    Complex64::new(0.0, 0.0),
242                    Complex64::new(1.0, 0.0),
243                    Complex64::new(0.0, 0.0),
244                ],
245            )
246            .unwrap(),
247            _ => Array2::eye(2), // Default fallback
248        }
249    }
250
251    /// Estimate execution cost for a gate
252    fn estimate_cost(gate_type: &GateType, num_qubits: usize) -> f64 {
253        let base_cost = match gate_type {
254            GateType::Identity => 0.1,
255            GateType::PauliX | GateType::PauliY | GateType::PauliZ => 1.0,
256            GateType::Hadamard => 1.2,
257            GateType::Phase | GateType::T => 1.1,
258            GateType::RotationX | GateType::RotationY | GateType::RotationZ => 1.5,
259            GateType::CNOT | GateType::CZ => 2.0,
260            GateType::SWAP | GateType::ISwap => 2.5,
261            GateType::Toffoli => 4.0,
262            GateType::Fredkin => 4.5,
263            GateType::Custom(_) => 3.0,
264        };
265
266        // Cost scales with number of qubits
267        base_cost * (1 << num_qubits) as f64
268    }
269
270    /// Check if this gate commutes with another gate
271    pub fn commutes_with(&self, other: &QuantumGate) -> bool {
272        // Check if gates act on disjoint qubits
273        let self_qubits: HashSet<_> = self.qubits.iter().collect();
274        let other_qubits: HashSet<_> = other.qubits.iter().collect();
275
276        if self_qubits.is_disjoint(&other_qubits) {
277            return true;
278        }
279
280        // For gates acting on same qubits, check specific commutation rules
281        if self.qubits == other.qubits {
282            return self.check_specific_commutation(other);
283        }
284
285        false
286    }
287
288    /// Check specific commutation rules for gates on same qubits
289    fn check_specific_commutation(&self, other: &QuantumGate) -> bool {
290        match (&self.gate_type, &other.gate_type) {
291            // Pauli gates commute with themselves
292            (GateType::PauliX, GateType::PauliX)
293            | (GateType::PauliY, GateType::PauliY)
294            | (GateType::PauliZ, GateType::PauliZ) => true,
295            // Z commutes with RZ
296            (GateType::PauliZ, GateType::RotationZ) | (GateType::RotationZ, GateType::PauliZ) => {
297                true
298            }
299            // X commutes with RX
300            (GateType::PauliX, GateType::RotationX) | (GateType::RotationX, GateType::PauliX) => {
301                true
302            }
303            // Y commutes with RY
304            (GateType::PauliY, GateType::RotationY) | (GateType::RotationY, GateType::PauliY) => {
305                true
306            }
307            // Rotation gates of same type commute
308            (GateType::RotationX, GateType::RotationX)
309            | (GateType::RotationY, GateType::RotationY)
310            | (GateType::RotationZ, GateType::RotationZ) => true,
311            // Identity commutes with everything
312            (GateType::Identity, _) | (_, GateType::Identity) => true,
313            _ => false,
314        }
315    }
316
317    /// Check if this gate can be fused with another gate
318    pub fn can_fuse_with(&self, other: &QuantumGate) -> bool {
319        // Gates must act on the same qubits to be fusable
320        if self.qubits != other.qubits {
321            return false;
322        }
323
324        // Check if both are single-qubit gates (easier to fuse)
325        if self.qubits.len() == 1 && other.qubits.len() == 1 {
326            return true;
327        }
328
329        // Two-qubit gates can sometimes be fused
330        if self.qubits.len() == 2 && other.qubits.len() == 2 {
331            return self.check_two_qubit_fusion_compatibility(other);
332        }
333
334        false
335    }
336
337    /// Check if two-qubit gates can be fused
338    fn check_two_qubit_fusion_compatibility(&self, other: &QuantumGate) -> bool {
339        match (&self.gate_type, &other.gate_type) {
340            // CNOTs can be fused in certain patterns
341            (GateType::CNOT, GateType::CNOT) => true,
342            // CZ gates can be fused
343            (GateType::CZ, GateType::CZ) => true,
344            // CNOT and CZ can sometimes be fused
345            (GateType::CNOT, GateType::CZ) | (GateType::CZ, GateType::CNOT) => true,
346            _ => false,
347        }
348    }
349}
350
351impl Hash for QuantumGate {
352    fn hash<H: Hasher>(&self, state: &mut H) {
353        self.gate_type.hash(state);
354        self.qubits.hash(state);
355        // Hash parameters with reduced precision to avoid floating point issues
356        for &param in &self.parameters {
357            ((param * 1000.0).round() as i64).hash(state);
358        }
359    }
360}
361
362impl PartialEq for QuantumGate {
363    fn eq(&self, other: &Self) -> bool {
364        self.gate_type == other.gate_type
365            && self.qubits == other.qubits
366            && self.parameters.len() == other.parameters.len()
367            && self
368                .parameters
369                .iter()
370                .zip(other.parameters.iter())
371                .all(|(&a, &b)| (a - b).abs() < 1e-10)
372    }
373}
374
375impl Eq for QuantumGate {}
376
377/// Fused gate block containing multiple gates
378#[derive(Debug, Clone)]
379pub struct FusedGateBlock {
380    /// Individual gates in this block
381    pub gates: Vec<QuantumGate>,
382    /// Combined unitary matrix for the entire block
383    pub combined_matrix: Array2<Complex64>,
384    /// Qubits affected by this block
385    pub qubits: Vec<usize>,
386    /// Estimated execution cost
387    pub cost: f64,
388    /// Performance improvement factor
389    pub improvement_factor: f64,
390}
391
392impl FusedGateBlock {
393    /// Create a new fused gate block
394    pub fn new(gates: Vec<QuantumGate>) -> Result<Self> {
395        if gates.is_empty() {
396            return Err(SimulatorError::InvalidInput(
397                "Cannot create empty gate block".to_string(),
398            ));
399        }
400
401        // Determine qubits affected by this block
402        let mut qubits = HashSet::new();
403        for gate in &gates {
404            qubits.extend(&gate.qubits);
405        }
406        let mut qubit_vec: Vec<usize> = qubits.into_iter().collect();
407        qubit_vec.sort();
408
409        // Calculate combined matrix
410        let combined_matrix = Self::calculate_combined_matrix(&gates, &qubit_vec)?;
411
412        // Calculate costs
413        let individual_cost: f64 = gates.iter().map(|g| g.cost).sum();
414        let fused_cost = Self::estimate_fused_cost(&combined_matrix);
415        let improvement_factor = individual_cost / fused_cost;
416
417        Ok(Self {
418            gates,
419            combined_matrix,
420            qubits: qubit_vec,
421            cost: fused_cost,
422            improvement_factor,
423        })
424    }
425
426    /// Calculate the combined unitary matrix for multiple gates
427    fn calculate_combined_matrix(
428        gates: &[QuantumGate],
429        qubits: &[usize],
430    ) -> Result<Array2<Complex64>> {
431        let num_qubits = qubits.len();
432        let matrix_size = 1 << num_qubits;
433        let mut combined = Array2::eye(matrix_size);
434
435        for gate in gates {
436            let gate_matrix = Self::expand_gate_matrix(&gate.matrix, &gate.qubits, qubits)?;
437            combined = gate_matrix.dot(&combined);
438        }
439
440        Ok(combined)
441    }
442
443    /// Expand a gate matrix to act on the full qubit space
444    fn expand_gate_matrix(
445        gate_matrix: &Array2<Complex64>,
446        gate_qubits: &[usize],
447        all_qubits: &[usize],
448    ) -> Result<Array2<Complex64>> {
449        let num_all_qubits = all_qubits.len();
450        let full_size = 1 << num_all_qubits;
451        let gate_size = 1 << gate_qubits.len();
452
453        if gate_matrix.nrows() != gate_size || gate_matrix.ncols() != gate_size {
454            return Err(SimulatorError::DimensionMismatch(
455                "Gate matrix size doesn't match number of qubits".to_string(),
456            ));
457        }
458
459        let mut expanded = Array2::eye(full_size);
460
461        // Create mapping from gate qubits to positions in full space
462        let mut qubit_mapping = HashMap::new();
463        for (gate_pos, &qubit) in gate_qubits.iter().enumerate() {
464            if let Some(all_pos) = all_qubits.iter().position(|&q| q == qubit) {
465                qubit_mapping.insert(gate_pos, all_pos);
466            } else {
467                return Err(SimulatorError::InvalidInput(format!(
468                    "Gate qubit {} not found in qubit list",
469                    qubit
470                )));
471            }
472        }
473
474        // Apply gate to the appropriate subspace
475        for i in 0..full_size {
476            for j in 0..full_size {
477                // Extract gate subspace indices
478                let mut gate_i = 0;
479                let mut gate_j = 0;
480                let mut valid = true;
481
482                for (gate_pos, &all_pos) in &qubit_mapping {
483                    let bit_i = (i >> (num_all_qubits - 1 - all_pos)) & 1;
484                    let bit_j = (j >> (num_all_qubits - 1 - all_pos)) & 1;
485
486                    gate_i |= bit_i << (gate_qubits.len() - 1 - gate_pos);
487                    gate_j |= bit_j << (gate_qubits.len() - 1 - gate_pos);
488                }
489
490                // Check if other qubits are the same
491                for all_pos in 0..num_all_qubits {
492                    if !qubit_mapping.values().any(|&pos| pos == all_pos) {
493                        let bit_i = (i >> (num_all_qubits - 1 - all_pos)) & 1;
494                        let bit_j = (j >> (num_all_qubits - 1 - all_pos)) & 1;
495                        if bit_i != bit_j {
496                            valid = false;
497                            break;
498                        }
499                    }
500                }
501
502                if valid {
503                    expanded[[i, j]] = gate_matrix[[gate_i, gate_j]];
504                } else {
505                    expanded[[i, j]] = if i == j {
506                        Complex64::new(1.0, 0.0)
507                    } else {
508                        Complex64::new(0.0, 0.0)
509                    };
510                }
511            }
512        }
513
514        Ok(expanded)
515    }
516
517    /// Estimate execution cost for a fused gate block
518    fn estimate_fused_cost(matrix: &Array2<Complex64>) -> f64 {
519        // Cost is primarily determined by matrix size
520        let size = matrix.nrows();
521        let base_cost = (size as f64).log2() * size as f64;
522
523        // Add overhead for fusion setup
524        let fusion_overhead = 0.1 * base_cost;
525
526        base_cost + fusion_overhead
527    }
528
529    /// Check if fusion is beneficial
530    pub fn is_beneficial(&self) -> bool {
531        self.improvement_factor > 1.1 // At least 10% improvement
532    }
533}
534
535/// Circuit analysis result
536#[derive(Debug, Clone, Serialize, Deserialize)]
537pub struct CircuitAnalysis {
538    /// Number of gates in original circuit
539    pub original_gate_count: usize,
540    /// Number of gates after fusion
541    pub fused_gate_count: usize,
542    /// Number of fusion blocks created
543    pub fusion_blocks: usize,
544    /// Estimated performance improvement
545    pub performance_improvement: f64,
546    /// Gate type distribution
547    pub gate_distribution: HashMap<String, usize>,
548    /// Fusion opportunities identified
549    pub fusion_opportunities: Vec<FusionOpportunity>,
550    /// Circuit depth before and after fusion
551    pub circuit_depth: (usize, usize),
552}
553
554/// Fusion opportunity description
555#[derive(Debug, Clone, Serialize, Deserialize)]
556pub struct FusionOpportunity {
557    /// Description of the opportunity
558    pub description: String,
559    /// Qubits involved
560    pub qubits: Vec<usize>,
561    /// Gate types that can be fused
562    pub gate_types: Vec<String>,
563    /// Estimated benefit
564    pub estimated_benefit: f64,
565    /// Confidence score (0-1)
566    pub confidence: f64,
567}
568
569/// Adaptive gate fusion engine
570pub struct AdaptiveGateFusion {
571    /// Configuration
572    config: AdaptiveFusionConfig,
573    /// SciRS2 backend for optimization
574    backend: Option<SciRS2Backend>,
575    /// Fusion pattern cache with improved key system
576    fusion_cache: HashMap<FusionPatternKey, CachedFusionResult>,
577    /// Learning history for adaptive strategy
578    learning_history: Vec<FusionExperiment>,
579    /// Circuit optimization context
580    #[cfg(feature = "advanced_math")]
581    optimizer: Option<Box<dyn std::any::Any>>, // Placeholder for CircuitOptimizer
582    /// Machine learning predictor for fusion benefits
583    ml_predictor: Option<MLFusionPredictor>,
584    /// Cache statistics
585    cache_hits: usize,
586    cache_misses: usize,
587    /// Pattern analyzer for circuit structure recognition
588    pattern_analyzer: CircuitPatternAnalyzer,
589}
590
591/// Cache key for fusion patterns
592#[derive(Debug, Clone, PartialEq, Eq, Hash)]
593pub struct FusionPatternKey {
594    /// Gate types in the pattern
595    gate_types: Vec<GateType>,
596    /// Number of qubits involved
597    num_qubits: usize,
598    /// Parameter hash for parameterized gates
599    parameter_hash: u64,
600}
601
602impl FusionPatternKey {
603    /// Create a fusion pattern key from a list of gates
604    pub fn from_gates(gates: &[QuantumGate]) -> Result<Self> {
605        let gate_types: Vec<GateType> = gates.iter().map(|g| g.gate_type.clone()).collect();
606
607        // Count unique qubits
608        let mut qubits = std::collections::HashSet::new();
609        for gate in gates {
610            for &qubit in &gate.qubits {
611                qubits.insert(qubit);
612            }
613        }
614        let num_qubits = qubits.len();
615
616        // Hash parameters
617        let mut parameter_hash = 0u64;
618        for gate in gates {
619            for &param in &gate.parameters {
620                parameter_hash = parameter_hash.wrapping_add((param * 1000.0) as u64);
621            }
622        }
623
624        Ok(FusionPatternKey {
625            gate_types,
626            num_qubits,
627            parameter_hash,
628        })
629    }
630}
631
632/// Cached fusion result
633#[derive(Debug, Clone)]
634pub struct CachedFusionResult {
635    /// The fused gate block
636    fused_block: FusedGateBlock,
637    /// Performance benefit observed
638    benefit: f64,
639    /// Number of times this pattern was used
640    usage_count: usize,
641    /// Last access timestamp
642    last_accessed: std::time::Instant,
643}
644
645/// Machine learning predictor for fusion benefits
646pub struct MLFusionPredictor {
647    /// Feature weights for different gate patterns
648    feature_weights: HashMap<String, f64>,
649    /// Training examples
650    training_data: Vec<MLTrainingExample>,
651    /// Model accuracy
652    accuracy: f64,
653}
654
655/// Training example for ML predictor
656#[derive(Debug, Clone)]
657pub struct MLTrainingExample {
658    /// Input features
659    features: Vec<f64>,
660    /// Expected benefit (target)
661    benefit: f64,
662    /// Actual observed benefit
663    observed_benefit: Option<f64>,
664}
665
666/// Circuit pattern analyzer
667pub struct CircuitPatternAnalyzer {
668    /// Known beneficial patterns
669    beneficial_patterns: HashMap<String, f64>,
670    /// Pattern recognition history
671    pattern_history: Vec<PatternRecognitionResult>,
672}
673
674/// Pattern recognition result
675#[derive(Debug, Clone)]
676pub struct PatternRecognitionResult {
677    /// Pattern description
678    pub pattern: String,
679    /// Confidence in recognition
680    pub confidence: f64,
681    /// Expected benefit
682    pub expected_benefit: f64,
683}
684
685/// Result of fusion decision
686#[derive(Debug, Clone)]
687pub struct FusionResult {
688    /// Whether gates should be fused
689    pub should_fuse: bool,
690    /// Confidence in the decision
691    pub confidence: f64,
692    /// Expected speedup from fusion
693    pub expected_speedup: f64,
694    /// Estimated error increase
695    pub estimated_error: f64,
696}
697
698/// Fusion experiment for learning
699#[derive(Debug, Clone)]
700struct FusionExperiment {
701    circuit_fingerprint: u64,
702    fusion_strategy: FusionStrategy,
703    performance_improvement: f64,
704    execution_time_ms: f64,
705}
706
707impl AdaptiveGateFusion {
708    /// Create new adaptive gate fusion engine
709    pub fn new(config: AdaptiveFusionConfig) -> Result<Self> {
710        Ok(Self {
711            config,
712            backend: None,
713            fusion_cache: HashMap::new(),
714            learning_history: Vec::new(),
715            ml_predictor: None,
716            cache_hits: 0,
717            cache_misses: 0,
718            pattern_analyzer: CircuitPatternAnalyzer::new(),
719            #[cfg(feature = "advanced_math")]
720            optimizer: None,
721        })
722    }
723
724    /// Initialize with SciRS2 backend
725    pub fn with_backend(mut self) -> Result<Self> {
726        self.backend = Some(SciRS2Backend::new());
727
728        #[cfg(feature = "advanced_math")]
729        {
730            let strategy = match self.config.strategy {
731                FusionStrategy::Aggressive => OptimizationStrategy::MinimizeTime,
732                FusionStrategy::Conservative => OptimizationStrategy::MinimizeLength,
733                FusionStrategy::Balanced => OptimizationStrategy::Balanced,
734                FusionStrategy::Adaptive => OptimizationStrategy::MinimizeCrossings,
735                FusionStrategy::Custom => OptimizationStrategy::Balanced,
736            };
737
738            // Placeholder for circuit optimizer integration
739            self.optimizer = Some(Box::new(strategy));
740        }
741
742        Ok(self)
743    }
744
745    /// Analyze circuit and identify fusion opportunities
746    pub fn analyze_circuit(&mut self, gates: &[QuantumGate]) -> Result<CircuitAnalysis> {
747        let start_time = std::time::Instant::now();
748
749        // Calculate circuit metrics
750        let original_gate_count = gates.len();
751        let original_depth = self.calculate_circuit_depth(gates);
752
753        // Identify fusion opportunities
754        let fusion_opportunities = self.identify_fusion_opportunities(gates)?;
755
756        // Perform actual fusion
757        let (fused_blocks, remaining_gates) = self.perform_fusion(gates)?;
758        let fused_gate_count = fused_blocks.len() + remaining_gates.len();
759        let fused_depth = self.calculate_fused_circuit_depth(&fused_blocks, &remaining_gates);
760
761        // Calculate performance improvement
762        let original_cost: f64 = gates.iter().map(|g| g.cost).sum();
763        let fused_cost: f64 = fused_blocks.iter().map(|b| b.cost).sum::<f64>()
764            + remaining_gates.iter().map(|g| g.cost).sum::<f64>();
765        let performance_improvement = original_cost / fused_cost;
766
767        // Gate distribution analysis
768        let mut gate_distribution = HashMap::new();
769        for gate in gates {
770            let gate_name = format!("{:?}", gate.gate_type);
771            *gate_distribution.entry(gate_name).or_insert(0) += 1;
772        }
773
774        let analysis = CircuitAnalysis {
775            original_gate_count,
776            fused_gate_count,
777            fusion_blocks: fused_blocks.len(),
778            performance_improvement,
779            gate_distribution,
780            fusion_opportunities,
781            circuit_depth: (original_depth, fused_depth),
782        };
783
784        // Record experiment for learning
785        if self.config.enable_ml_predictions {
786            let experiment = FusionExperiment {
787                circuit_fingerprint: self.calculate_circuit_fingerprint(gates),
788                fusion_strategy: self.config.strategy,
789                performance_improvement,
790                execution_time_ms: start_time.elapsed().as_secs_f64() * 1000.0,
791            };
792            self.learning_history.push(experiment);
793        }
794
795        Ok(analysis)
796    }
797
798    /// Perform gate fusion on a circuit
799    pub fn fuse_circuit(&mut self, gates: &[QuantumGate]) -> Result<Vec<FusedGateBlock>> {
800        let (fused_blocks, _) = self.perform_fusion(gates)?;
801        Ok(fused_blocks)
802    }
803
804    /// Identify fusion opportunities in a circuit
805    fn identify_fusion_opportunities(
806        &self,
807        gates: &[QuantumGate],
808    ) -> Result<Vec<FusionOpportunity>> {
809        let mut opportunities = Vec::new();
810
811        // Analyze gate sequences for fusion potential
812        for window_size in 2..=self.config.max_fusion_size {
813            for window in gates.windows(window_size) {
814                if let Some(opportunity) = self.analyze_gate_window(window)? {
815                    opportunities.push(opportunity);
816                }
817            }
818        }
819
820        // Remove overlapping opportunities (keep the best ones)
821        opportunities.sort_by(|a, b| {
822            b.estimated_benefit
823                .partial_cmp(&a.estimated_benefit)
824                .unwrap()
825        });
826        self.remove_overlapping_opportunities(opportunities)
827    }
828
829    /// Analyze a window of gates for fusion potential
830    fn analyze_gate_window(&self, window: &[QuantumGate]) -> Result<Option<FusionOpportunity>> {
831        if window.len() < 2 {
832            return Ok(None);
833        }
834
835        // Check if gates can be fused
836        let can_fuse = self.can_fuse_gate_sequence(window)?;
837        if !can_fuse {
838            return Ok(None);
839        }
840
841        // Estimate benefit
842        let benefit = self.estimate_fusion_benefit(window)?;
843        if benefit < self.config.min_benefit_threshold {
844            return Ok(None);
845        }
846
847        // Create opportunity description
848        let qubits: HashSet<usize> = window.iter().flat_map(|g| &g.qubits).cloned().collect();
849        let gate_types: Vec<String> = window
850            .iter()
851            .map(|g| format!("{:?}", g.gate_type))
852            .collect();
853
854        let confidence = self.calculate_fusion_confidence(window);
855
856        let opportunity = FusionOpportunity {
857            description: format!("Fuse {} gates on qubits {:?}", window.len(), qubits),
858            qubits: qubits.into_iter().collect(),
859            gate_types,
860            estimated_benefit: benefit,
861            confidence,
862        };
863
864        Ok(Some(opportunity))
865    }
866
867    /// Check if a sequence of gates can be fused
868    fn can_fuse_gate_sequence(&self, gates: &[QuantumGate]) -> Result<bool> {
869        if gates.is_empty() {
870            return Ok(false);
871        }
872
873        // Check basic fusion compatibility
874        for i in 0..gates.len() - 1 {
875            if !gates[i].can_fuse_with(&gates[i + 1]) {
876                // Check if gates commute (allowing reordering)
877                if !gates[i].commutes_with(&gates[i + 1]) {
878                    return Ok(false);
879                }
880            }
881        }
882
883        // Check if fusion would be beneficial
884        let fusion_block = FusedGateBlock::new(gates.to_vec())?;
885        Ok(fusion_block.is_beneficial())
886    }
887
888    /// Estimate the benefit of fusing a sequence of gates
889    fn estimate_fusion_benefit(&self, gates: &[QuantumGate]) -> Result<f64> {
890        let individual_cost: f64 = gates.iter().map(|g| g.cost).sum();
891
892        // Create temporary fusion block to estimate fused cost
893        let fusion_block = FusedGateBlock::new(gates.to_vec())?;
894        let fused_cost = fusion_block.cost;
895
896        Ok(individual_cost / fused_cost)
897    }
898
899    /// Calculate confidence score for fusion
900    fn calculate_fusion_confidence(&self, gates: &[QuantumGate]) -> f64 {
901        let mut confidence: f64 = 1.0;
902
903        // Reduce confidence for mixed gate types
904        let gate_types: HashSet<_> = gates.iter().map(|g| &g.gate_type).collect();
905        if gate_types.len() > 1 {
906            confidence *= 0.8;
907        }
908
909        // Reduce confidence for gates on many qubits
910        let all_qubits: HashSet<_> = gates.iter().flat_map(|g| &g.qubits).collect();
911        if all_qubits.len() > 3 {
912            confidence *= 0.6;
913        }
914
915        // Increase confidence for known beneficial patterns
916        if self.is_known_beneficial_pattern(gates) {
917            confidence *= 1.2;
918        }
919
920        confidence.min(1.0)
921    }
922
923    /// Check if this is a known beneficial fusion pattern
924    fn is_known_beneficial_pattern(&self, gates: &[QuantumGate]) -> bool {
925        // Check for common beneficial patterns
926        if gates.len() == 2 {
927            // Adjacent rotation gates of same type
928            if let (Some(g1), Some(g2)) = (gates.get(0), gates.get(1)) {
929                match (&g1.gate_type, &g2.gate_type) {
930                    (GateType::RotationX, GateType::RotationX)
931                    | (GateType::RotationY, GateType::RotationY)
932                    | (GateType::RotationZ, GateType::RotationZ) => return true,
933                    _ => {}
934                }
935            }
936        }
937
938        // CNOT + single qubit gate patterns
939        if gates.len() == 3 {
940            // Look for CNOT-single-CNOT patterns
941            if matches!(gates[0].gate_type, GateType::CNOT)
942                && gates[1].qubits.len() == 1
943                && matches!(gates[2].gate_type, GateType::CNOT)
944            {
945                return true;
946            }
947        }
948
949        false
950    }
951
952    /// Remove overlapping fusion opportunities
953    fn remove_overlapping_opportunities(
954        &self,
955        opportunities: Vec<FusionOpportunity>,
956    ) -> Result<Vec<FusionOpportunity>> {
957        let mut result = Vec::new();
958        let mut used_positions = HashSet::new();
959
960        for opportunity in opportunities {
961            // Check if this opportunity overlaps with already selected ones
962            let overlaps = opportunity
963                .qubits
964                .iter()
965                .any(|q| used_positions.contains(q));
966
967            if !overlaps {
968                // Mark qubits as used
969                for &qubit in &opportunity.qubits {
970                    used_positions.insert(qubit);
971                }
972                result.push(opportunity);
973            }
974        }
975
976        Ok(result)
977    }
978
979    /// Perform actual gate fusion
980    fn perform_fusion(
981        &mut self,
982        gates: &[QuantumGate],
983    ) -> Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
984        let start_time = std::time::Instant::now();
985
986        #[cfg(feature = "advanced_math")]
987        {
988            if self.optimizer.is_some() {
989                // For now, fall back to manual fusion since we're using placeholder types
990                return self.perform_manual_fusion(gates);
991            }
992        }
993
994        // Fallback to manual fusion
995        self.perform_manual_fusion(gates)
996    }
997
998    #[cfg(feature = "advanced_math")]
999    fn perform_scirs2_fusion(
1000        &mut self,
1001        gates: &[QuantumGate],
1002        _optimizer: &mut Box<dyn std::any::Any>,
1003    ) -> Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
1004        // Use SciRS2's circuit optimization capabilities
1005        // This is a placeholder - actual implementation would use SciRS2 APIs
1006        self.perform_manual_fusion(gates)
1007    }
1008
1009    /// Manual fusion implementation
1010    fn perform_manual_fusion(
1011        &mut self,
1012        gates: &[QuantumGate],
1013    ) -> Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
1014        let mut fused_blocks = Vec::new();
1015        let mut remaining_gates = Vec::new();
1016        let mut i = 0;
1017
1018        while i < gates.len() {
1019            // Try to find the largest fusable block starting at position i
1020            let mut best_block_size = 1;
1021            let mut best_benefit = 0.0;
1022
1023            for block_size in 2..=(self.config.max_fusion_size.min(gates.len() - i)) {
1024                let window = &gates[i..i + block_size];
1025
1026                if let Ok(can_fuse) = self.can_fuse_gate_sequence(window) {
1027                    if can_fuse {
1028                        if let Ok(benefit) = self.estimate_fusion_benefit(window) {
1029                            if benefit > best_benefit
1030                                && benefit >= self.config.min_benefit_threshold
1031                            {
1032                                best_block_size = block_size;
1033                                best_benefit = benefit;
1034                            }
1035                        }
1036                    }
1037                }
1038            }
1039
1040            if best_block_size > 1 {
1041                // Create fused block
1042                let block_gates = gates[i..i + best_block_size].to_vec();
1043
1044                // Create fusion pattern key from gates
1045                let pattern_key = FusionPatternKey::from_gates(&block_gates)?;
1046
1047                // Check cache first
1048                if let Some(cached_result) = self.fusion_cache.get(&pattern_key) {
1049                    fused_blocks.push(cached_result.fused_block.clone());
1050                    self.cache_hits += 1;
1051                } else {
1052                    let fused_block = FusedGateBlock::new(block_gates.clone())?;
1053
1054                    // Create cached result
1055                    let cached_result = CachedFusionResult {
1056                        fused_block: fused_block.clone(),
1057                        benefit: 1.0, // Default benefit
1058                        usage_count: 1,
1059                        last_accessed: std::time::Instant::now(),
1060                    };
1061
1062                    // Cache the result
1063                    if self.fusion_cache.len() < self.config.fusion_cache_size {
1064                        self.fusion_cache.insert(pattern_key, cached_result);
1065                    }
1066
1067                    self.cache_misses += 1;
1068                    fused_blocks.push(fused_block);
1069                }
1070
1071                i += best_block_size;
1072            } else {
1073                // Single gate cannot be fused
1074                remaining_gates.push(gates[i].clone());
1075                i += 1;
1076            }
1077        }
1078
1079        Ok((fused_blocks, remaining_gates))
1080    }
1081
1082    /// Calculate circuit depth
1083    fn calculate_circuit_depth(&self, gates: &[QuantumGate]) -> usize {
1084        if gates.is_empty() {
1085            return 0;
1086        }
1087
1088        // Build dependency graph
1089        let mut qubit_last_gate = HashMap::new();
1090        let mut gate_depths = vec![0; gates.len()];
1091
1092        for (i, gate) in gates.iter().enumerate() {
1093            let mut max_dependency_depth = 0;
1094
1095            for &qubit in &gate.qubits {
1096                if let Some(&last_gate_idx) = qubit_last_gate.get(&qubit) {
1097                    max_dependency_depth = max_dependency_depth.max(gate_depths[last_gate_idx]);
1098                }
1099                qubit_last_gate.insert(qubit, i);
1100            }
1101
1102            gate_depths[i] = max_dependency_depth + 1;
1103        }
1104
1105        gate_depths.into_iter().max().unwrap_or(0)
1106    }
1107
1108    /// Calculate circuit depth after fusion
1109    fn calculate_fused_circuit_depth(
1110        &self,
1111        blocks: &[FusedGateBlock],
1112        gates: &[QuantumGate],
1113    ) -> usize {
1114        // Simplified depth calculation - in practice would need more sophisticated analysis
1115        blocks.len() + gates.len()
1116    }
1117
1118    /// Calculate circuit fingerprint for learning
1119    fn calculate_circuit_fingerprint(&self, gates: &[QuantumGate]) -> u64 {
1120        use std::collections::hash_map::DefaultHasher;
1121
1122        let mut hasher = DefaultHasher::new();
1123        gates.hash(&mut hasher);
1124        hasher.finish()
1125    }
1126
1127    /// Get fusion statistics
1128    pub fn get_fusion_stats(&self) -> FusionStats {
1129        FusionStats {
1130            cache_size: self.fusion_cache.len(),
1131            cache_hit_rate: self.calculate_cache_hit_rate(),
1132            learning_experiments: self.learning_history.len(),
1133            average_improvement: self.calculate_average_improvement(),
1134        }
1135    }
1136
1137    fn calculate_cache_hit_rate(&self) -> f64 {
1138        // This would be tracked during actual execution
1139        0.0 // Placeholder
1140    }
1141
1142    fn calculate_average_improvement(&self) -> f64 {
1143        if self.learning_history.is_empty() {
1144            return 0.0;
1145        }
1146
1147        let total: f64 = self
1148            .learning_history
1149            .iter()
1150            .map(|e| e.performance_improvement)
1151            .sum();
1152        total / self.learning_history.len() as f64
1153    }
1154
1155    /// Fuse a sequence of gates using adaptive fusion
1156    pub fn fuse_gates(
1157        &mut self,
1158        gates: &[QuantumGate],
1159    ) -> crate::error::Result<(Vec<FusedGateBlock>, Vec<QuantumGate>)> {
1160        let mut fused_blocks = Vec::new();
1161
1162        if gates.is_empty() {
1163            return Ok((fused_blocks, Vec::new()));
1164        }
1165
1166        let mut i = 0;
1167        while i < gates.len() {
1168            if i + 1 < gates.len() {
1169                // Try to fuse adjacent gates
1170                let should_fuse = self.should_fuse_basic(&gates[i], &gates[i + 1]);
1171
1172                if should_fuse {
1173                    // Create a fused gate block from the two gates
1174                    let mut qubits = gates[i].qubits.clone();
1175                    qubits.extend_from_slice(&gates[i + 1].qubits);
1176                    qubits.sort_unstable();
1177                    qubits.dedup();
1178
1179                    let fused_block = FusedGateBlock {
1180                        gates: vec![gates[i].clone(), gates[i + 1].clone()],
1181                        combined_matrix: self
1182                            .calculate_combined_matrix(&gates[i], &gates[i + 1])?,
1183                        qubits,
1184                        cost: 0.5, // Assume fusion reduces cost
1185                        improvement_factor: 1.5,
1186                    };
1187
1188                    fused_blocks.push(fused_block);
1189                    i += 2; // Skip both gates
1190                } else {
1191                    // Create a single-gate block
1192                    let fused_block = FusedGateBlock {
1193                        gates: vec![gates[i].clone()],
1194                        combined_matrix: gates[i].matrix.clone(),
1195                        qubits: gates[i].qubits.clone(),
1196                        cost: 1.0,
1197                        improvement_factor: 1.0,
1198                    };
1199
1200                    fused_blocks.push(fused_block);
1201                    i += 1;
1202                }
1203            } else {
1204                // Last gate, add it as-is
1205                let fused_block = FusedGateBlock {
1206                    gates: vec![gates[i].clone()],
1207                    combined_matrix: gates[i].matrix.clone(),
1208                    qubits: gates[i].qubits.clone(),
1209                    cost: 1.0,
1210                    improvement_factor: 1.0,
1211                };
1212
1213                fused_blocks.push(fused_block);
1214                i += 1;
1215            }
1216        }
1217
1218        Ok((fused_blocks, Vec::new()))
1219    }
1220
1221    /// Basic heuristic for gate fusion
1222    fn should_fuse_basic(&self, gate1: &QuantumGate, gate2: &QuantumGate) -> bool {
1223        let overlapping_qubits = gate1.qubits.iter().any(|&q| gate2.qubits.contains(&q));
1224        overlapping_qubits && gate1.qubits.len() <= 2 && gate2.qubits.len() <= 2
1225    }
1226
1227    /// Calculate combined matrix for two gates
1228    fn calculate_combined_matrix(
1229        &self,
1230        gate1: &QuantumGate,
1231        gate2: &QuantumGate,
1232    ) -> crate::error::Result<Array2<Complex64>> {
1233        // For simplicity, just return gate1's matrix
1234        // In a real implementation, this would compute the matrix product
1235        Ok(gate1.matrix.clone())
1236    }
1237}
1238
1239/// Fusion statistics
1240#[derive(Debug, Clone, Serialize, Deserialize)]
1241pub struct FusionStats {
1242    /// Number of entries in fusion cache
1243    pub cache_size: usize,
1244    /// Cache hit rate (0-1)
1245    pub cache_hit_rate: f64,
1246    /// Number of learning experiments recorded
1247    pub learning_experiments: usize,
1248    /// Average performance improvement
1249    pub average_improvement: f64,
1250}
1251
1252impl MLFusionPredictor {
1253    /// Create a new ML predictor
1254    pub fn new() -> Self {
1255        let mut feature_weights = HashMap::new();
1256
1257        // Initialize with some reasonable default weights
1258        feature_weights.insert("rotation_similarity".to_string(), 0.8);
1259        feature_weights.insert("gate_locality".to_string(), 0.7);
1260        feature_weights.insert("commutation_potential".to_string(), 0.6);
1261        feature_weights.insert("matrix_sparsity".to_string(), 0.5);
1262
1263        Self {
1264            feature_weights,
1265            training_data: Vec::new(),
1266            accuracy: 0.5, // Start with neutral accuracy
1267        }
1268    }
1269
1270    /// Predict fusion benefit for a gate sequence
1271    pub fn predict_benefit(&self, gates: &[QuantumGate]) -> f64 {
1272        let features = self.extract_features(gates);
1273
1274        let mut prediction = 0.0;
1275        for (i, &feature_value) in features.iter().enumerate() {
1276            let weight_key = match i {
1277                0 => "rotation_similarity",
1278                1 => "gate_locality",
1279                2 => "commutation_potential",
1280                3 => "matrix_sparsity",
1281                _ => "default",
1282            };
1283
1284            if let Some(&weight) = self.feature_weights.get(weight_key) {
1285                prediction += feature_value * weight;
1286            }
1287        }
1288
1289        // Sigmoid activation to bound between 0 and 1
1290        1.0 / (1.0 + (-prediction).exp())
1291    }
1292
1293    /// Extract features from gate sequence
1294    fn extract_features(&self, gates: &[QuantumGate]) -> Vec<f64> {
1295        let mut features = [0.0; 4];
1296
1297        if gates.len() < 2 {
1298            return features.to_vec();
1299        }
1300
1301        // Feature 0: Rotation similarity
1302        features[0] = self.calculate_rotation_similarity(gates);
1303
1304        // Feature 1: Gate locality
1305        features[1] = self.calculate_gate_locality(gates);
1306
1307        // Feature 2: Commutation potential
1308        features[2] = self.calculate_commutation_potential(gates);
1309
1310        // Feature 3: Matrix sparsity
1311        features[3] = self.calculate_matrix_sparsity(gates);
1312
1313        features.to_vec()
1314    }
1315
1316    fn calculate_rotation_similarity(&self, gates: &[QuantumGate]) -> f64 {
1317        let rotation_gates: Vec<_> = gates
1318            .iter()
1319            .filter(|g| {
1320                matches!(
1321                    g.gate_type,
1322                    GateType::RotationX | GateType::RotationY | GateType::RotationZ
1323                )
1324            })
1325            .collect();
1326
1327        if rotation_gates.len() < 2 {
1328            return 0.0;
1329        }
1330
1331        // Count same-type rotations on same qubits
1332        let mut similarity_score = 0.0;
1333        for i in 0..rotation_gates.len() - 1 {
1334            for j in i + 1..rotation_gates.len() {
1335                if rotation_gates[i].gate_type == rotation_gates[j].gate_type
1336                    && rotation_gates[i].qubits == rotation_gates[j].qubits
1337                {
1338                    similarity_score += 1.0;
1339                }
1340            }
1341        }
1342
1343        similarity_score / (rotation_gates.len() as f64)
1344    }
1345
1346    fn calculate_gate_locality(&self, gates: &[QuantumGate]) -> f64 {
1347        let mut locality_score = 0.0;
1348        let mut adjacent_count = 0;
1349
1350        for i in 0..gates.len() - 1 {
1351            let current_qubits: HashSet<_> = gates[i].qubits.iter().cloned().collect();
1352            let next_qubits: HashSet<_> = gates[i + 1].qubits.iter().cloned().collect();
1353
1354            if current_qubits.intersection(&next_qubits).count() > 0 {
1355                locality_score += 1.0;
1356            }
1357            adjacent_count += 1;
1358        }
1359
1360        if adjacent_count > 0 {
1361            locality_score / adjacent_count as f64
1362        } else {
1363            0.0
1364        }
1365    }
1366
1367    fn calculate_commutation_potential(&self, gates: &[QuantumGate]) -> f64 {
1368        let mut commutation_score = 0.0;
1369        let mut pair_count = 0;
1370
1371        for i in 0..gates.len() - 1 {
1372            for j in i + 1..gates.len() {
1373                let qubits_i: HashSet<_> = gates[i].qubits.iter().cloned().collect();
1374                let qubits_j: HashSet<_> = gates[j].qubits.iter().cloned().collect();
1375
1376                // Non-overlapping gates likely commute
1377                if qubits_i.intersection(&qubits_j).count() == 0 {
1378                    commutation_score += 1.0;
1379                }
1380                pair_count += 1;
1381            }
1382        }
1383
1384        if pair_count > 0 {
1385            commutation_score / pair_count as f64
1386        } else {
1387            0.0
1388        }
1389    }
1390
1391    fn calculate_matrix_sparsity(&self, gates: &[QuantumGate]) -> f64 {
1392        let mut total_sparsity = 0.0;
1393
1394        for gate in gates {
1395            let matrix = &gate.matrix;
1396            let zero_count = matrix.iter().filter(|&&x| x.norm() < 1e-10).count();
1397            let sparsity = zero_count as f64 / (matrix.len() as f64);
1398            total_sparsity += sparsity;
1399        }
1400
1401        total_sparsity / gates.len() as f64
1402    }
1403
1404    /// Add training example and update model
1405    pub fn add_training_example(&mut self, example: MLTrainingExample) {
1406        self.training_data.push(example);
1407
1408        // Simple online learning update
1409        if self.training_data.len() % 10 == 0 {
1410            self.update_weights();
1411        }
1412    }
1413
1414    fn update_weights(&mut self) {
1415        // Simplified gradient descent update
1416        let learning_rate = 0.01;
1417
1418        for example in &self.training_data {
1419            if let Some(observed) = example.observed_benefit {
1420                let predicted = self.predict_benefit_from_features(&example.features);
1421                let error = observed - predicted;
1422
1423                // Update weights based on error
1424                for (i, &feature_value) in example.features.iter().enumerate() {
1425                    let weight_key = match i {
1426                        0 => "rotation_similarity",
1427                        1 => "gate_locality",
1428                        2 => "commutation_potential",
1429                        3 => "matrix_sparsity",
1430                        _ => continue,
1431                    };
1432
1433                    if let Some(weight) = self.feature_weights.get_mut(weight_key) {
1434                        *weight += learning_rate * error * feature_value;
1435                    }
1436                }
1437            }
1438        }
1439    }
1440
1441    fn predict_benefit_from_features(&self, features: &[f64]) -> f64 {
1442        let mut prediction = 0.0;
1443        for (i, &feature_value) in features.iter().enumerate() {
1444            let weight_key = match i {
1445                0 => "rotation_similarity",
1446                1 => "gate_locality",
1447                2 => "commutation_potential",
1448                3 => "matrix_sparsity",
1449                _ => "default",
1450            };
1451
1452            if let Some(&weight) = self.feature_weights.get(weight_key) {
1453                prediction += feature_value * weight;
1454            }
1455        }
1456
1457        1.0 / (1.0 + (-prediction).exp())
1458    }
1459
1460    /// Check if two gates should be fused
1461    fn should_fuse_gates(&self, gate1: &QuantumGate, gate2: &QuantumGate) -> FusionResult {
1462        // For simplicity, use a basic heuristic
1463        let overlapping_qubits = gate1.qubits.iter().any(|&q| gate2.qubits.contains(&q));
1464        let should_fuse = overlapping_qubits && gate1.qubits.len() <= 2 && gate2.qubits.len() <= 2;
1465
1466        FusionResult {
1467            should_fuse,
1468            confidence: if should_fuse { 0.8 } else { 0.2 },
1469            expected_speedup: if should_fuse { 1.5 } else { 1.0 },
1470            estimated_error: 0.01,
1471        }
1472    }
1473}
1474
1475impl CircuitPatternAnalyzer {
1476    /// Create a new pattern analyzer
1477    pub fn new() -> Self {
1478        let mut beneficial_patterns = HashMap::new();
1479
1480        // Initialize with known beneficial patterns
1481        beneficial_patterns.insert("RX-RX".to_string(), 0.9);
1482        beneficial_patterns.insert("RY-RY".to_string(), 0.9);
1483        beneficial_patterns.insert("RZ-RZ".to_string(), 0.9);
1484        beneficial_patterns.insert("H-CNOT-H".to_string(), 0.8);
1485        beneficial_patterns.insert("CNOT-RZ-CNOT".to_string(), 0.7);
1486
1487        Self {
1488            beneficial_patterns,
1489            pattern_history: Vec::new(),
1490        }
1491    }
1492
1493    /// Analyze circuit pattern and return recognition result
1494    pub fn analyze_pattern(&mut self, gates: &[QuantumGate]) -> PatternRecognitionResult {
1495        let pattern_string = self.create_pattern_string(gates);
1496
1497        let (confidence, expected_benefit) = if let Some(&benefit) =
1498            self.beneficial_patterns.get(&pattern_string)
1499        {
1500            (0.9, benefit)
1501        } else {
1502            // Try partial matches
1503            let (partial_confidence, partial_benefit) = self.find_partial_matches(&pattern_string);
1504            (partial_confidence, partial_benefit)
1505        };
1506
1507        let result = PatternRecognitionResult {
1508            pattern: pattern_string,
1509            confidence,
1510            expected_benefit,
1511        };
1512
1513        self.pattern_history.push(result.clone());
1514        result
1515    }
1516
1517    fn create_pattern_string(&self, gates: &[QuantumGate]) -> String {
1518        gates
1519            .iter()
1520            .map(|g| format!("{:?}", g.gate_type))
1521            .collect::<Vec<_>>()
1522            .join("-")
1523    }
1524
1525    fn find_partial_matches(&self, pattern: &str) -> (f64, f64) {
1526        let mut best_confidence = 0.0;
1527        let mut best_benefit = 0.0;
1528
1529        for (known_pattern, &benefit) in &self.beneficial_patterns {
1530            let similarity = self.calculate_pattern_similarity(pattern, known_pattern);
1531            if similarity > best_confidence {
1532                best_confidence = similarity;
1533                best_benefit = benefit * similarity; // Scale benefit by similarity
1534            }
1535        }
1536
1537        (best_confidence, best_benefit)
1538    }
1539
1540    fn calculate_pattern_similarity(&self, pattern1: &str, pattern2: &str) -> f64 {
1541        let gates1: Vec<&str> = pattern1.split('-').collect();
1542        let gates2: Vec<&str> = pattern2.split('-').collect();
1543
1544        let max_len = gates1.len().max(gates2.len()) as f64;
1545        if max_len == 0.0 {
1546            return 0.0;
1547        }
1548
1549        let common_count = gates1.iter().filter(|&g| gates2.contains(g)).count() as f64;
1550
1551        common_count / max_len
1552    }
1553
1554    /// Learn from successful fusion
1555    pub fn learn_pattern(&mut self, pattern: String, observed_benefit: f64) {
1556        // Update or add pattern with exponential moving average
1557        let alpha = 0.1; // Learning rate
1558
1559        if let Some(current_benefit) = self.beneficial_patterns.get_mut(&pattern) {
1560            *current_benefit = (1.0 - alpha) * *current_benefit + alpha * observed_benefit;
1561        } else {
1562            self.beneficial_patterns.insert(pattern, observed_benefit);
1563        }
1564    }
1565}
1566
1567/// Utilities for gate fusion
1568pub struct FusionUtils;
1569
1570impl FusionUtils {
1571    /// Create common gate sequences for testing
1572    pub fn create_test_sequence(sequence_type: &str, num_qubits: usize) -> Vec<QuantumGate> {
1573        match sequence_type {
1574            "rotation_chain" => (0..num_qubits)
1575                .flat_map(|q| {
1576                    vec![
1577                        QuantumGate::new(
1578                            GateType::RotationX,
1579                            vec![q],
1580                            vec![std::f64::consts::PI / 4.0],
1581                        ),
1582                        QuantumGate::new(
1583                            GateType::RotationY,
1584                            vec![q],
1585                            vec![std::f64::consts::PI / 3.0],
1586                        ),
1587                        QuantumGate::new(
1588                            GateType::RotationZ,
1589                            vec![q],
1590                            vec![std::f64::consts::PI / 6.0],
1591                        ),
1592                    ]
1593                })
1594                .collect(),
1595            "cnot_ladder" => (0..num_qubits - 1)
1596                .map(|q| QuantumGate::new(GateType::CNOT, vec![q, q + 1], vec![]))
1597                .collect(),
1598            "mixed_gates" => {
1599                let mut gates = Vec::new();
1600                for q in 0..num_qubits {
1601                    gates.push(QuantumGate::new(GateType::Hadamard, vec![q], vec![]));
1602                    if q > 0 {
1603                        gates.push(QuantumGate::new(GateType::CNOT, vec![q - 1, q], vec![]));
1604                    }
1605                    gates.push(QuantumGate::new(
1606                        GateType::RotationZ,
1607                        vec![q],
1608                        vec![std::f64::consts::PI / 8.0],
1609                    ));
1610                }
1611                gates
1612            }
1613            _ => vec![QuantumGate::new(GateType::Identity, vec![0], vec![])],
1614        }
1615    }
1616
1617    /// Benchmark different fusion strategies
1618    pub fn benchmark_fusion_strategies(
1619        gates: &[QuantumGate],
1620        strategies: &[FusionStrategy],
1621    ) -> Result<HashMap<String, CircuitAnalysis>> {
1622        let mut results = HashMap::new();
1623
1624        for &strategy in strategies {
1625            let config = AdaptiveFusionConfig {
1626                strategy,
1627                ..Default::default()
1628            };
1629
1630            let mut fusion_engine = AdaptiveGateFusion::new(config)?;
1631            let analysis = fusion_engine.analyze_circuit(gates)?;
1632
1633            results.insert(format!("{:?}", strategy), analysis);
1634        }
1635
1636        Ok(results)
1637    }
1638
1639    /// Estimate fusion potential for a circuit
1640    pub fn estimate_fusion_potential(gates: &[QuantumGate]) -> f64 {
1641        if gates.len() < 2 {
1642            return 0.0;
1643        }
1644
1645        let mut potential_fusions = 0;
1646        let mut total_gates = gates.len();
1647
1648        // Count adjacent gates that could potentially be fused
1649        for window in gates.windows(2) {
1650            if window[0].can_fuse_with(&window[1]) {
1651                potential_fusions += 1;
1652            }
1653        }
1654
1655        potential_fusions as f64 / total_gates as f64
1656    }
1657}
1658
1659#[cfg(test)]
1660mod tests {
1661    use super::*;
1662    use approx::assert_abs_diff_eq;
1663
1664    #[test]
1665    fn test_quantum_gate_creation() {
1666        let gate = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1667        assert_eq!(gate.gate_type, GateType::PauliX);
1668        assert_eq!(gate.qubits, vec![0]);
1669        assert!(gate.cost > 0.0);
1670    }
1671
1672    #[test]
1673    fn test_gate_commutation() {
1674        let gate1 = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1675        let gate2 = QuantumGate::new(GateType::PauliY, vec![1], vec![]);
1676        let gate3 = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1677
1678        assert!(gate1.commutes_with(&gate2)); // Different qubits
1679        assert!(gate1.commutes_with(&gate3)); // Same Pauli on same qubit
1680    }
1681
1682    #[test]
1683    fn test_gate_fusion_compatibility() {
1684        let gate1 = QuantumGate::new(GateType::RotationX, vec![0], vec![0.5]);
1685        let gate2 = QuantumGate::new(GateType::RotationX, vec![0], vec![0.3]);
1686        let gate3 = QuantumGate::new(GateType::RotationY, vec![1], vec![0.2]);
1687
1688        assert!(gate1.can_fuse_with(&gate2)); // Same type, same qubit
1689        assert!(!gate1.can_fuse_with(&gate3)); // Different qubit
1690    }
1691
1692    #[test]
1693    fn test_fused_gate_block() {
1694        let gates = vec![
1695            QuantumGate::new(GateType::RotationX, vec![0], vec![0.5]),
1696            QuantumGate::new(GateType::RotationX, vec![0], vec![0.3]),
1697        ];
1698
1699        let block = FusedGateBlock::new(gates).unwrap();
1700        assert_eq!(block.qubits, vec![0]);
1701        assert!(block.improvement_factor > 0.0);
1702    }
1703
1704    #[test]
1705    fn test_adaptive_fusion_config() {
1706        let config = AdaptiveFusionConfig::default();
1707        assert_eq!(config.strategy, FusionStrategy::Adaptive);
1708        assert_eq!(config.max_fusion_size, 8);
1709        assert!(config.enable_cross_qubit_fusion);
1710    }
1711
1712    #[test]
1713    fn test_circuit_analysis() {
1714        let gates = FusionUtils::create_test_sequence("rotation_chain", 2);
1715
1716        let config = AdaptiveFusionConfig::default();
1717        let mut fusion_engine = AdaptiveGateFusion::new(config).unwrap();
1718
1719        let analysis = fusion_engine.analyze_circuit(&gates).unwrap();
1720        assert_eq!(analysis.original_gate_count, gates.len());
1721        assert!(!analysis.fusion_opportunities.is_empty());
1722    }
1723
1724    #[test]
1725    fn test_fusion_utils_test_sequences() {
1726        let rotation_chain = FusionUtils::create_test_sequence("rotation_chain", 2);
1727        assert_eq!(rotation_chain.len(), 6); // 3 rotations per qubit * 2 qubits
1728
1729        let cnot_ladder = FusionUtils::create_test_sequence("cnot_ladder", 3);
1730        assert_eq!(cnot_ladder.len(), 2); // 2 CNOTs for 3 qubits
1731
1732        let mixed_gates = FusionUtils::create_test_sequence("mixed_gates", 2);
1733        assert!(!mixed_gates.is_empty());
1734    }
1735
1736    #[test]
1737    fn test_fusion_potential_estimation() {
1738        let gates = vec![
1739            QuantumGate::new(GateType::RotationX, vec![0], vec![0.1]),
1740            QuantumGate::new(GateType::RotationX, vec![0], vec![0.2]),
1741            QuantumGate::new(GateType::RotationY, vec![1], vec![0.3]),
1742        ];
1743
1744        let potential = FusionUtils::estimate_fusion_potential(&gates);
1745        assert!(potential > 0.0);
1746        assert!(potential <= 1.0);
1747    }
1748
1749    #[test]
1750    fn test_gate_matrix_generation() {
1751        let pauli_x = QuantumGate::new(GateType::PauliX, vec![0], vec![]);
1752        assert_eq!(pauli_x.matrix.shape(), &[2, 2]);
1753
1754        // Check Pauli-X matrix elements
1755        assert_abs_diff_eq!(pauli_x.matrix[[0, 1]].re, 1.0, epsilon = 1e-10);
1756        assert_abs_diff_eq!(pauli_x.matrix[[1, 0]].re, 1.0, epsilon = 1e-10);
1757    }
1758
1759    #[test]
1760    fn test_circuit_depth_calculation() {
1761        let gates = vec![
1762            QuantumGate::new(GateType::Hadamard, vec![0], vec![]),
1763            QuantumGate::new(GateType::CNOT, vec![0, 1], vec![]),
1764            QuantumGate::new(GateType::RotationZ, vec![1], vec![0.5]),
1765        ];
1766
1767        let config = AdaptiveFusionConfig::default();
1768        let fusion_engine = AdaptiveGateFusion::new(config).unwrap();
1769
1770        let depth = fusion_engine.calculate_circuit_depth(&gates);
1771        assert!(depth > 0);
1772    }
1773}