1use quantrs2_ml::prelude::*;
8use quantrs2_ml::qnn::QNNLayerType;
9use scirs2_core::ndarray::{Array1, Array2};
10use scirs2_core::random::prelude::*;
11
12fn main() -> Result<()> {
13 println!("=== Quantum Neural Architecture Search Demo ===\n");
14
15 println!("1. Evolutionary Algorithm Search...");
17 evolutionary_search_demo()?;
18
19 println!("\n2. Random Search Baseline...");
21 random_search_demo()?;
22
23 println!("\n3. Reinforcement Learning Search...");
25 rl_search_demo()?;
26
27 println!("\n4. Bayesian Optimization Search...");
29 bayesian_search_demo()?;
30
31 println!("\n5. DARTS (Differentiable Architecture Search)...");
33 darts_demo()?;
34
35 println!("\n6. Multi-Objective Optimization...");
37 multi_objective_demo()?;
38
39 println!("\n7. Architecture Analysis...");
41 architecture_analysis_demo()?;
42
43 println!("\n=== Quantum NAS Demo Complete ===");
44
45 Ok(())
46}
47
48fn evolutionary_search_demo() -> Result<()> {
50 let search_space = create_default_search_space();
52
53 let strategy = SearchStrategy::Evolutionary {
55 population_size: 20,
56 mutation_rate: 0.2,
57 crossover_rate: 0.7,
58 elitism_ratio: 0.1,
59 };
60
61 let mut nas = QuantumNAS::new(strategy, search_space);
62
63 println!(" Created evolutionary NAS:");
64 println!(" - Population size: 20");
65 println!(" - Mutation rate: 0.2");
66 println!(" - Crossover rate: 0.7");
67 println!(" - Elitism ratio: 0.1");
68
69 let eval_data = Array2::from_shape_fn((100, 4), |(i, j)| (i as f64 + j as f64) / 50.0);
71 let eval_labels = Array1::from_shape_fn(100, |i| i % 2);
72 nas.set_evaluation_data(eval_data, eval_labels);
73
74 println!("\n Running evolutionary search for 10 generations...");
76 let best_architectures = nas.search(10)?;
77
78 println!(" Search complete!");
79 println!(
80 " - Best architectures found: {}",
81 best_architectures.len()
82 );
83
84 if let Some(best) = best_architectures.first() {
85 println!(" - Best architecture: {best}");
86 println!(" - Circuit depth: {}", best.metrics.circuit_depth);
87 println!(" - Parameter count: {}", best.metrics.parameter_count);
88
89 if let Some(expressivity) = best.properties.expressivity {
90 println!(" - Expressivity: {expressivity:.3}");
91 }
92 }
93
94 let summary = nas.get_search_summary();
96 println!(
97 " - Total architectures evaluated: {}",
98 summary.total_architectures_evaluated
99 );
100 println!(" - Pareto front size: {}", summary.pareto_front_size);
101
102 Ok(())
103}
104
105fn random_search_demo() -> Result<()> {
107 let search_space = create_default_search_space();
108 let strategy = SearchStrategy::Random { num_samples: 50 };
109
110 let mut nas = QuantumNAS::new(strategy, search_space);
111
112 println!(" Created random search NAS:");
113 println!(" - Number of samples: 50");
114
115 let eval_data = Array2::from_shape_fn((80, 4), |(i, j)| {
117 0.5f64.mul_add((i as f64).sin(), 0.3 * (j as f64).cos())
118 });
119 let eval_labels = Array1::from_shape_fn(80, |i| usize::from(i % 3 != 0));
120 nas.set_evaluation_data(eval_data, eval_labels);
121
122 println!("\n Running random search...");
123 let best_architectures = nas.search(50)?;
124
125 println!(" Random search complete!");
126 if let Some(best) = best_architectures.first() {
127 println!(" - Best random architecture: {best}");
128 if let Some(accuracy) = best.metrics.accuracy {
129 println!(" - Accuracy: {accuracy:.3}");
130 }
131 }
132
133 Ok(())
134}
135
136fn rl_search_demo() -> Result<()> {
138 let search_space = create_custom_search_space();
139
140 let strategy = SearchStrategy::ReinforcementLearning {
141 agent_type: RLAgentType::PolicyGradient,
142 exploration_rate: 0.3,
143 learning_rate: 0.01,
144 };
145
146 let mut nas = QuantumNAS::new(strategy, search_space);
147
148 println!(" Created RL-based NAS:");
149 println!(" - Agent type: Policy Gradient");
150 println!(" - Exploration rate: 0.3");
151 println!(" - Learning rate: 0.01");
152
153 println!("\n Running RL search for 100 episodes...");
154 let best_architectures = nas.search(100)?;
155
156 println!(" RL search complete!");
157 println!(" - Architectures found: {}", best_architectures.len());
158
159 if let Some(best) = best_architectures.first() {
160 println!(" - Best RL architecture: {best}");
161 if let Some(entanglement) = best.properties.entanglement_capability {
162 println!(" - Entanglement capability: {entanglement:.3}");
163 }
164 }
165
166 Ok(())
167}
168
169fn bayesian_search_demo() -> Result<()> {
171 let search_space = create_default_search_space();
172
173 let strategy = SearchStrategy::BayesianOptimization {
174 acquisition_function: AcquisitionFunction::ExpectedImprovement,
175 num_initial_points: 10,
176 };
177
178 let mut nas = QuantumNAS::new(strategy, search_space);
179
180 println!(" Created Bayesian optimization NAS:");
181 println!(" - Acquisition function: Expected Improvement");
182 println!(" - Initial random points: 10");
183
184 let eval_data = generate_quantum_data(60, 4);
186 let eval_labels = Array1::from_shape_fn(60, |i| i % 3);
187 nas.set_evaluation_data(eval_data, eval_labels);
188
189 println!("\n Running Bayesian optimization for 30 iterations...");
190 let best_architectures = nas.search(30)?;
191
192 println!(" Bayesian optimization complete!");
193 if let Some(best) = best_architectures.first() {
194 println!(" - Best Bayesian architecture: {best}");
195 if let Some(hardware_eff) = best.metrics.hardware_efficiency {
196 println!(" - Hardware efficiency: {hardware_eff:.3}");
197 }
198 }
199
200 Ok(())
201}
202
203fn darts_demo() -> Result<()> {
205 let search_space = create_darts_search_space();
206
207 let strategy = SearchStrategy::DARTS {
208 learning_rate: 0.01,
209 weight_decay: 1e-4,
210 };
211
212 let mut nas = QuantumNAS::new(strategy, search_space);
213
214 println!(" Created DARTS NAS:");
215 println!(" - Learning rate: 0.01");
216 println!(" - Weight decay: 1e-4");
217 println!(" - Differentiable architecture search");
218
219 println!("\n Running DARTS for 200 epochs...");
220 let best_architectures = nas.search(200)?;
221
222 println!(" DARTS search complete!");
223 if let Some(best) = best_architectures.first() {
224 println!(" - DARTS architecture: {best}");
225 println!(" - Learned through gradient-based optimization");
226
227 if let Some(gradient_var) = best.properties.gradient_variance {
228 println!(" - Gradient variance: {gradient_var:.3}");
229 }
230 }
231
232 Ok(())
233}
234
235fn multi_objective_demo() -> Result<()> {
237 let search_space = create_default_search_space();
238
239 let strategy = SearchStrategy::Evolutionary {
240 population_size: 30,
241 mutation_rate: 0.15,
242 crossover_rate: 0.8,
243 elitism_ratio: 0.2,
244 };
245
246 let mut nas = QuantumNAS::new(strategy, search_space);
247
248 println!(" Multi-objective optimization:");
249 println!(" - Optimizing accuracy vs. complexity");
250 println!(" - Finding Pareto-optimal architectures");
251
252 nas.search(15)?;
254
255 let pareto_front = nas.get_pareto_front();
257 println!(" Pareto front analysis:");
258 println!(" - Pareto-optimal architectures: {}", pareto_front.len());
259
260 for (i, arch) in pareto_front.iter().take(3).enumerate() {
261 println!(
262 " Architecture {}: {} params, {:.3} accuracy",
263 i + 1,
264 arch.metrics.parameter_count,
265 arch.metrics.accuracy.unwrap_or(0.0)
266 );
267 }
268
269 Ok(())
270}
271
272fn architecture_analysis_demo() -> Result<()> {
274 println!(" Analyzing quantum circuit architectures...");
275
276 let architectures = create_sample_architectures();
278
279 println!("\n Architecture comparison:");
280 for (i, arch) in architectures.iter().enumerate() {
281 println!(" Architecture {}:", i + 1);
282 println!(" - Layers: {}", arch.layers.len());
283 println!(" - Qubits: {}", arch.num_qubits);
284 println!(" - Circuit depth: {}", arch.metrics.circuit_depth);
285
286 if let Some(expressivity) = arch.properties.expressivity {
287 println!(" - Expressivity: {expressivity:.3}");
288 }
289
290 if let Some(entanglement) = arch.properties.entanglement_capability {
291 println!(" - Entanglement: {entanglement:.3}");
292 }
293
294 if let Some(barren_plateau) = arch.properties.barren_plateau_score {
295 println!(" - Barren plateau risk: {barren_plateau:.3}");
296 }
297
298 println!();
299 }
300
301 println!(" Performance trade-offs:");
303 println!(" - Deeper circuits: higher expressivity, more barren plateaus");
304 println!(" - More entanglement: better feature mixing, higher noise sensitivity");
305 println!(" - More parameters: greater capacity, overfitting risk");
306
307 Ok(())
308}
309
310fn generate_quantum_data(samples: usize, features: usize) -> Array2<f64> {
312 Array2::from_shape_fn((samples, features), |(i, j)| {
313 let phase = (i as f64).mul_add(0.1, j as f64 * 0.2).sin();
314 let amplitude = (i as f64 / samples as f64).exp() * 0.5;
315 amplitude * phase + 0.1 * fastrand::f64()
316 })
317}
318
319fn create_custom_search_space() -> SearchSpace {
321 SearchSpace {
322 layer_types: vec![
323 QNNLayerType::VariationalLayer { num_params: 4 },
324 QNNLayerType::VariationalLayer { num_params: 8 },
325 QNNLayerType::EntanglementLayer {
326 connectivity: "circular".to_string(),
327 },
328 QNNLayerType::EntanglementLayer {
329 connectivity: "linear".to_string(),
330 },
331 ],
332 depth_range: (1, 5),
333 qubit_constraints: QubitConstraints {
334 min_qubits: 3,
335 max_qubits: 6,
336 topology: Some(QuantumTopology::Ring),
337 },
338 param_ranges: vec![("variational_params".to_string(), (3, 12))]
339 .into_iter()
340 .collect(),
341 connectivity_patterns: vec!["linear".to_string(), "circular".to_string()],
342 measurement_bases: vec!["computational".to_string(), "Pauli-Z".to_string()],
343 }
344}
345
346fn create_darts_search_space() -> SearchSpace {
348 SearchSpace {
349 layer_types: vec![
350 QNNLayerType::VariationalLayer { num_params: 6 },
351 QNNLayerType::VariationalLayer { num_params: 9 },
352 QNNLayerType::EntanglementLayer {
353 connectivity: "full".to_string(),
354 },
355 ],
356 depth_range: (3, 6),
357 qubit_constraints: QubitConstraints {
358 min_qubits: 4,
359 max_qubits: 4, topology: Some(QuantumTopology::Complete),
361 },
362 param_ranges: vec![("variational_params".to_string(), (6, 9))]
363 .into_iter()
364 .collect(),
365 connectivity_patterns: vec!["full".to_string()],
366 measurement_bases: vec!["computational".to_string()],
367 }
368}
369
370fn create_sample_architectures() -> Vec<ArchitectureCandidate> {
372 vec![
373 ArchitectureCandidate {
375 id: "simple".to_string(),
376 layers: vec![
377 QNNLayerType::EncodingLayer { num_features: 4 },
378 QNNLayerType::VariationalLayer { num_params: 6 },
379 QNNLayerType::MeasurementLayer {
380 measurement_basis: "computational".to_string(),
381 },
382 ],
383 num_qubits: 3,
384 metrics: ArchitectureMetrics {
385 accuracy: Some(0.65),
386 loss: Some(0.4),
387 circuit_depth: 3,
388 parameter_count: 6,
389 training_time: Some(10.0),
390 memory_usage: Some(512),
391 hardware_efficiency: Some(0.8),
392 },
393 properties: ArchitectureProperties {
394 expressivity: Some(0.3),
395 entanglement_capability: Some(0.2),
396 gradient_variance: Some(0.1),
397 barren_plateau_score: Some(0.2),
398 noise_resilience: Some(0.7),
399 },
400 },
401 ArchitectureCandidate {
403 id: "complex".to_string(),
404 layers: vec![
405 QNNLayerType::EncodingLayer { num_features: 6 },
406 QNNLayerType::VariationalLayer { num_params: 12 },
407 QNNLayerType::EntanglementLayer {
408 connectivity: "full".to_string(),
409 },
410 QNNLayerType::VariationalLayer { num_params: 12 },
411 QNNLayerType::EntanglementLayer {
412 connectivity: "circular".to_string(),
413 },
414 QNNLayerType::MeasurementLayer {
415 measurement_basis: "Pauli-Z".to_string(),
416 },
417 ],
418 num_qubits: 6,
419 metrics: ArchitectureMetrics {
420 accuracy: Some(0.85),
421 loss: Some(0.2),
422 circuit_depth: 8,
423 parameter_count: 24,
424 training_time: Some(45.0),
425 memory_usage: Some(2048),
426 hardware_efficiency: Some(0.4),
427 },
428 properties: ArchitectureProperties {
429 expressivity: Some(0.8),
430 entanglement_capability: Some(0.9),
431 gradient_variance: Some(0.3),
432 barren_plateau_score: Some(0.7),
433 noise_resilience: Some(0.3),
434 },
435 },
436 ArchitectureCandidate {
438 id: "balanced".to_string(),
439 layers: vec![
440 QNNLayerType::EncodingLayer { num_features: 4 },
441 QNNLayerType::VariationalLayer { num_params: 8 },
442 QNNLayerType::EntanglementLayer {
443 connectivity: "circular".to_string(),
444 },
445 QNNLayerType::VariationalLayer { num_params: 8 },
446 QNNLayerType::MeasurementLayer {
447 measurement_basis: "computational".to_string(),
448 },
449 ],
450 num_qubits: 4,
451 metrics: ArchitectureMetrics {
452 accuracy: Some(0.78),
453 loss: Some(0.28),
454 circuit_depth: 5,
455 parameter_count: 16,
456 training_time: Some(25.0),
457 memory_usage: Some(1024),
458 hardware_efficiency: Some(0.65),
459 },
460 properties: ArchitectureProperties {
461 expressivity: Some(0.6),
462 entanglement_capability: Some(0.5),
463 gradient_variance: Some(0.15),
464 barren_plateau_score: Some(0.4),
465 noise_resilience: Some(0.6),
466 },
467 },
468 ]
469}