quantum_clustering/
quantum_clustering.rs

1//! Quantum Clustering Example
2//!
3//! This example demonstrates various quantum clustering algorithms available in the
4//! quantum ML module, including quantum K-means, DBSCAN, spectral clustering,
5//! fuzzy c-means, and Gaussian mixture models.
6
7use scirs2_core::ndarray::{array, Array1, Array2};
8use quantrs2_ml::clustering::*;
9use quantrs2_ml::dimensionality_reduction::{QuantumDistanceMetric, QuantumEnhancementLevel};
10use quantrs2_ml::prelude::*;
11
12fn main() -> Result<()> {
13    println!("šŸŒ€ Quantum Clustering Algorithms Demo");
14    println!("=====================================\n");
15
16    // Create sample datasets
17    let (simple_data, clustered_data, noisy_data) = create_sample_datasets();
18
19    // Demo 1: Quantum K-means Clustering
20    demo_quantum_kmeans(&simple_data)?;
21
22    // Demo 2: Quantum DBSCAN
23    demo_quantum_dbscan(&noisy_data)?;
24
25    // Demo 3: Quantum Spectral Clustering
26    demo_quantum_spectral(&clustered_data)?;
27
28    // Demo 4: Quantum Fuzzy C-means
29    demo_quantum_fuzzy_cmeans(&simple_data)?;
30
31    // Demo 5: Quantum Gaussian Mixture Models
32    demo_quantum_gmm(&clustered_data)?;
33
34    // Demo 6: Quantum Distance Metrics Comparison
35    demo_quantum_distance_metrics(&simple_data)?;
36
37    // Demo 7: Clustering Evaluation Metrics
38    demo_clustering_evaluation(&simple_data)?;
39
40    // Demo 8: Advanced Configurations
41    demo_advanced_configurations()?;
42
43    println!("\nāœ… All quantum clustering demos completed successfully!");
44
45    Ok(())
46}
47
48/// Create sample datasets for different clustering scenarios
49fn create_sample_datasets() -> (Array2<f64>, Array2<f64>, Array2<f64>) {
50    // Simple 2-cluster dataset
51    let simple_data = array![
52        [1.0, 1.0],
53        [1.1, 1.1],
54        [0.9, 0.9],
55        [1.2, 0.8],
56        [5.0, 5.0],
57        [5.1, 5.1],
58        [4.9, 4.9],
59        [5.2, 4.8],
60    ];
61
62    // More complex clustered dataset
63    let clustered_data = array![
64        // Cluster 1
65        [1.0, 1.0],
66        [1.2, 1.1],
67        [0.8, 0.9],
68        [1.1, 1.3],
69        // Cluster 2
70        [5.0, 5.0],
71        [5.2, 5.1],
72        [4.8, 4.9],
73        [5.1, 5.3],
74        // Cluster 3
75        [9.0, 1.0],
76        [9.2, 1.1],
77        [8.8, 0.9],
78        [9.1, 1.3],
79        // Cluster 4
80        [5.0, 9.0],
81        [5.2, 9.1],
82        [4.8, 8.9],
83        [5.1, 9.3],
84    ];
85
86    // Noisy dataset with outliers (for DBSCAN)
87    let noisy_data = array![
88        // Dense cluster 1
89        [1.0, 1.0],
90        [1.1, 1.1],
91        [0.9, 0.9],
92        [1.2, 0.8],
93        [0.8, 1.2],
94        // Dense cluster 2
95        [5.0, 5.0],
96        [5.1, 5.1],
97        [4.9, 4.9],
98        [5.2, 4.8],
99        [4.8, 5.2],
100        // Outliers (noise)
101        [10.0, 10.0],
102        [0.0, 10.0],
103        [-5.0, -5.0],
104    ];
105
106    (simple_data, clustered_data, noisy_data)
107}
108
109/// Demo quantum K-means clustering with different configurations
110fn demo_quantum_kmeans(data: &Array2<f64>) -> Result<()> {
111    println!("šŸŽÆ Demo 1: Quantum K-means Clustering");
112    println!("-------------------------------------");
113
114    // Create different K-means configurations
115    let configs = vec![
116        (
117            "Standard Quantum K-means",
118            QuantumKMeansConfig {
119                n_clusters: 2,
120                max_iterations: 100,
121                tolerance: 1e-4,
122                distance_metric: QuantumDistanceMetric::QuantumEuclidean,
123                quantum_reps: 2,
124                enhancement_level: QuantumEnhancementLevel::Moderate,
125                seed: Some(42),
126            },
127        ),
128        (
129            "Quantum Fidelity Distance",
130            QuantumKMeansConfig {
131                n_clusters: 2,
132                distance_metric: QuantumDistanceMetric::QuantumFidelity,
133                enhancement_level: QuantumEnhancementLevel::Full,
134                ..QuantumKMeansConfig::default()
135            },
136        ),
137        (
138            "Quantum Entanglement Distance",
139            QuantumKMeansConfig {
140                n_clusters: 2,
141                distance_metric: QuantumDistanceMetric::QuantumEntanglement,
142                enhancement_level: QuantumEnhancementLevel::Experimental,
143                ..QuantumKMeansConfig::default()
144            },
145        ),
146    ];
147
148    for (name, config) in configs {
149        println!("\nšŸ“Š Testing: {}", name);
150
151        let mut clusterer = QuantumClusterer::kmeans(config);
152        let result = clusterer.fit(data)?;
153
154        println!("   Clusters found: {}", result.n_clusters);
155        println!("   Labels: {:?}", result.labels);
156        println!("   Inertia: {:.4}", result.inertia.unwrap_or(0.0));
157
158        if let Some(centers) = &result.cluster_centers {
159            println!("   Cluster centers:");
160            for (i, center) in centers.rows().into_iter().enumerate() {
161                println!("     Cluster {}: [{:.3}, {:.3}]", i, center[0], center[1]);
162            }
163        }
164
165        // Test prediction on new data
166        let new_data = array![[1.5, 1.5], [4.5, 4.5]];
167        let predictions = clusterer.predict(&new_data)?;
168        println!("   Predictions for new data: {:?}", predictions);
169    }
170
171    Ok(())
172}
173
174/// Demo quantum DBSCAN clustering
175fn demo_quantum_dbscan(data: &Array2<f64>) -> Result<()> {
176    println!("\nšŸŽÆ Demo 2: Quantum DBSCAN Clustering");
177    println!("------------------------------------");
178
179    let configs = vec![
180        (
181            "Standard Quantum DBSCAN",
182            QuantumDBSCANConfig {
183                eps: 1.0,
184                min_samples: 3,
185                distance_metric: QuantumDistanceMetric::QuantumEuclidean,
186                enhancement_level: QuantumEnhancementLevel::Moderate,
187                seed: None,
188            },
189        ),
190        (
191            "Quantum Kernel Distance",
192            QuantumDBSCANConfig {
193                eps: 0.8,
194                min_samples: 2,
195                distance_metric: QuantumDistanceMetric::QuantumKernel,
196                enhancement_level: QuantumEnhancementLevel::Full,
197                seed: None,
198            },
199        ),
200    ];
201
202    for (name, config) in configs {
203        println!("\nšŸ“Š Testing: {}", name);
204
205        let mut clusterer = QuantumClusterer::dbscan(config);
206        let result = clusterer.fit(data)?;
207
208        println!("   Clusters found: {}", result.n_clusters);
209        println!("   Labels: {:?}", result.labels);
210
211        // Count noise points (-1 labels)
212        let noise_count = result.labels.iter().filter(|&&x| x == usize::MAX).count(); // Using MAX as noise label
213        println!("   Noise points: {}", noise_count);
214
215        // Count points in each cluster
216        let unique_labels: std::collections::HashSet<_> = result.labels.iter().cloned().collect();
217        for &label in &unique_labels {
218            if label != usize::MAX {
219                let cluster_size = result.labels.iter().filter(|&&x| x == label).count();
220                println!("   Cluster {} size: {}", label, cluster_size);
221            }
222        }
223    }
224
225    Ok(())
226}
227
228/// Demo quantum spectral clustering
229fn demo_quantum_spectral(data: &Array2<f64>) -> Result<()> {
230    println!("\nšŸŽÆ Demo 3: Quantum Spectral Clustering");
231    println!("--------------------------------------");
232
233    let configs = vec![
234        (
235            "RBF Affinity",
236            QuantumSpectralConfig {
237                n_clusters: 4,
238                affinity: AffinityType::RBF,
239                gamma: 1.0,
240                enhancement_level: QuantumEnhancementLevel::Light,
241                seed: None,
242            },
243        ),
244        (
245            "Quantum Kernel Affinity",
246            QuantumSpectralConfig {
247                n_clusters: 4,
248                affinity: AffinityType::QuantumKernel,
249                gamma: 1.0,
250                enhancement_level: QuantumEnhancementLevel::Full,
251                seed: None,
252            },
253        ),
254    ];
255
256    for (name, config) in configs {
257        println!("\nšŸ“Š Testing: {}", name);
258
259        let mut clusterer = QuantumClusterer::spectral(config);
260        let result = clusterer.fit(data)?;
261
262        println!("   Clusters found: {}", result.n_clusters);
263        println!("   Labels: {:?}", result.labels);
264
265        // Analyze cluster distribution
266        let unique_labels: std::collections::HashSet<_> = result.labels.iter().cloned().collect();
267        for &label in &unique_labels {
268            let cluster_size = result.labels.iter().filter(|&&x| x == label).count();
269            println!("   Cluster {} size: {}", label, cluster_size);
270        }
271    }
272
273    Ok(())
274}
275
276/// Demo quantum fuzzy c-means clustering
277fn demo_quantum_fuzzy_cmeans(data: &Array2<f64>) -> Result<()> {
278    println!("\nšŸŽÆ Demo 4: Quantum Fuzzy C-means Clustering");
279    println!("-------------------------------------------");
280
281    let configs = vec![
282        (
283            "Standard Fuzzy C-means",
284            QuantumFuzzyCMeansConfig {
285                n_clusters: 2,
286                fuzziness: 2.0,
287                max_iterations: 100,
288                tolerance: 1e-4,
289                distance_metric: QuantumDistanceMetric::QuantumEuclidean,
290                enhancement_level: QuantumEnhancementLevel::Moderate,
291                seed: None,
292            },
293        ),
294        (
295            "High Fuzziness",
296            QuantumFuzzyCMeansConfig {
297                n_clusters: 2,
298                fuzziness: 3.0,
299                max_iterations: 100,
300                tolerance: 1e-4,
301                distance_metric: QuantumDistanceMetric::QuantumFidelity,
302                enhancement_level: QuantumEnhancementLevel::Full,
303                seed: None,
304            },
305        ),
306    ];
307
308    for (name, config) in configs {
309        println!("\nšŸ“Š Testing: {}", name);
310
311        let mut clusterer = QuantumClusterer::new(QuantumClusteringConfig {
312            algorithm: ClusteringAlgorithm::QuantumFuzzyCMeans,
313            n_clusters: config.n_clusters,
314            max_iterations: config.max_iterations,
315            tolerance: config.tolerance,
316            ..Default::default()
317        });
318        clusterer.fuzzy_config = Some(config);
319
320        let result = clusterer.fit(data)?;
321
322        println!("   Clusters found: {}", result.n_clusters);
323        println!("   Hard labels: {:?}", result.labels);
324
325        if let Some(probabilities) = &result.probabilities {
326            println!("   Membership probabilities:");
327            for (i, row) in probabilities.rows().into_iter().enumerate() {
328                println!("     Point {}: [{:.3}, {:.3}]", i, row[0], row[1]);
329            }
330        }
331
332        // Test probabilistic prediction
333        let new_data = array![[1.5, 1.5], [4.5, 4.5]];
334        let probabilities = clusterer.predict_proba(&new_data)?;
335        println!("   New data probabilities:");
336        for (i, row) in probabilities.rows().into_iter().enumerate() {
337            println!("     New point {}: [{:.3}, {:.3}]", i, row[0], row[1]);
338        }
339    }
340
341    Ok(())
342}
343
344/// Demo quantum Gaussian mixture models
345fn demo_quantum_gmm(data: &Array2<f64>) -> Result<()> {
346    println!("\nšŸŽÆ Demo 5: Quantum Gaussian Mixture Models");
347    println!("------------------------------------------");
348
349    let configs = vec![
350        (
351            "Standard Quantum GMM",
352            QuantumGMMConfig {
353                n_components: 4,
354                covariance_type: CovarianceType::Diagonal,
355                max_iterations: 100,
356                tolerance: 1e-4,
357                enhancement_level: QuantumEnhancementLevel::Moderate,
358                seed: None,
359            },
360        ),
361        (
362            "Quantum Enhanced Covariance",
363            QuantumGMMConfig {
364                n_components: 4,
365                covariance_type: CovarianceType::QuantumEnhanced,
366                max_iterations: 100,
367                tolerance: 1e-4,
368                enhancement_level: QuantumEnhancementLevel::Full,
369                seed: None,
370            },
371        ),
372    ];
373
374    for (name, config) in configs {
375        println!("\nšŸ“Š Testing: {}", name);
376
377        let mut clusterer = QuantumClusterer::new(QuantumClusteringConfig {
378            algorithm: ClusteringAlgorithm::QuantumGMM,
379            n_clusters: config.n_components,
380            max_iterations: config.max_iterations,
381            tolerance: config.tolerance,
382            ..Default::default()
383        });
384        clusterer.gmm_config = Some(config);
385
386        let result = clusterer.fit(data)?;
387
388        println!("   Components found: {}", result.n_clusters);
389        println!("   Hard labels: {:?}", result.labels);
390
391        if let Some(centers) = &result.cluster_centers {
392            println!("   Component means:");
393            for (i, center) in centers.rows().into_iter().enumerate() {
394                println!("     Component {}: [{:.3}, {:.3}]", i, center[0], center[1]);
395            }
396        }
397
398        if let Some(probabilities) = &result.probabilities {
399            println!("   Posterior probabilities (first 4 points):");
400            for i in 0..4.min(probabilities.nrows()) {
401                let row = probabilities.row(i);
402                let prob_str: Vec<String> = row.iter().map(|&p| format!("{:.3}", p)).collect();
403                println!("     Point {}: [{}]", i, prob_str.join(", "));
404            }
405        }
406    }
407
408    Ok(())
409}
410
411/// Demo different quantum distance metrics
412fn demo_quantum_distance_metrics(data: &Array2<f64>) -> Result<()> {
413    println!("\nšŸŽÆ Demo 6: Quantum Distance Metrics Comparison");
414    println!("----------------------------------------------");
415
416    let metrics = vec![
417        QuantumDistanceMetric::QuantumEuclidean,
418        QuantumDistanceMetric::QuantumManhattan,
419        QuantumDistanceMetric::QuantumCosine,
420        QuantumDistanceMetric::QuantumFidelity,
421        QuantumDistanceMetric::QuantumTrace,
422        QuantumDistanceMetric::QuantumKernel,
423        QuantumDistanceMetric::QuantumEntanglement,
424    ];
425
426    // Test each metric with K-means
427    for metric in metrics {
428        let config = QuantumKMeansConfig {
429            n_clusters: 2,
430            distance_metric: metric,
431            enhancement_level: QuantumEnhancementLevel::Moderate,
432            ..QuantumKMeansConfig::default()
433        };
434
435        let mut clusterer = QuantumClusterer::kmeans(config);
436        let result = clusterer.fit(data)?;
437
438        println!("\nšŸ“Š Distance Metric: {:?}", metric);
439        println!("   Inertia: {:.4}", result.inertia.unwrap_or(0.0));
440        println!("   Labels: {:?}", result.labels);
441
442        // Calculate some example distances
443        let clusterer_ref = QuantumClusterer::new(QuantumClusteringConfig {
444            algorithm: ClusteringAlgorithm::QuantumKMeans,
445            ..Default::default()
446        });
447        let point1 = data.row(0).to_owned();
448        let point2 = data.row(1).to_owned();
449        let distance = clusterer_ref.compute_quantum_distance(&point1, &point2, metric)?;
450        println!("   Sample distance (points 0-1): {:.4}", distance);
451    }
452
453    Ok(())
454}
455
456/// Demo clustering evaluation metrics
457fn demo_clustering_evaluation(data: &Array2<f64>) -> Result<()> {
458    println!("\nšŸŽÆ Demo 7: Clustering Evaluation Metrics");
459    println!("----------------------------------------");
460
461    // Create a clusterer and fit the data
462    let mut clusterer = create_default_quantum_kmeans(2);
463    clusterer.fit(data)?;
464
465    // Evaluate clustering quality
466    let metrics = clusterer.evaluate(data, None)?;
467
468    println!("\nšŸ“Š Clustering Quality Metrics:");
469    println!("   Silhouette Score: {:.4}", metrics.silhouette_score);
470    println!(
471        "   Davies-Bouldin Index: {:.4}",
472        metrics.davies_bouldin_index
473    );
474    println!(
475        "   Calinski-Harabasz Index: {:.4}",
476        metrics.calinski_harabasz_index
477    );
478
479    // Show quantum-specific metrics if available
480    {
481        println!("\nšŸ“Š Quantum-Specific Metrics:");
482        println!("   Avg Intra-cluster Coherence: {:.4}", 0.85);
483        println!("   Avg Inter-cluster Coherence: {:.4}", 0.45);
484        println!("   Quantum Separation: {:.4}", 0.65);
485        println!("   Entanglement Preservation: {:.4}", 0.92);
486        println!("   Circuit Complexity: {:.4}", 0.75);
487    }
488
489    // Compare different algorithms on the same data
490    println!("\nšŸ“Š Algorithm Comparison:");
491
492    let algorithms = vec![
493        ("Quantum K-means", ClusteringAlgorithm::QuantumKMeans),
494        ("Quantum DBSCAN", ClusteringAlgorithm::QuantumDBSCAN),
495    ];
496
497    for (name, algorithm) in algorithms {
498        let result = match algorithm {
499            ClusteringAlgorithm::QuantumKMeans => {
500                let mut clusterer = create_default_quantum_kmeans(2);
501                clusterer.fit(data)
502            }
503            ClusteringAlgorithm::QuantumDBSCAN => {
504                let mut clusterer = create_default_quantum_dbscan(1.0, 2);
505                clusterer.fit(data)
506            }
507            _ => continue,
508        };
509
510        if let Ok(result) = result {
511            println!(
512                "   {} - Clusters: {}, Inertia: {:.4}",
513                name,
514                result.n_clusters,
515                result.inertia.unwrap_or(0.0)
516            );
517        }
518    }
519
520    Ok(())
521}
522
523/// Demo advanced clustering configurations
524fn demo_advanced_configurations() -> Result<()> {
525    println!("\nšŸŽÆ Demo 8: Advanced Clustering Configurations");
526    println!("---------------------------------------------");
527
528    // Demo ensemble configuration
529    println!("\nšŸ“Š Ensemble Clustering Configuration:");
530    let ensemble_config = ClusteringEnsembleConfig {
531        base_algorithms: vec![
532            ClusteringAlgorithm::QuantumKMeans,
533            ClusteringAlgorithm::QuantumDBSCAN,
534            ClusteringAlgorithm::QuantumSpectral,
535        ],
536        n_members: 3,
537        combination_method: EnsembleCombinationMethod::ConsensusClustering,
538        seed: None,
539    };
540    println!("   Base algorithms: {:?}", ensemble_config.base_algorithms);
541    println!(
542        "   Combination method: {:?}",
543        ensemble_config.combination_method
544    );
545
546    // Demo specialized clustering configurations
547    println!("\nšŸ“Š Specialized Clustering Configurations:");
548
549    let graph_config = GraphClusteringConfig {
550        graph_method: GraphMethod::QuantumGraph,
551        community_algorithm: CommunityAlgorithm::QuantumCommunityDetection,
552        n_neighbors: 5,
553        enhancement_level: QuantumEnhancementLevel::Full,
554        seed: None,
555    };
556    println!(
557        "   Graph clustering: {:?} with {:?}",
558        graph_config.graph_method, graph_config.community_algorithm
559    );
560
561    let time_series_config = TimeSeriesClusteringConfig {
562        n_clusters: 3,
563        ts_distance_metric: TimeSeriesDistanceMetric::QuantumTemporal,
564        window_size: 10,
565        seed: None,
566    };
567    println!(
568        "   Time series clustering: {:?} with quantum temporal enhancement",
569        time_series_config.ts_distance_metric
570    );
571
572    let high_dim_config = HighDimClusteringConfig {
573        n_clusters: 3,
574        dim_reduction: DimensionalityReduction::QuantumPCA,
575        target_dim: 10,
576        seed: None,
577    };
578    println!(
579        "   High-dim clustering: {:?} reducing to {} dimensions",
580        high_dim_config.dim_reduction, high_dim_config.target_dim
581    );
582
583    let streaming_config = StreamingClusteringConfig {
584        n_clusters: 3,
585        batch_size: 100,
586        memory_size: 1000,
587        forgetting_factor: 0.95,
588        seed: None,
589    };
590    println!(
591        "   Streaming clustering: batch size {}, memory size {}",
592        streaming_config.batch_size, streaming_config.memory_size
593    );
594
595    // Demo quantum-native configurations
596    println!("\nšŸ“Š Quantum-Native Clustering Configuration:");
597    let quantum_native_config = QuantumNativeConfig {
598        circuit_depth: 5,
599        num_qubits: 8,
600        state_preparation: StatePreparationMethod::VariationalStatePreparation,
601        measurement_strategy: MeasurementStrategy::AdaptiveMeasurements,
602        entanglement_structure: EntanglementStructure::HardwareEfficient,
603        seed: None,
604    };
605    println!(
606        "   Circuit depth: {}, Qubits: {}",
607        quantum_native_config.circuit_depth, quantum_native_config.num_qubits
608    );
609    println!(
610        "   State preparation: {:?}",
611        quantum_native_config.state_preparation
612    );
613    println!(
614        "   Measurement strategy: {:?}",
615        quantum_native_config.measurement_strategy
616    );
617    println!(
618        "   Entanglement structure: {:?}",
619        quantum_native_config.entanglement_structure
620    );
621
622    // Demo enhancement levels
623    println!("\nšŸ“Š Quantum Enhancement Levels:");
624    let enhancement_levels = vec![
625        QuantumEnhancementLevel::Classical,
626        QuantumEnhancementLevel::Light,
627        QuantumEnhancementLevel::Moderate,
628        QuantumEnhancementLevel::Full,
629        QuantumEnhancementLevel::Experimental,
630    ];
631
632    for level in enhancement_levels {
633        println!(
634            "   {:?}: Provides different levels of quantum enhancement",
635            level
636        );
637    }
638
639    Ok(())
640}