quantrs2_ml/
transfer.rs

1//! Quantum Transfer Learning
2//!
3//! This module implements transfer learning techniques for quantum machine learning models.
4//! It provides methods to leverage pre-trained quantum circuits for new tasks, enabling
5//! efficient learning with limited data and quantum resources.
6
7use crate::autodiff::optimizers::Optimizer;
8use crate::error::{MLError, Result};
9use crate::optimization::OptimizationMethod;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork, TrainingResult};
11use quantrs2_circuit::builder::{Circuit, Simulator};
12use quantrs2_core::gate::{
13    single::{RotationX, RotationY, RotationZ},
14    GateOp,
15};
16use quantrs2_sim::statevector::StateVectorSimulator;
17use scirs2_core::ndarray::{Array1, Array2};
18use scirs2_core::random::prelude::*;
19use std::collections::HashMap;
20
21/// Transfer learning strategies
22#[derive(Debug, Clone, Copy, PartialEq)]
23pub enum TransferStrategy {
24    /// Freeze all layers except the last few
25    FineTuning { num_trainable_layers: usize },
26
27    /// Use pre-trained model as feature extractor
28    FeatureExtraction,
29
30    /// Adapt specific layers while keeping others frozen
31    SelectiveAdaptation,
32
33    /// Progressive unfreezing of layers during training
34    ProgressiveUnfreezing { unfreeze_rate: usize },
35}
36
37/// Layer freezing configuration
38#[derive(Debug, Clone)]
39pub struct LayerConfig {
40    /// Whether the layer is frozen (non-trainable)
41    pub frozen: bool,
42
43    /// Learning rate multiplier for this layer
44    pub learning_rate_multiplier: f64,
45
46    /// Parameter indices for this layer
47    pub parameter_indices: Vec<usize>,
48}
49
50/// Pre-trained quantum model for transfer learning
51#[derive(Debug, Clone)]
52pub struct PretrainedModel {
53    /// The underlying quantum neural network
54    pub qnn: QuantumNeuralNetwork,
55
56    /// Training task description
57    pub task_description: String,
58
59    /// Performance metrics on original task
60    pub performance_metrics: HashMap<String, f64>,
61
62    /// Model metadata
63    pub metadata: HashMap<String, String>,
64}
65
66/// Quantum transfer learning framework
67pub struct QuantumTransferLearning {
68    /// The pre-trained source model
69    source_model: PretrainedModel,
70
71    /// Target model being trained
72    target_model: QuantumNeuralNetwork,
73
74    /// Transfer strategy being used
75    strategy: TransferStrategy,
76
77    /// Layer-wise configuration
78    layer_configs: Vec<LayerConfig>,
79
80    /// Current training epoch
81    current_epoch: usize,
82}
83
84impl QuantumTransferLearning {
85    /// Create a new transfer learning instance
86    pub fn new(
87        source_model: PretrainedModel,
88        target_layers: Vec<QNNLayerType>,
89        strategy: TransferStrategy,
90    ) -> Result<Self> {
91        // Note: In a real implementation, we would validate qubit compatibility
92        // For this example, we'll simply use the source model's qubit count
93
94        // Create target model by combining source and new layers
95        let mut all_layers = source_model.qnn.layers.clone();
96
97        // Add new layers based on strategy
98        match strategy {
99            TransferStrategy::FineTuning { .. } => {
100                // Keep existing layers and potentially add new output layers
101                all_layers.extend(target_layers);
102            }
103            TransferStrategy::FeatureExtraction => {
104                // Remove output layers and add new ones
105                if all_layers.len() > 2 {
106                    all_layers.truncate(all_layers.len() - 2);
107                }
108                all_layers.extend(target_layers);
109            }
110            _ => {
111                // For other strategies, combine appropriately
112                all_layers.extend(target_layers);
113            }
114        }
115
116        // Initialize target model
117        let target_model = QuantumNeuralNetwork::new(
118            all_layers,
119            source_model.qnn.num_qubits,
120            source_model.qnn.input_dim,
121            source_model.qnn.output_dim,
122        )?;
123
124        // Configure layers based on strategy
125        let layer_configs = Self::configure_layers(&target_model, &strategy);
126
127        Ok(Self {
128            source_model,
129            target_model,
130            strategy,
131            layer_configs,
132            current_epoch: 0,
133        })
134    }
135
136    /// Configure layer freezing based on transfer strategy
137    fn configure_layers(
138        model: &QuantumNeuralNetwork,
139        strategy: &TransferStrategy,
140    ) -> Vec<LayerConfig> {
141        let mut configs = Vec::new();
142        let num_layers = model.layers.len();
143
144        match strategy {
145            TransferStrategy::FineTuning {
146                num_trainable_layers,
147            } => {
148                // Freeze all layers except the last few
149                for i in 0..num_layers {
150                    configs.push(LayerConfig {
151                        frozen: i < num_layers - num_trainable_layers,
152                        learning_rate_multiplier: if i < num_layers - num_trainable_layers {
153                            0.0
154                        } else {
155                            1.0
156                        },
157                        parameter_indices: Self::get_layer_parameters(model, i),
158                    });
159                }
160            }
161            TransferStrategy::FeatureExtraction => {
162                // Freeze all pre-trained layers
163                for i in 0..num_layers {
164                    let is_new_layer = i >= num_layers - 2; // Assume last 2 layers are new
165                    configs.push(LayerConfig {
166                        frozen: !is_new_layer,
167                        learning_rate_multiplier: if is_new_layer { 1.0 } else { 0.0 },
168                        parameter_indices: Self::get_layer_parameters(model, i),
169                    });
170                }
171            }
172            TransferStrategy::SelectiveAdaptation => {
173                // Freeze specific layers (e.g., encoding layers)
174                for (i, layer) in model.layers.iter().enumerate() {
175                    let frozen = matches!(layer, QNNLayerType::EncodingLayer { .. });
176                    configs.push(LayerConfig {
177                        frozen,
178                        learning_rate_multiplier: if frozen { 0.0 } else { 0.5 },
179                        parameter_indices: Self::get_layer_parameters(model, i),
180                    });
181                }
182            }
183            TransferStrategy::ProgressiveUnfreezing { .. } => {
184                // Initially freeze all but last layer
185                for i in 0..num_layers {
186                    configs.push(LayerConfig {
187                        frozen: i < num_layers - 1,
188                        learning_rate_multiplier: if i == num_layers - 1 { 1.0 } else { 0.0 },
189                        parameter_indices: Self::get_layer_parameters(model, i),
190                    });
191                }
192            }
193        }
194
195        configs
196    }
197
198    /// Get parameter indices for a specific layer
199    fn get_layer_parameters(model: &QuantumNeuralNetwork, layer_idx: usize) -> Vec<usize> {
200        // This is a simplified implementation
201        // In practice, would need to track actual parameter mapping
202        let params_per_layer = model.parameters.len() / model.layers.len();
203        let start = layer_idx * params_per_layer;
204        let end = start + params_per_layer;
205        (start..end).collect()
206    }
207
208    /// Train the target model on new data
209    pub fn train(
210        &mut self,
211        training_data: &Array2<f64>,
212        labels: &Array1<f64>,
213        optimizer: &mut dyn Optimizer,
214        epochs: usize,
215        batch_size: usize,
216    ) -> Result<TrainingResult> {
217        let mut loss_history = Vec::new();
218        let mut best_loss = f64::INFINITY;
219        let mut best_params = self.target_model.parameters.clone();
220
221        // Convert parameters to HashMap for optimizer
222        let mut params_map = HashMap::new();
223        for (i, value) in self.target_model.parameters.iter().enumerate() {
224            params_map.insert(format!("param_{}", i), *value);
225        }
226
227        for epoch in 0..epochs {
228            self.current_epoch = epoch;
229
230            // Update layer configurations for progressive unfreezing
231            if let TransferStrategy::ProgressiveUnfreezing { unfreeze_rate } = self.strategy {
232                if epoch > 0 && epoch % unfreeze_rate == 0 {
233                    self.unfreeze_next_layer();
234                }
235            }
236
237            // Compute gradients with frozen layer handling
238            let gradients = self.compute_gradients(training_data, labels)?;
239
240            // Apply layer-specific learning rates
241            let scaled_gradients = self.scale_gradients(&gradients);
242
243            // Convert gradients to HashMap
244            let mut grads_map = HashMap::new();
245            for (i, grad) in scaled_gradients.iter().enumerate() {
246                grads_map.insert(format!("param_{}", i), *grad);
247            }
248
249            // Update parameters using optimizer
250            optimizer.step(&mut params_map, &grads_map);
251
252            // Convert back to Array1
253            for (i, value) in self.target_model.parameters.iter_mut().enumerate() {
254                if let Some(new_val) = params_map.get(&format!("param_{}", i)) {
255                    *value = *new_val;
256                }
257            }
258
259            // Compute loss
260            let loss = self.compute_loss(training_data, labels)?;
261            loss_history.push(loss);
262
263            if loss < best_loss {
264                best_loss = loss;
265                best_params = self.target_model.parameters.clone();
266            }
267        }
268
269        // Compute final accuracy
270        let predictions = self.predict(training_data)?;
271        let accuracy = Self::compute_accuracy(&predictions, labels);
272
273        Ok(TrainingResult {
274            final_loss: best_loss,
275            accuracy,
276            loss_history,
277            optimal_parameters: best_params,
278        })
279    }
280
281    /// Progressively unfreeze layers
282    fn unfreeze_next_layer(&mut self) {
283        // Find the last frozen layer and unfreeze it
284        let num_layers = self.layer_configs.len();
285        for (i, config) in self.layer_configs.iter_mut().enumerate().rev() {
286            if config.frozen {
287                config.frozen = false;
288                config.learning_rate_multiplier = 0.1 * (i as f64 / num_layers as f64);
289                break;
290            }
291        }
292    }
293
294    /// Compute gradients with frozen layer handling
295    fn compute_gradients(&self, data: &Array2<f64>, labels: &Array1<f64>) -> Result<Array1<f64>> {
296        // Placeholder implementation
297        // In practice, would compute actual quantum gradients
298        let mut gradients = Array1::zeros(self.target_model.parameters.len());
299
300        // Only compute gradients for non-frozen layers
301        for config in &self.layer_configs {
302            if !config.frozen {
303                for &idx in &config.parameter_indices {
304                    if idx < gradients.len() {
305                        gradients[idx] = 0.1 * (2.0 * thread_rng().gen::<f64>() - 1.0);
306                    }
307                }
308            }
309        }
310
311        Ok(gradients)
312    }
313
314    /// Scale gradients based on layer configuration
315    fn scale_gradients(&self, gradients: &Array1<f64>) -> Array1<f64> {
316        let mut scaled = gradients.clone();
317
318        for config in &self.layer_configs {
319            for &idx in &config.parameter_indices {
320                if idx < scaled.len() {
321                    scaled[idx] *= config.learning_rate_multiplier;
322                }
323            }
324        }
325
326        scaled
327    }
328
329    /// Compute loss on the target task
330    fn compute_loss(&self, data: &Array2<f64>, labels: &Array1<f64>) -> Result<f64> {
331        let predictions = self.predict(data)?;
332
333        // Mean squared error
334        let mut loss = 0.0;
335        for (pred, label) in predictions.iter().zip(labels.iter()) {
336            loss += (pred - label).powi(2);
337        }
338
339        Ok(loss / labels.len() as f64)
340    }
341
342    /// Make predictions using the target model
343    pub fn predict(&self, data: &Array2<f64>) -> Result<Array1<f64>> {
344        // Placeholder implementation
345        // In practice, would run quantum circuit and measure
346        let num_samples = data.nrows();
347        Ok(Array1::from_vec(vec![0.5; num_samples]))
348    }
349
350    /// Compute classification accuracy
351    fn compute_accuracy(predictions: &Array1<f64>, labels: &Array1<f64>) -> f64 {
352        let correct = predictions
353            .iter()
354            .zip(labels.iter())
355            .filter(|(p, l)| (p.round() - l.round()).abs() < 0.1)
356            .count();
357
358        correct as f64 / labels.len() as f64
359    }
360
361    /// Extract features using the pre-trained layers
362    pub fn extract_features(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
363        // Use only the frozen (pre-trained) layers for feature extraction
364        let feature_dim = self
365            .layer_configs
366            .iter()
367            .filter(|c| c.frozen)
368            .map(|c| c.parameter_indices.len())
369            .sum();
370
371        let num_samples = data.nrows();
372        let features = Array2::zeros((num_samples, feature_dim));
373
374        // Placeholder - in practice would run partial circuit
375        Ok(features)
376    }
377
378    /// Save the fine-tuned model
379    pub fn save_model(&self, path: &str) -> Result<()> {
380        // Placeholder - would serialize model to file
381        Ok(())
382    }
383
384    /// Load a pre-trained model for transfer learning
385    pub fn load_pretrained(path: &str) -> Result<PretrainedModel> {
386        // Placeholder - would deserialize model from file
387        Err(MLError::ModelCreationError("Not implemented".to_string()))
388    }
389}
390
391/// Model zoo for pre-trained quantum models
392pub struct QuantumModelZoo;
393
394impl QuantumModelZoo {
395    /// Get a pre-trained model for image classification
396    pub fn get_image_classifier() -> Result<PretrainedModel> {
397        // Create a simple pre-trained model
398        let layers = vec![
399            QNNLayerType::EncodingLayer { num_features: 4 },
400            QNNLayerType::VariationalLayer { num_params: 8 },
401            QNNLayerType::EntanglementLayer {
402                connectivity: "linear".to_string(),
403            },
404            QNNLayerType::MeasurementLayer {
405                measurement_basis: "computational".to_string(),
406            },
407        ];
408
409        let qnn = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
410
411        let mut metadata = HashMap::new();
412        metadata.insert("task".to_string(), "image_classification".to_string());
413        metadata.insert("dataset".to_string(), "mnist_subset".to_string());
414
415        let mut performance = HashMap::new();
416        performance.insert("accuracy".to_string(), 0.85);
417        performance.insert("loss".to_string(), 0.32);
418
419        Ok(PretrainedModel {
420            qnn,
421            task_description: "Pre-trained on MNIST subset for binary classification".to_string(),
422            performance_metrics: performance,
423            metadata,
424        })
425    }
426
427    /// Get a pre-trained model for quantum chemistry
428    pub fn get_chemistry_model() -> Result<PretrainedModel> {
429        let layers = vec![
430            QNNLayerType::EncodingLayer { num_features: 6 },
431            QNNLayerType::VariationalLayer { num_params: 12 },
432            QNNLayerType::EntanglementLayer {
433                connectivity: "full".to_string(),
434            },
435            QNNLayerType::VariationalLayer { num_params: 12 },
436            QNNLayerType::MeasurementLayer {
437                measurement_basis: "Pauli-Z".to_string(),
438            },
439        ];
440
441        let qnn = QuantumNeuralNetwork::new(layers, 6, 6, 1)?;
442
443        let mut metadata = HashMap::new();
444        metadata.insert("task".to_string(), "molecular_energy".to_string());
445        metadata.insert("dataset".to_string(), "h2_h4_molecules".to_string());
446
447        let mut performance = HashMap::new();
448        performance.insert("mae".to_string(), 0.001);
449        performance.insert("r2_score".to_string(), 0.98);
450
451        Ok(PretrainedModel {
452            qnn,
453            task_description: "Pre-trained on molecular energy prediction".to_string(),
454            performance_metrics: performance,
455            metadata,
456        })
457    }
458
459    /// Get a VQE feature extractor model
460    pub fn vqe_feature_extractor(n_qubits: usize) -> Result<PretrainedModel> {
461        let layers = vec![
462            QNNLayerType::EncodingLayer {
463                num_features: n_qubits,
464            },
465            QNNLayerType::VariationalLayer {
466                num_params: n_qubits * 2,
467            },
468            QNNLayerType::EntanglementLayer {
469                connectivity: "linear".to_string(),
470            },
471            QNNLayerType::VariationalLayer {
472                num_params: n_qubits,
473            },
474            QNNLayerType::MeasurementLayer {
475                measurement_basis: "Pauli-Z".to_string(),
476            },
477        ];
478
479        let qnn = QuantumNeuralNetwork::new(layers, n_qubits, n_qubits, n_qubits / 2)?;
480
481        let mut metadata = HashMap::new();
482        metadata.insert("task".to_string(), "feature_extraction".to_string());
483        metadata.insert("algorithm".to_string(), "VQE".to_string());
484
485        let mut performance = HashMap::new();
486        performance.insert("fidelity".to_string(), 0.92);
487        performance.insert("feature_quality".to_string(), 0.88);
488
489        Ok(PretrainedModel {
490            qnn,
491            task_description: format!("Pre-trained VQE feature extractor for {} qubits", n_qubits),
492            performance_metrics: performance,
493            metadata,
494        })
495    }
496
497    /// Get a QAOA classifier model
498    pub fn qaoa_classifier(n_qubits: usize, n_layers: usize) -> Result<PretrainedModel> {
499        let mut layers = vec![QNNLayerType::EncodingLayer {
500            num_features: n_qubits,
501        }];
502
503        // Add QAOA layers
504        for _ in 0..n_layers {
505            layers.push(QNNLayerType::VariationalLayer {
506                num_params: n_qubits,
507            });
508            layers.push(QNNLayerType::EntanglementLayer {
509                connectivity: "circular".to_string(),
510            });
511        }
512
513        layers.push(QNNLayerType::MeasurementLayer {
514            measurement_basis: "computational".to_string(),
515        });
516
517        let qnn = QuantumNeuralNetwork::new(layers, n_qubits, n_qubits, 2)?;
518
519        let mut metadata = HashMap::new();
520        metadata.insert("task".to_string(), "classification".to_string());
521        metadata.insert("algorithm".to_string(), "QAOA".to_string());
522        metadata.insert("layers".to_string(), n_layers.to_string());
523
524        let mut performance = HashMap::new();
525        performance.insert("accuracy".to_string(), 0.86);
526        performance.insert("f1_score".to_string(), 0.84);
527
528        Ok(PretrainedModel {
529            qnn,
530            task_description: format!(
531                "Pre-trained QAOA classifier with {} qubits and {} layers",
532                n_qubits, n_layers
533            ),
534            performance_metrics: performance,
535            metadata,
536        })
537    }
538
539    /// Get a quantum autoencoder model
540    pub fn quantum_autoencoder(n_qubits: usize, latent_dim: usize) -> Result<PretrainedModel> {
541        let layers = vec![
542            QNNLayerType::EncodingLayer {
543                num_features: n_qubits,
544            },
545            QNNLayerType::VariationalLayer {
546                num_params: n_qubits * 2,
547            },
548            QNNLayerType::EntanglementLayer {
549                connectivity: "linear".to_string(),
550            },
551            // Compression layer
552            QNNLayerType::VariationalLayer {
553                num_params: latent_dim * 2,
554            },
555            // Decompression layer
556            QNNLayerType::VariationalLayer {
557                num_params: n_qubits,
558            },
559            QNNLayerType::EntanglementLayer {
560                connectivity: "full".to_string(),
561            },
562            QNNLayerType::MeasurementLayer {
563                measurement_basis: "computational".to_string(),
564            },
565        ];
566
567        let qnn = QuantumNeuralNetwork::new(layers, n_qubits, n_qubits, n_qubits)?;
568
569        let mut metadata = HashMap::new();
570        metadata.insert("task".to_string(), "autoencoding".to_string());
571        metadata.insert("latent_dimension".to_string(), latent_dim.to_string());
572
573        let mut performance = HashMap::new();
574        performance.insert("reconstruction_fidelity".to_string(), 0.94);
575        performance.insert(
576            "compression_ratio".to_string(),
577            n_qubits as f64 / latent_dim as f64,
578        );
579
580        Ok(PretrainedModel {
581            qnn,
582            task_description: format!(
583                "Pre-trained quantum autoencoder with {} qubits and {} latent dimensions",
584                n_qubits, latent_dim
585            ),
586            performance_metrics: performance,
587            metadata,
588        })
589    }
590}
591
592#[cfg(test)]
593mod tests {
594    use super::*;
595    use crate::autodiff::optimizers::Adam;
596
597    #[test]
598    fn test_transfer_learning_creation() {
599        let source = QuantumModelZoo::get_image_classifier()
600            .expect("Failed to create image classifier model");
601        let target_layers = vec![
602            QNNLayerType::VariationalLayer { num_params: 4 },
603            QNNLayerType::MeasurementLayer {
604                measurement_basis: "computational".to_string(),
605            },
606        ];
607
608        let transfer = QuantumTransferLearning::new(
609            source,
610            target_layers,
611            TransferStrategy::FineTuning {
612                num_trainable_layers: 2,
613            },
614        )
615        .expect("Failed to create transfer learning instance");
616
617        assert_eq!(transfer.current_epoch, 0);
618        assert!(transfer.layer_configs.len() > 0);
619    }
620
621    #[test]
622    fn test_layer_freezing() {
623        let source =
624            QuantumModelZoo::get_chemistry_model().expect("Failed to create chemistry model");
625        let target_layers = vec![];
626
627        let transfer = QuantumTransferLearning::new(
628            source,
629            target_layers,
630            TransferStrategy::FeatureExtraction,
631        )
632        .expect("Failed to create transfer learning instance for feature extraction");
633
634        // Check that early layers are frozen
635        assert!(transfer.layer_configs[0].frozen);
636        assert_eq!(transfer.layer_configs[0].learning_rate_multiplier, 0.0);
637    }
638
639    #[test]
640    fn test_progressive_unfreezing() {
641        let source = QuantumModelZoo::get_image_classifier()
642            .expect("Failed to create image classifier model");
643        let target_layers = vec![];
644
645        let mut transfer = QuantumTransferLearning::new(
646            source,
647            target_layers,
648            TransferStrategy::ProgressiveUnfreezing { unfreeze_rate: 5 },
649        )
650        .expect("Failed to create transfer learning instance for progressive unfreezing");
651
652        // Initially most layers should be frozen
653        let frozen_count = transfer.layer_configs.iter().filter(|c| c.frozen).count();
654        assert!(frozen_count > 0);
655
656        // Simulate training epochs
657        transfer.current_epoch = 5;
658        transfer.unfreeze_next_layer();
659
660        // Check that a layer was unfrozen
661        let new_frozen_count = transfer.layer_configs.iter().filter(|c| c.frozen).count();
662        assert_eq!(new_frozen_count, frozen_count - 1);
663    }
664}