1use crate::error::{MLError, Result};
12use scirs2_core::random::prelude::*;
13use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView1, Axis};
14use scirs2_core::Complex64;
15use scirs2_core::random::{Rng, SeedableRng};
16use scirs2_core::random::ChaCha20Rng;
17use std::collections::HashMap;
18use std::f64::consts::PI;
19
20#[derive(Debug, Clone)]
22pub struct QuantumContinuousFlowConfig {
23 pub input_dim: usize,
24 pub latent_dim: usize,
25 pub num_qubits: usize,
26 pub num_flow_layers: usize,
27 pub flow_architecture: FlowArchitecture,
28 pub quantum_enhancement_level: f64,
29 pub integration_method: ODEIntegrationMethod,
30 pub invertibility_tolerance: f64,
31 pub entanglement_coupling_strength: f64,
32 pub quantum_divergence_type: QuantumDivergenceType,
33 pub use_quantum_attention_flows: bool,
34 pub adaptive_step_size: bool,
35 pub regularization_config: FlowRegularizationConfig,
36}
37
38#[derive(Debug, Clone)]
39pub enum FlowArchitecture {
40 QuantumRealNVP {
42 hidden_dims: Vec<usize>,
43 num_coupling_layers: usize,
44 quantum_coupling_type: QuantumCouplingType,
45 },
46
47 QuantumGlow {
49 num_levels: usize,
50 num_steps_per_level: usize,
51 quantum_invertible_conv: bool,
52 },
53
54 QuantumNeuralSplineFlow {
56 num_bins: usize,
57 spline_range: f64,
58 quantum_spline_parameters: bool,
59 },
60
61 QuantumContinuousNormalizing {
63 ode_net_dims: Vec<usize>,
64 quantum_ode_solver: QuantumODESolver,
65 trace_estimation_method: TraceEstimationMethod,
66 },
67
68 QuantumAutoregressiveFlow {
70 num_layers: usize,
71 hidden_dim: usize,
72 quantum_masking_type: QuantumMaskingType,
73 },
74}
75
76#[derive(Debug, Clone)]
77pub enum QuantumCouplingType {
78 AffineCoupling,
79 AdditiveCouplering,
80 QuantumEntangledCoupling,
81 PhaseRotationCoupling,
82 SplineCoupling,
83}
84
85#[derive(Debug, Clone)]
86pub enum QuantumODESolver {
87 QuantumEuler,
88 QuantumRungeKutta4,
89 QuantumDormandPrince,
90 AdaptiveQuantumSolver,
91 QuantumMidpoint,
92}
93
94#[derive(Debug, Clone)]
95pub enum TraceEstimationMethod {
96 HutchinsonTrace,
97 SkewedHutchinson,
98 QuantumStateTrace,
99 EntanglementBasedTrace,
100}
101
102#[derive(Debug, Clone)]
103pub enum QuantumMaskingType {
104 Sequential,
105 Random,
106 QuantumSuperposition,
107 EntanglementBased,
108}
109
110#[derive(Debug, Clone)]
111pub enum ODEIntegrationMethod {
112 Euler,
113 RungeKutta4,
114 DormandPrince,
115 QuantumAdaptive,
116}
117
118#[derive(Debug, Clone)]
119pub enum QuantumDivergenceType {
120 KLDivergence,
121 WassersteinDistance,
122 QuantumRelativeEntropy,
123 EntanglementDivergence,
124 QuantumFisherInformation,
125}
126
127#[derive(Debug, Clone)]
128pub struct FlowRegularizationConfig {
129 pub weight_decay: f64,
130 pub spectral_normalization: bool,
131 pub kinetic_energy_regularization: f64,
132 pub entanglement_regularization: f64,
133 pub jacobian_regularization: f64,
134 pub quantum_volume_preservation: f64,
135}
136
137pub struct QuantumContinuousFlow {
139 config: QuantumContinuousFlowConfig,
140
141 flow_layers: Vec<QuantumFlowLayer>,
143 base_distribution: QuantumBaseDistribution,
144
145 quantum_transformations: Vec<QuantumTransformation>,
147 entanglement_couplings: Vec<EntanglementCoupling>,
148
149 training_history: Vec<FlowTrainingMetrics>,
151 quantum_flow_metrics: QuantumFlowMetrics,
152 optimization_state: FlowOptimizationState,
153
154 invertibility_tracker: InvertibilityTracker,
156}
157
158#[derive(Debug, Clone)]
159pub struct QuantumFlowLayer {
160 layer_id: usize,
161 layer_type: FlowLayerType,
162 quantum_parameters: Array1<f64>,
163 classical_parameters: Array2<f64>,
164 coupling_network: QuantumCouplingNetwork,
165 invertible_component: InvertibleComponent,
166 entanglement_pattern: EntanglementPattern,
167}
168
169#[derive(Debug, Clone)]
170pub enum FlowLayerType {
171 QuantumCouplingLayer {
172 coupling_type: QuantumCouplingType,
173 split_dimension: usize,
174 },
175 QuantumAffineCoupling {
176 scale_network: QuantumNetwork,
177 translation_network: QuantumNetwork,
178 },
179 QuantumInvertibleConv {
180 kernel_size: usize,
181 quantum_weights: bool,
182 },
183 QuantumActNorm {
184 data_dependent_init: bool,
185 },
186 QuantumSplineTransform {
187 num_bins: usize,
188 spline_range: f64,
189 },
190 QuantumNeuralODE {
191 ode_func: QuantumODEFunction,
192 integration_time: f64,
193 },
194}
195
196#[derive(Debug, Clone)]
197pub struct QuantumCouplingNetwork {
198 network_type: CouplingNetworkType,
199 quantum_layers: Vec<QuantumFlowNetworkLayer>,
200 classical_layers: Vec<ClassicalFlowLayer>,
201 hybrid_connections: Vec<QuantumClassicalConnection>,
202}
203
204#[derive(Debug, Clone)]
205pub enum CouplingNetworkType {
206 QuantumMLP,
207 QuantumConvolutional,
208 QuantumTransformer,
209 QuantumResNet,
210 HybridQuantumClassical,
211}
212
213#[derive(Debug, Clone)]
214pub struct QuantumFlowNetworkLayer {
215 layer_type: QuantumFlowLayerType,
216 num_qubits: usize,
217 parameters: Array1<f64>,
218 quantum_gates: Vec<QuantumFlowGate>,
219 measurement_strategy: MeasurementStrategy,
220}
221
222#[derive(Debug, Clone)]
223pub enum QuantumFlowLayerType {
224 QuantumLinear {
225 input_features: usize,
226 output_features: usize,
227 },
228 QuantumConvolutional {
229 in_channels: usize,
230 out_channels: usize,
231 kernel_size: usize,
232 },
233 QuantumAttention {
234 num_heads: usize,
235 head_dim: usize,
236 attention_type: QuantumAttentionType,
237 },
238 QuantumResidual {
239 inner_layers: Vec<Box<QuantumFlowNetworkLayer>>,
240 },
241 QuantumNormalization {
242 normalization_type: QuantumNormalizationType,
243 },
244}
245
246#[derive(Debug, Clone)]
247pub enum QuantumAttentionType {
248 StandardQuantumAttention,
249 QuantumMultiHeadAttention,
250 EntanglementBasedAttention,
251 QuantumSelfAttention,
252 QuantumCrossAttention,
253}
254
255#[derive(Debug, Clone)]
256pub enum QuantumNormalizationType {
257 QuantumBatchNorm,
258 QuantumLayerNorm,
259 QuantumInstanceNorm,
260 EntanglementNormalization,
261}
262
263#[derive(Debug, Clone)]
264pub struct QuantumFlowGate {
265 gate_type: QuantumFlowGateType,
266 target_qubits: Vec<usize>,
267 control_qubits: Vec<usize>,
268 parameters: Array1<f64>,
269 is_invertible: bool,
270}
271
272#[derive(Debug, Clone)]
273pub enum QuantumFlowGateType {
274 ParameterizedRotation { axis: RotationAxis },
275 ControlledRotation { axis: RotationAxis },
276 QuantumCoupling { coupling_strength: f64 },
277 EntanglementGate { entanglement_type: EntanglementType },
278 InvertibleQuantumGate { inverse_parameters: Array1<f64> },
279}
280
281#[derive(Debug, Clone)]
282pub enum RotationAxis {
283 X,
284 Y,
285 Z,
286 Custom { direction: Array1<f64> },
287}
288
289#[derive(Debug, Clone)]
290pub enum EntanglementType {
291 CNOT,
292 CZ,
293 QuantumSwap,
294 CustomEntangling { matrix: Array2<Complex64> },
295}
296
297#[derive(Debug, Clone)]
298pub enum MeasurementStrategy {
299 ExpectationValue { observables: Vec<Observable> },
300 ProbabilityDistribution,
301 QuantumStateVector,
302 EntanglementMeasure,
303 CoherenceMeasure,
304}
305
306#[derive(Debug, Clone)]
307pub struct Observable {
308 name: String,
309 matrix: Array2<Complex64>,
310 qubits: Vec<usize>,
311}
312
313#[derive(Debug, Clone)]
314pub struct ClassicalFlowLayer {
315 layer_type: ClassicalFlowLayerType,
316 parameters: Array2<f64>,
317 activation: FlowActivation,
318 normalization: Option<FlowNormalization>,
319}
320
321#[derive(Debug, Clone)]
322pub enum ClassicalFlowLayerType {
323 Dense { input_dim: usize, output_dim: usize },
324 Convolutional { channels: usize, kernel_size: usize },
325 Residual { skip_connection: bool },
326}
327
328#[derive(Debug, Clone)]
329pub enum FlowActivation {
330 ReLU,
331 Swish,
332 GELU,
333 Tanh,
334 LeakyReLU,
335 ELU,
336}
337
338#[derive(Debug, Clone)]
339pub enum FlowNormalization {
340 BatchNorm,
341 LayerNorm,
342 InstanceNorm,
343 GroupNorm,
344}
345
346#[derive(Debug, Clone)]
347pub struct QuantumClassicalConnection {
348 quantum_layer_idx: usize,
349 classical_layer_idx: usize,
350 connection_type: ConnectionType,
351 transformation_matrix: Array2<f64>,
352}
353
354#[derive(Debug, Clone)]
355pub enum ConnectionType {
356 MeasurementToClassical,
357 ClassicalToQuantum,
358 ParameterSharing,
359 GradientCoupling,
360}
361
362#[derive(Debug, Clone)]
363pub struct InvertibleComponent {
364 forward_transform: InvertibleTransform,
365 inverse_transform: InvertibleTransform,
366 jacobian_computation: JacobianComputation,
367 invertibility_check: InvertibilityCheck,
368}
369
370#[derive(Debug, Clone)]
371pub enum InvertibleTransform {
372 QuantumUnitaryTransform {
373 unitary_matrix: Array2<Complex64>,
374 parameters: Array1<f64>,
375 },
376 QuantumCouplingTransform {
377 coupling_function: CouplingFunction,
378 mask: Array1<bool>,
379 },
380 QuantumSplineTransform {
381 spline_parameters: SplineParameters,
382 },
383 QuantumNeuralODETransform {
384 ode_function: QuantumODEFunction,
385 integration_config: IntegrationConfig,
386 },
387}
388
389#[derive(Debug, Clone)]
390pub struct CouplingFunction {
391 scale_function: QuantumNetwork,
392 translation_function: QuantumNetwork,
393 coupling_type: QuantumCouplingType,
394}
395
396#[derive(Debug, Clone)]
397pub struct QuantumNetwork {
398 layers: Vec<QuantumFlowNetworkLayer>,
399 output_dim: usize,
400 quantum_enhancement: f64,
401}
402
403#[derive(Debug, Clone)]
404pub struct SplineParameters {
405 knot_positions: Array2<f64>,
406 knot_derivatives: Array2<f64>,
407 num_bins: usize,
408 spline_range: f64,
409}
410
411#[derive(Debug, Clone)]
412pub struct QuantumODEFunction {
413 quantum_dynamics: QuantumDynamics,
414 classical_dynamics: ClassicalDynamics,
415 hybrid_coupling: HybridCoupling,
416}
417
418#[derive(Debug, Clone)]
419pub struct QuantumDynamics {
420 hamiltonian: Array2<Complex64>,
421 time_evolution_operator: Array2<Complex64>,
422 decoherence_model: DecoherenceModel,
423}
424
425#[derive(Debug, Clone)]
426pub struct ClassicalDynamics {
427 dynamics_network: Vec<ClassicalFlowLayer>,
428 nonlinearity: FlowActivation,
429}
430
431#[derive(Debug, Clone)]
432pub struct HybridCoupling {
433 quantum_to_classical: Array2<f64>,
434 classical_to_quantum: Array2<f64>,
435 coupling_strength: f64,
436}
437
438#[derive(Debug, Clone)]
439pub struct DecoherenceModel {
440 t1_time: f64,
441 t2_time: f64,
442 gate_error_rate: f64,
443 measurement_error_rate: f64,
444}
445
446#[derive(Debug, Clone)]
447pub struct IntegrationConfig {
448 method: QuantumODESolver,
449 tolerance: f64,
450 max_steps: usize,
451 adaptive_step_size: bool,
452}
453
454#[derive(Debug, Clone)]
455pub enum JacobianComputation {
456 ExactJacobian,
457 ApproximateJacobian {
458 epsilon: f64,
459 },
460 QuantumJacobian {
461 trace_estimator: TraceEstimationMethod,
462 },
463 HutchinsonEstimator {
464 num_samples: usize,
465 },
466}
467
468#[derive(Debug, Clone)]
469pub enum InvertibilityCheck {
470 DeterminantCheck { tolerance: f64 },
471 SingularValueCheck { min_singular_value: f64 },
472 QuantumUnitarityCheck { fidelity_threshold: f64 },
473 NumericalInversion { max_iterations: usize },
474}
475
476#[derive(Debug, Clone)]
477pub struct EntanglementPattern {
478 pattern_type: EntanglementPatternType,
479 connectivity: ConnectivityGraph,
480 entanglement_strength: Array1<f64>,
481}
482
483#[derive(Debug, Clone)]
484pub enum EntanglementPatternType {
485 Linear,
486 Circular,
487 AllToAll,
488 Hierarchical { levels: usize },
489 Random { probability: f64 },
490 LongRange { decay_rate: f64 },
491}
492
493#[derive(Debug, Clone)]
494pub struct ConnectivityGraph {
495 adjacency_matrix: Array2<bool>,
496 edge_weights: Array2<f64>,
497 num_nodes: usize,
498}
499
500#[derive(Debug, Clone)]
501pub struct QuantumTransformation {
502 transformation_type: QuantumTransformationType,
503 unitary_matrix: Array2<Complex64>,
504 parameters: Array1<f64>,
505 invertibility_guaranteed: bool,
506}
507
508#[derive(Debug, Clone)]
509pub enum QuantumTransformationType {
510 UnitaryTransformation,
511 QuantumFourierTransform,
512 QuantumHadamardTransform,
513 ParameterizedQuantumCircuit,
514 QuantumWaveletTransform,
515}
516
517#[derive(Debug, Clone)]
518pub struct EntanglementCoupling {
519 coupling_qubits: Vec<usize>,
520 coupling_strength: f64,
521 coupling_type: EntanglementCouplingType,
522 time_evolution: TimeEvolution,
523}
524
525#[derive(Debug, Clone)]
526pub enum EntanglementCouplingType {
527 QuantumCNOT,
528 QuantumIsingCoupling,
529 QuantumExchangeCoupling,
530 QuantumDipolarCoupling,
531 CustomCoupling { hamiltonian: Array2<Complex64> },
532}
533
534#[derive(Debug, Clone)]
535pub struct TimeEvolution {
536 time_steps: Array1<f64>,
537 evolution_operators: Vec<Array2<Complex64>>,
538 adaptive_time_stepping: bool,
539}
540
541#[derive(Debug, Clone)]
542pub struct QuantumBaseDistribution {
543 distribution_type: QuantumDistributionType,
544 parameters: DistributionParameters,
545 quantum_state: QuantumDistributionState,
546}
547
548#[derive(Debug, Clone)]
549pub enum QuantumDistributionType {
550 QuantumGaussian {
551 mean: Array1<f64>,
552 covariance: Array2<f64>,
553 quantum_enhancement: f64,
554 },
555 QuantumUniform {
556 bounds: Array2<f64>,
557 quantum_superposition: bool,
558 },
559 QuantumMixture {
560 components: Vec<QuantumDistributionComponent>,
561 mixing_weights: Array1<f64>,
562 },
563 QuantumThermalState {
564 temperature: f64,
565 hamiltonian: Array2<Complex64>,
566 },
567 QuantumCoherentState {
568 coherence_parameters: Array1<Complex64>,
569 },
570}
571
572#[derive(Debug, Clone)]
573pub struct QuantumDistributionComponent {
574 distribution: Box<QuantumDistributionType>,
575 weight: f64,
576 quantum_phase: Complex64,
577}
578
579#[derive(Debug, Clone)]
580pub struct DistributionParameters {
581 location: Array1<f64>,
582 scale: Array1<f64>,
583 shape: Array1<f64>,
584 quantum_parameters: Array1<Complex64>,
585}
586
587#[derive(Debug, Clone)]
588pub struct QuantumDistributionState {
589 quantum_state_vector: Array1<Complex64>,
590 density_matrix: Array2<Complex64>,
591 entanglement_structure: EntanglementStructure,
592}
593
594#[derive(Debug, Clone)]
595pub struct EntanglementStructure {
596 entanglement_measure: f64,
597 schmidt_decomposition: SchmidtDecomposition,
598 quantum_correlations: Array2<f64>,
599}
600
601#[derive(Debug, Clone)]
602pub struct SchmidtDecomposition {
603 schmidt_coefficients: Array1<f64>,
604 left_basis: Array2<Complex64>,
605 right_basis: Array2<Complex64>,
606}
607
608#[derive(Debug, Clone)]
610pub struct FlowTrainingMetrics {
611 pub epoch: usize,
612 pub negative_log_likelihood: f64,
613 pub bits_per_dimension: f64,
614 pub quantum_likelihood: f64,
615 pub entanglement_measure: f64,
616 pub invertibility_score: f64,
617 pub jacobian_determinant_mean: f64,
618 pub jacobian_determinant_std: f64,
619 pub quantum_fidelity: f64,
620 pub coherence_time: f64,
621 pub quantum_advantage_ratio: f64,
622}
623
624#[derive(Debug, Clone)]
625pub struct QuantumFlowMetrics {
626 pub average_entanglement: f64,
627 pub coherence_preservation: f64,
628 pub invertibility_accuracy: f64,
629 pub quantum_volume_utilization: f64,
630 pub flow_conditioning: f64,
631 pub quantum_speedup_factor: f64,
632 pub density_estimation_accuracy: f64,
633}
634
635#[derive(Debug, Clone)]
636pub struct FlowOptimizationState {
637 pub learning_rate: f64,
638 pub momentum: f64,
639 pub gradient_clipping_norm: f64,
640 pub quantum_parameter_learning_rate: f64,
641 pub entanglement_preservation_weight: f64,
642 pub invertibility_penalty_weight: f64,
643}
644
645#[derive(Debug, Clone)]
646pub struct InvertibilityTracker {
647 pub inversion_errors: Vec<f64>,
648 pub jacobian_conditioning: Vec<f64>,
649 pub quantum_unitarity_violations: Vec<f64>,
650 pub average_inversion_time: f64,
651}
652
653impl QuantumContinuousFlow {
655 pub fn new(config: QuantumContinuousFlowConfig) -> Result<Self> {
657 println!("🌌 Initializing Quantum Continuous Normalization Flow in UltraThink Mode");
658
659 let flow_layers = Self::create_flow_layers(&config)?;
661
662 let base_distribution = Self::create_quantum_base_distribution(&config)?;
664
665 let quantum_transformations = Self::create_quantum_transformations(&config)?;
667 let entanglement_couplings = Self::create_entanglement_couplings(&config)?;
668
669 let quantum_flow_metrics = QuantumFlowMetrics::default();
671 let optimization_state = FlowOptimizationState::default();
672 let invertibility_tracker = InvertibilityTracker::default();
673
674 Ok(Self {
675 config,
676 flow_layers,
677 base_distribution,
678 quantum_transformations,
679 entanglement_couplings,
680 training_history: Vec::new(),
681 quantum_flow_metrics,
682 optimization_state,
683 invertibility_tracker,
684 })
685 }
686
687 fn create_flow_layers(config: &QuantumContinuousFlowConfig) -> Result<Vec<QuantumFlowLayer>> {
689 let mut layers = Vec::new();
690
691 match &config.flow_architecture {
692 FlowArchitecture::QuantumRealNVP {
693 hidden_dims,
694 num_coupling_layers,
695 quantum_coupling_type,
696 } => {
697 for i in 0..*num_coupling_layers {
698 let layer = QuantumFlowLayer {
699 layer_id: i,
700 layer_type: FlowLayerType::QuantumCouplingLayer {
701 coupling_type: quantum_coupling_type.clone(),
702 split_dimension: config.input_dim / 2,
703 },
704 quantum_parameters: Array1::zeros(config.num_qubits * 3),
705 classical_parameters: Array2::zeros((hidden_dims[0], hidden_dims[1])),
706 coupling_network: Self::create_coupling_network(config, hidden_dims)?,
707 invertible_component: Self::create_invertible_component(config)?,
708 entanglement_pattern: Self::create_entanglement_pattern(config)?,
709 };
710 layers.push(layer);
711 }
712 }
713
714 FlowArchitecture::QuantumContinuousNormalizing {
715 ode_net_dims,
716 quantum_ode_solver,
717 trace_estimation_method,
718 } => {
719 let ode_func = QuantumODEFunction {
720 quantum_dynamics: QuantumDynamics {
721 hamiltonian: Array2::eye(config.num_qubits),
722 time_evolution_operator: Array2::eye(config.num_qubits),
723 decoherence_model: DecoherenceModel::default(),
724 },
725 classical_dynamics: ClassicalDynamics {
726 dynamics_network: Vec::new(),
727 nonlinearity: FlowActivation::Swish,
728 },
729 hybrid_coupling: HybridCoupling {
730 quantum_to_classical: Array2::zeros((config.input_dim, config.num_qubits)),
731 classical_to_quantum: Array2::zeros((config.num_qubits, config.input_dim)),
732 coupling_strength: config.entanglement_coupling_strength,
733 },
734 };
735
736 let layer = QuantumFlowLayer {
737 layer_id: 0,
738 layer_type: FlowLayerType::QuantumNeuralODE {
739 ode_func,
740 integration_time: 1.0,
741 },
742 quantum_parameters: Array1::zeros(config.num_qubits * 6),
743 classical_parameters: Array2::zeros((ode_net_dims[0], ode_net_dims[1])),
744 coupling_network: Self::create_coupling_network(config, ode_net_dims)?,
745 invertible_component: Self::create_invertible_component(config)?,
746 entanglement_pattern: Self::create_entanglement_pattern(config)?,
747 };
748 layers.push(layer);
749 }
750
751 _ => {
752 let layer = QuantumFlowLayer {
754 layer_id: 0,
755 layer_type: FlowLayerType::QuantumCouplingLayer {
756 coupling_type: QuantumCouplingType::QuantumEntangledCoupling,
757 split_dimension: config.input_dim / 2,
758 },
759 quantum_parameters: Array1::zeros(config.num_qubits * 3),
760 classical_parameters: Array2::zeros((64, 64)),
761 coupling_network: Self::create_coupling_network(config, &vec![64, 64])?,
762 invertible_component: Self::create_invertible_component(config)?,
763 entanglement_pattern: Self::create_entanglement_pattern(config)?,
764 };
765 layers.push(layer);
766 }
767 }
768
769 Ok(layers)
770 }
771
772 fn create_coupling_network(
774 config: &QuantumContinuousFlowConfig,
775 hidden_dims: &[usize],
776 ) -> Result<QuantumCouplingNetwork> {
777 let quantum_layers = vec![QuantumFlowNetworkLayer {
778 layer_type: QuantumFlowLayerType::QuantumLinear {
779 input_features: config.input_dim / 2,
780 output_features: hidden_dims[0],
781 },
782 num_qubits: config.num_qubits,
783 parameters: Array1::zeros(config.num_qubits * 3),
784 quantum_gates: Self::create_quantum_flow_gates(config)?,
785 measurement_strategy: MeasurementStrategy::ExpectationValue {
786 observables: vec![Self::create_pauli_z_observable(0)],
787 },
788 }];
789
790 let quantum_state_dim = 2_usize.pow(config.num_qubits as u32);
791 let classical_layers = vec![ClassicalFlowLayer {
792 layer_type: ClassicalFlowLayerType::Dense {
793 input_dim: config.input_dim / 2,
794 output_dim: quantum_state_dim,
795 },
796 parameters: Array2::zeros((quantum_state_dim, config.input_dim / 2)),
797 activation: FlowActivation::Swish,
798 normalization: Some(FlowNormalization::LayerNorm),
799 }];
800
801 Ok(QuantumCouplingNetwork {
802 network_type: CouplingNetworkType::HybridQuantumClassical,
803 quantum_layers,
804 classical_layers,
805 hybrid_connections: Vec::new(),
806 })
807 }
808
809 fn create_quantum_flow_gates(
811 config: &QuantumContinuousFlowConfig,
812 ) -> Result<Vec<QuantumFlowGate>> {
813 let mut gates = Vec::new();
814
815 for i in 0..config.num_qubits {
817 gates.push(QuantumFlowGate {
818 gate_type: QuantumFlowGateType::ParameterizedRotation {
819 axis: RotationAxis::Y,
820 },
821 target_qubits: vec![i],
822 control_qubits: Vec::new(),
823 parameters: Array1::from_vec(vec![PI / 4.0]),
824 is_invertible: true,
825 });
826 }
827
828 for i in 0..config.num_qubits - 1 {
830 gates.push(QuantumFlowGate {
831 gate_type: QuantumFlowGateType::EntanglementGate {
832 entanglement_type: EntanglementType::CNOT,
833 },
834 target_qubits: vec![i + 1],
835 control_qubits: vec![i],
836 parameters: Array1::zeros(0),
837 is_invertible: true,
838 });
839 }
840
841 Ok(gates)
842 }
843
844 fn create_pauli_z_observable(qubit: usize) -> Observable {
846 let pauli_z = scirs2_core::ndarray::array![
847 [Complex64::new(1.0, 0.0), Complex64::new(0.0, 0.0)],
848 [Complex64::new(0.0, 0.0), Complex64::new(-1.0, 0.0)]
849 ];
850
851 Observable {
852 name: format!("PauliZ_{}", qubit),
853 matrix: pauli_z,
854 qubits: vec![qubit],
855 }
856 }
857
858 fn create_invertible_component(
860 config: &QuantumContinuousFlowConfig,
861 ) -> Result<InvertibleComponent> {
862 let forward_transform = InvertibleTransform::QuantumCouplingTransform {
863 coupling_function: CouplingFunction {
864 scale_function: QuantumNetwork {
865 layers: Vec::new(),
866 output_dim: config.input_dim / 2,
867 quantum_enhancement: config.quantum_enhancement_level,
868 },
869 translation_function: QuantumNetwork {
870 layers: Vec::new(),
871 output_dim: config.input_dim / 2,
872 quantum_enhancement: config.quantum_enhancement_level,
873 },
874 coupling_type: QuantumCouplingType::QuantumEntangledCoupling,
875 },
876 mask: Array1::from_shape_fn(config.input_dim, |i| i < config.input_dim / 2),
877 };
878
879 let inverse_transform = forward_transform.clone(); Ok(InvertibleComponent {
882 forward_transform,
883 inverse_transform,
884 jacobian_computation: JacobianComputation::QuantumJacobian {
885 trace_estimator: TraceEstimationMethod::EntanglementBasedTrace,
886 },
887 invertibility_check: InvertibilityCheck::QuantumUnitarityCheck {
888 fidelity_threshold: config.invertibility_tolerance,
889 },
890 })
891 }
892
893 fn create_entanglement_pattern(
895 config: &QuantumContinuousFlowConfig,
896 ) -> Result<EntanglementPattern> {
897 let connectivity = ConnectivityGraph {
898 adjacency_matrix: Array2::<f64>::eye(config.num_qubits).mapv(|x| x != 0.0),
899 edge_weights: Array2::ones((config.num_qubits, config.num_qubits)),
900 num_nodes: config.num_qubits,
901 };
902
903 Ok(EntanglementPattern {
904 pattern_type: EntanglementPatternType::Circular,
905 connectivity,
906 entanglement_strength: Array1::ones(config.num_qubits)
907 * config.entanglement_coupling_strength,
908 })
909 }
910
911 fn create_quantum_base_distribution(
913 config: &QuantumContinuousFlowConfig,
914 ) -> Result<QuantumBaseDistribution> {
915 let distribution_type = QuantumDistributionType::QuantumGaussian {
916 mean: Array1::zeros(config.latent_dim),
917 covariance: Array2::eye(config.latent_dim),
918 quantum_enhancement: config.quantum_enhancement_level,
919 };
920
921 let parameters = DistributionParameters {
922 location: Array1::zeros(config.latent_dim),
923 scale: Array1::ones(config.latent_dim),
924 shape: Array1::ones(config.latent_dim),
925 quantum_parameters: Array1::ones(config.latent_dim).mapv(|x| Complex64::new(x, 0.0)),
926 };
927
928 let quantum_state = QuantumDistributionState {
929 quantum_state_vector: Array1::zeros(2_usize.pow(config.num_qubits as u32))
930 .mapv(|_: f64| Complex64::new(0.0, 0.0)),
931 density_matrix: Array2::eye(2_usize.pow(config.num_qubits as u32))
932 .mapv(|x| Complex64::new(x, 0.0)),
933 entanglement_structure: EntanglementStructure {
934 entanglement_measure: 0.5,
935 schmidt_decomposition: SchmidtDecomposition {
936 schmidt_coefficients: Array1::ones(config.num_qubits),
937 left_basis: Array2::eye(config.num_qubits).mapv(|x| Complex64::new(x, 0.0)),
938 right_basis: Array2::eye(config.num_qubits).mapv(|x| Complex64::new(x, 0.0)),
939 },
940 quantum_correlations: Array2::zeros((config.num_qubits, config.num_qubits)),
941 },
942 };
943
944 Ok(QuantumBaseDistribution {
945 distribution_type,
946 parameters,
947 quantum_state,
948 })
949 }
950
951 fn create_quantum_transformations(
953 config: &QuantumContinuousFlowConfig,
954 ) -> Result<Vec<QuantumTransformation>> {
955 let mut transformations = Vec::new();
956
957 transformations.push(QuantumTransformation {
959 transformation_type: QuantumTransformationType::QuantumFourierTransform,
960 unitary_matrix: Array2::eye(2_usize.pow(config.num_qubits as u32))
961 .mapv(|x| Complex64::new(x, 0.0)),
962 parameters: Array1::zeros(config.num_qubits),
963 invertibility_guaranteed: true,
964 });
965
966 transformations.push(QuantumTransformation {
968 transformation_type: QuantumTransformationType::ParameterizedQuantumCircuit,
969 unitary_matrix: Array2::eye(2_usize.pow(config.num_qubits as u32))
970 .mapv(|x| Complex64::new(x, 0.0)),
971 parameters: Array1::zeros(config.num_qubits * 3),
972 invertibility_guaranteed: true,
973 });
974
975 Ok(transformations)
976 }
977
978 fn create_entanglement_couplings(
980 config: &QuantumContinuousFlowConfig,
981 ) -> Result<Vec<EntanglementCoupling>> {
982 let mut couplings = Vec::new();
983
984 for i in 0..config.num_qubits - 1 {
985 couplings.push(EntanglementCoupling {
986 coupling_qubits: vec![i, i + 1],
987 coupling_strength: config.entanglement_coupling_strength,
988 coupling_type: EntanglementCouplingType::QuantumIsingCoupling,
989 time_evolution: TimeEvolution {
990 time_steps: Array1::linspace(0.0, 1.0, 10),
991 evolution_operators: Vec::new(),
992 adaptive_time_stepping: config.adaptive_step_size,
993 },
994 });
995 }
996
997 Ok(couplings)
998 }
999
1000 pub fn forward(&self, x: &Array1<f64>) -> Result<FlowForwardOutput> {
1002 let mut z = x.clone();
1003 let mut log_jacobian_det = 0.0;
1004 let mut quantum_states = Vec::new();
1005 let mut entanglement_history = Vec::new();
1006
1007 for (layer_idx, layer) in self.flow_layers.iter().enumerate() {
1009 let layer_output = self.apply_flow_layer(layer, &z, layer_idx)?;
1010
1011 z = layer_output.transformed_data;
1012 log_jacobian_det += layer_output.log_jacobian_det;
1013 quantum_states.push(layer_output.quantum_state);
1014 entanglement_history.push(layer_output.entanglement_measure);
1015 }
1016
1017 let base_log_prob = self.compute_base_log_probability(&z)?;
1019 let total_log_prob = base_log_prob + log_jacobian_det;
1020
1021 let quantum_enhancement = self.compute_quantum_enhancement(&quantum_states)?;
1023 let quantum_log_prob = total_log_prob + quantum_enhancement.log_enhancement;
1024
1025 Ok(FlowForwardOutput {
1026 latent_sample: z,
1027 log_probability: total_log_prob,
1028 quantum_log_probability: quantum_log_prob,
1029 log_jacobian_determinant: log_jacobian_det,
1030 quantum_states,
1031 entanglement_history,
1032 quantum_enhancement,
1033 })
1034 }
1035
1036 fn apply_flow_layer(
1038 &self,
1039 layer: &QuantumFlowLayer,
1040 x: &Array1<f64>,
1041 layer_idx: usize,
1042 ) -> Result<LayerOutput> {
1043 match &layer.layer_type {
1044 FlowLayerType::QuantumCouplingLayer {
1045 coupling_type,
1046 split_dimension,
1047 } => self.apply_quantum_coupling_layer(layer, x, *split_dimension, coupling_type),
1048
1049 FlowLayerType::QuantumNeuralODE {
1050 ode_func,
1051 integration_time,
1052 } => self.apply_quantum_neural_ode_layer(layer, x, ode_func, *integration_time),
1053
1054 FlowLayerType::QuantumAffineCoupling {
1055 scale_network,
1056 translation_network,
1057 } => self.apply_quantum_affine_coupling(layer, x, scale_network, translation_network),
1058
1059 _ => {
1060 Ok(LayerOutput {
1062 transformed_data: x.clone(),
1063 log_jacobian_det: 0.0,
1064 quantum_state: QuantumLayerState::default(),
1065 entanglement_measure: 0.5,
1066 })
1067 }
1068 }
1069 }
1070
1071 fn apply_quantum_coupling_layer(
1073 &self,
1074 layer: &QuantumFlowLayer,
1075 x: &Array1<f64>,
1076 split_dim: usize,
1077 coupling_type: &QuantumCouplingType,
1078 ) -> Result<LayerOutput> {
1079 let x1 = x.slice(scirs2_core::ndarray::s![..split_dim]).to_owned();
1081 let x2 = x.slice(scirs2_core::ndarray::s![split_dim..]).to_owned();
1082
1083 let coupling_output = self.apply_quantum_coupling_network(&layer.coupling_network, &x1)?;
1085
1086 let (z2, log_jacobian) = match coupling_type {
1088 QuantumCouplingType::AffineCoupling => {
1089 let scale = &coupling_output.scale_params;
1090 let translation = &coupling_output.translation_params;
1091 let z2 = &x2 * scale + translation;
1092 let log_jac = scale.mapv(|s| s.ln()).sum();
1093 (z2, log_jac)
1094 }
1095
1096 QuantumCouplingType::QuantumEntangledCoupling => {
1097 let entanglement_factor = coupling_output.entanglement_factor;
1099 let quantum_phase = coupling_output.quantum_phase;
1100
1101 let mut z2 = x2.clone();
1102 for i in 0..z2.len() {
1103 z2[i] = z2[i] * entanglement_factor + quantum_phase.re * 0.1;
1104 }
1105
1106 let log_jac = z2.len() as f64 * entanglement_factor.ln();
1107 (z2, log_jac)
1108 }
1109
1110 _ => (x2.clone(), 0.0),
1111 };
1112
1113 let mut z = Array1::zeros(x.len());
1115 z.slice_mut(scirs2_core::ndarray::s![..split_dim]).assign(&x1); z.slice_mut(scirs2_core::ndarray::s![split_dim..]).assign(&z2); Ok(LayerOutput {
1119 transformed_data: z,
1120 log_jacobian_det: log_jacobian,
1121 quantum_state: coupling_output.quantum_state,
1122 entanglement_measure: coupling_output.entanglement_factor,
1123 })
1124 }
1125
1126 fn apply_quantum_coupling_network(
1128 &self,
1129 network: &QuantumCouplingNetwork,
1130 x: &Array1<f64>,
1131 ) -> Result<CouplingNetworkOutput> {
1132 let mut quantum_state = self.classical_to_quantum_encoding(x)?;
1134
1135 for layer in &network.quantum_layers {
1136 quantum_state = self.apply_quantum_flow_layer(layer, &quantum_state)?;
1137 }
1138
1139 let measurement_results = self.measure_quantum_state(&quantum_state)?;
1141
1142 let mut classical_output = x.clone();
1144 for layer in &network.classical_layers {
1145 classical_output = self.apply_classical_flow_layer(layer, &classical_output)?;
1146 }
1147
1148 let scale_params = &measurement_results.expectation_values * 0.5 + &classical_output * 0.5;
1150 let translation_params =
1151 &measurement_results.variance_measures * 0.3 + &classical_output * 0.7;
1152
1153 Ok(CouplingNetworkOutput {
1154 scale_params,
1155 translation_params,
1156 entanglement_factor: measurement_results.entanglement_measure,
1157 quantum_phase: measurement_results.average_phase,
1158 quantum_state: QuantumLayerState {
1159 quantum_fidelity: quantum_state.fidelity,
1160 entanglement_measure: measurement_results.entanglement_measure,
1161 coherence_time: quantum_state.coherence_time,
1162 quantum_volume: self.config.num_qubits as f64,
1163 },
1164 })
1165 }
1166
1167 fn classical_to_quantum_encoding(&self, x: &Array1<f64>) -> Result<QuantumFlowState> {
1169 let quantum_state_dim = 2_usize.pow(self.config.num_qubits as u32);
1171 let mut amplitudes = Array1::<Complex64>::zeros(quantum_state_dim);
1172
1173 let embedding_dim = std::cmp::min(x.len(), quantum_state_dim);
1175 for i in 0..embedding_dim {
1176 amplitudes[i] = Complex64::new(x[i], 0.0);
1177 }
1178
1179 let norm = amplitudes.mapv(|a| a.norm_sqr()).sum().sqrt();
1181 if norm > 1e-10 {
1182 amplitudes.mapv_inplace(|a| a / norm);
1183 }
1184
1185 Ok(QuantumFlowState {
1186 amplitudes,
1187 phases: Array1::zeros(quantum_state_dim).mapv(|_: f64| Complex64::new(1.0, 0.0)),
1188 entanglement_measure: 0.5,
1189 coherence_time: 1.0,
1190 fidelity: 1.0,
1191 })
1192 }
1193
1194 fn apply_quantum_flow_layer(
1196 &self,
1197 layer: &QuantumFlowNetworkLayer,
1198 state: &QuantumFlowState,
1199 ) -> Result<QuantumFlowState> {
1200 let mut new_state = state.clone();
1201
1202 for gate in &layer.quantum_gates {
1204 new_state = self.apply_quantum_flow_gate(gate, &new_state)?;
1205 }
1206
1207 match &layer.measurement_strategy {
1209 MeasurementStrategy::ExpectationValue { observables } => {
1210 for observable in observables {
1212 let expectation = self.compute_expectation_value(observable, &new_state)?;
1213 new_state.fidelity *= (1.0 + expectation * 0.1);
1215 }
1216 }
1217 _ => {
1218 new_state.fidelity *= 0.99; }
1221 }
1222
1223 Ok(new_state)
1224 }
1225
1226 fn apply_quantum_flow_gate(
1228 &self,
1229 gate: &QuantumFlowGate,
1230 state: &QuantumFlowState,
1231 ) -> Result<QuantumFlowState> {
1232 let mut new_state = state.clone();
1233
1234 match &gate.gate_type {
1235 QuantumFlowGateType::ParameterizedRotation { axis } => {
1236 let angle = gate.parameters[0];
1237 for &target_qubit in &gate.target_qubits {
1238 if target_qubit < new_state.amplitudes.len() {
1239 let rotation_factor = Complex64::from_polar(1.0, angle);
1241 new_state.amplitudes[target_qubit] *= rotation_factor;
1242 new_state.phases[target_qubit] *= rotation_factor;
1243 }
1244 }
1245 }
1246
1247 QuantumFlowGateType::EntanglementGate { entanglement_type } => {
1248 if gate.target_qubits.len() >= 2 {
1250 let control = gate.control_qubits[0];
1251 let target = gate.target_qubits[0];
1252
1253 if control < new_state.amplitudes.len() && target < new_state.amplitudes.len() {
1254 let entanglement_factor = 0.1;
1256 let control_amplitude = new_state.amplitudes[control];
1257 new_state.amplitudes[target] += entanglement_factor * control_amplitude;
1258 new_state.entanglement_measure =
1259 (new_state.entanglement_measure + 0.1).min(1.0);
1260 }
1261 }
1262 }
1263
1264 _ => {
1265 new_state.fidelity *= 0.99;
1267 }
1268 }
1269
1270 Ok(new_state)
1271 }
1272
1273 fn compute_expectation_value(
1275 &self,
1276 observable: &Observable,
1277 state: &QuantumFlowState,
1278 ) -> Result<f64> {
1279 let mut expectation = 0.0;
1281
1282 for &qubit in &observable.qubits {
1283 if qubit < state.amplitudes.len() {
1284 expectation += state.amplitudes[qubit].norm_sqr();
1285 }
1286 }
1287
1288 Ok(expectation)
1289 }
1290
1291 fn measure_quantum_state(&self, state: &QuantumFlowState) -> Result<MeasurementOutput> {
1293 let expectation_values = state.amplitudes.mapv(|amp| amp.norm_sqr());
1294 let variance_measures = state
1295 .amplitudes
1296 .mapv(|amp| amp.norm_sqr() * (1.0 - amp.norm_sqr()));
1297 let average_phase = state.phases.iter().sum::<Complex64>() / state.phases.len() as f64;
1298
1299 Ok(MeasurementOutput {
1300 expectation_values,
1301 variance_measures,
1302 entanglement_measure: state.entanglement_measure,
1303 average_phase,
1304 })
1305 }
1306
1307 fn apply_classical_flow_layer(
1309 &self,
1310 layer: &ClassicalFlowLayer,
1311 x: &Array1<f64>,
1312 ) -> Result<Array1<f64>> {
1313 match &layer.layer_type {
1314 ClassicalFlowLayerType::Dense {
1315 input_dim,
1316 output_dim,
1317 } => {
1318 if x.len() != *input_dim {
1319 return Err(MLError::ModelCreationError(format!(
1320 "Input dimension mismatch: expected {}, got {}",
1321 input_dim,
1322 x.len()
1323 )));
1324 }
1325
1326 let output = layer.parameters.dot(x);
1328
1329 let activated_output = match layer.activation {
1331 FlowActivation::ReLU => output.mapv(|x| x.max(0.0)),
1332 FlowActivation::Swish => output.mapv(|x| x / (1.0 + (-x).exp())),
1333 FlowActivation::GELU => output.mapv(|x| {
1334 0.5 * x * (1.0 + (0.7978845608 * (x + 0.044715 * x.powi(3))).tanh())
1335 }),
1336 FlowActivation::Tanh => output.mapv(|x| x.tanh()),
1337 _ => output,
1338 };
1339
1340 Ok(activated_output)
1341 }
1342 _ => Ok(x.clone()),
1343 }
1344 }
1345
1346 fn apply_quantum_neural_ode_layer(
1348 &self,
1349 layer: &QuantumFlowLayer,
1350 x: &Array1<f64>,
1351 ode_func: &QuantumODEFunction,
1352 integration_time: f64,
1353 ) -> Result<LayerOutput> {
1354 let mut quantum_state = self.classical_to_quantum_encoding(x)?;
1356
1357 let integrated_state =
1359 self.integrate_quantum_ode(&quantum_state, ode_func, integration_time)?;
1360
1361 let output_data = integrated_state.amplitudes.mapv(|amp| amp.re);
1363
1364 let log_jacobian_det =
1366 self.compute_quantum_ode_jacobian(&integrated_state, integration_time)?;
1367
1368 Ok(LayerOutput {
1369 transformed_data: output_data,
1370 log_jacobian_det,
1371 quantum_state: QuantumLayerState {
1372 quantum_fidelity: integrated_state.fidelity,
1373 entanglement_measure: integrated_state.entanglement_measure,
1374 coherence_time: integrated_state.coherence_time,
1375 quantum_volume: self.config.num_qubits as f64,
1376 },
1377 entanglement_measure: integrated_state.entanglement_measure,
1378 })
1379 }
1380
1381 fn integrate_quantum_ode(
1383 &self,
1384 initial_state: &QuantumFlowState,
1385 ode_func: &QuantumODEFunction,
1386 integration_time: f64,
1387 ) -> Result<QuantumFlowState> {
1388 let num_steps = 100; let dt = integration_time / num_steps as f64;
1390
1391 let mut state = initial_state.clone();
1392
1393 for step in 0..num_steps {
1394 let current_time = step as f64 * dt;
1395
1396 state = self.apply_quantum_dynamics(&ode_func.quantum_dynamics, &state, dt)?;
1398
1399 let classical_contribution =
1401 self.apply_classical_dynamics(&ode_func.classical_dynamics, &state, dt)?;
1402
1403 state = self.apply_hybrid_coupling(
1405 &ode_func.hybrid_coupling,
1406 &state,
1407 &classical_contribution,
1408 dt,
1409 )?;
1410
1411 state.coherence_time *=
1413 (-dt / ode_func.quantum_dynamics.decoherence_model.t2_time).exp();
1414 state.fidelity *=
1415 (1.0 - ode_func.quantum_dynamics.decoherence_model.gate_error_rate * dt);
1416 }
1417
1418 Ok(state)
1419 }
1420
1421 fn apply_quantum_dynamics(
1423 &self,
1424 dynamics: &QuantumDynamics,
1425 state: &QuantumFlowState,
1426 dt: f64,
1427 ) -> Result<QuantumFlowState> {
1428 let mut new_state = state.clone();
1429
1430 for i in 0..new_state.amplitudes.len() {
1432 let energy = dynamics.hamiltonian[[
1433 i % dynamics.hamiltonian.nrows(),
1434 i % dynamics.hamiltonian.ncols(),
1435 ]];
1436 let time_evolution = Complex64::from_polar(1.0, -energy.re * dt);
1437 new_state.amplitudes[i] *= time_evolution;
1438 new_state.phases[i] *= time_evolution;
1439 }
1440
1441 new_state.entanglement_measure = (new_state.entanglement_measure * 1.01).min(1.0);
1443
1444 Ok(new_state)
1445 }
1446
1447 fn apply_classical_dynamics(
1449 &self,
1450 dynamics: &ClassicalDynamics,
1451 state: &QuantumFlowState,
1452 dt: f64,
1453 ) -> Result<Array1<f64>> {
1454 let classical_data = state.amplitudes.mapv(|amp| amp.re);
1456
1457 let mut output = classical_data;
1459 for layer in &dynamics.dynamics_network {
1460 output = self.apply_classical_flow_layer(layer, &output)?;
1461 }
1462
1463 Ok(output * dt)
1465 }
1466
1467 fn apply_hybrid_coupling(
1469 &self,
1470 coupling: &HybridCoupling,
1471 quantum_state: &QuantumFlowState,
1472 classical_contribution: &Array1<f64>,
1473 dt: f64,
1474 ) -> Result<QuantumFlowState> {
1475 let mut new_state = quantum_state.clone();
1476
1477 for i in 0..new_state.amplitudes.len().min(classical_contribution.len()) {
1479 let coupling_strength = coupling.coupling_strength * dt;
1480 let classical_influence = classical_contribution[i] * coupling_strength;
1481 new_state.amplitudes[i] += Complex64::new(classical_influence, 0.0);
1482 }
1483
1484 let norm = new_state
1486 .amplitudes
1487 .dot(&new_state.amplitudes.mapv(|x| x.conj()))
1488 .norm();
1489 if norm > 1e-10 {
1490 new_state.amplitudes = new_state.amplitudes / norm;
1491 }
1492
1493 Ok(new_state)
1494 }
1495
1496 fn compute_quantum_ode_jacobian(
1498 &self,
1499 state: &QuantumFlowState,
1500 integration_time: f64,
1501 ) -> Result<f64> {
1502 let trace_estimate = state
1505 .amplitudes
1506 .iter()
1507 .map(|amp| amp.norm_sqr().ln())
1508 .sum::<f64>();
1509
1510 Ok(trace_estimate * integration_time)
1511 }
1512
1513 fn apply_quantum_affine_coupling(
1515 &self,
1516 layer: &QuantumFlowLayer,
1517 x: &Array1<f64>,
1518 scale_network: &QuantumNetwork,
1519 translation_network: &QuantumNetwork,
1520 ) -> Result<LayerOutput> {
1521 let split_dim = x.len() / 2;
1523 let x1 = x.slice(scirs2_core::ndarray::s![..split_dim]).to_owned();
1524 let x2 = x.slice(scirs2_core::ndarray::s![split_dim..]).to_owned();
1525
1526 let scale_output = self.apply_quantum_network(scale_network, &x1)?;
1528 let translation_output = self.apply_quantum_network(translation_network, &x1)?;
1529
1530 let z2 = &x2 * &scale_output.output + &translation_output.output;
1532 let log_jacobian = scale_output.output.mapv(|s| s.ln()).sum();
1533
1534 let mut z = Array1::zeros(x.len());
1536 z.slice_mut(scirs2_core::ndarray::s![..split_dim]).assign(&x1);
1537 z.slice_mut(scirs2_core::ndarray::s![split_dim..]).assign(&z2);
1538
1539 Ok(LayerOutput {
1540 transformed_data: z,
1541 log_jacobian_det: log_jacobian,
1542 quantum_state: scale_output.quantum_state,
1543 entanglement_measure: scale_output.entanglement_measure,
1544 })
1545 }
1546
1547 fn apply_quantum_network(
1549 &self,
1550 network: &QuantumNetwork,
1551 x: &Array1<f64>,
1552 ) -> Result<QuantumNetworkOutput> {
1553 let quantum_state = self.classical_to_quantum_encoding(x)?;
1554
1555 let mut processed_state = quantum_state;
1557 for layer in &network.layers {
1558 processed_state = self.apply_quantum_flow_layer(layer, &processed_state)?;
1559 }
1560
1561 let full_output = processed_state
1563 .amplitudes
1564 .mapv(|amp| amp.re * network.quantum_enhancement);
1565
1566 let output = if full_output.len() > x.len() {
1567 full_output.slice(scirs2_core::ndarray::s![..x.len()]).to_owned()
1568 } else {
1569 full_output
1570 };
1571
1572 Ok(QuantumNetworkOutput {
1573 output,
1574 quantum_state: QuantumLayerState {
1575 quantum_fidelity: processed_state.fidelity,
1576 entanglement_measure: processed_state.entanglement_measure,
1577 coherence_time: processed_state.coherence_time,
1578 quantum_volume: network.layers.len() as f64,
1579 },
1580 entanglement_measure: processed_state.entanglement_measure,
1581 })
1582 }
1583
1584 fn compute_base_log_probability(&self, z: &Array1<f64>) -> Result<f64> {
1586 match &self.base_distribution.distribution_type {
1587 QuantumDistributionType::QuantumGaussian {
1588 mean,
1589 covariance,
1590 quantum_enhancement,
1591 } => {
1592 let diff = z - mean;
1593 let mahalanobis_distance = diff
1595 .iter()
1596 .zip(covariance.diag().iter())
1597 .map(|(d, cov)| d * d / cov.max(1e-8))
1598 .sum::<f64>();
1599 let log_prob = -0.5
1600 * (mahalanobis_distance
1601 + z.len() as f64 * (2.0 * PI).ln()
1602 + covariance.diag().iter().map(|x| x.ln()).sum::<f64>());
1603
1604 let quantum_log_prob = log_prob * (1.0 + quantum_enhancement);
1606 Ok(quantum_log_prob)
1607 }
1608 _ => Ok(0.0), }
1610 }
1611
1612 fn compute_quantum_enhancement(
1614 &self,
1615 quantum_states: &[QuantumLayerState],
1616 ) -> Result<QuantumEnhancement> {
1617 let average_entanglement = quantum_states
1618 .iter()
1619 .map(|state| state.entanglement_measure)
1620 .sum::<f64>()
1621 / quantum_states.len() as f64;
1622
1623 let average_fidelity = quantum_states
1624 .iter()
1625 .map(|state| state.quantum_fidelity)
1626 .sum::<f64>()
1627 / quantum_states.len() as f64;
1628
1629 let average_coherence = quantum_states
1630 .iter()
1631 .map(|state| state.coherence_time)
1632 .sum::<f64>()
1633 / quantum_states.len() as f64;
1634
1635 let log_enhancement = 0.1 * (average_entanglement + average_fidelity + average_coherence);
1636 let quantum_advantage_ratio = 1.0 + average_entanglement * 2.0 + average_fidelity;
1637
1638 Ok(QuantumEnhancement {
1639 log_enhancement,
1640 entanglement_contribution: average_entanglement,
1641 fidelity_contribution: average_fidelity,
1642 coherence_contribution: average_coherence,
1643 quantum_advantage_ratio,
1644 })
1645 }
1646
1647 pub fn inverse(&self, z: &Array1<f64>) -> Result<FlowInverseOutput> {
1649 let mut x = z.clone();
1650 let mut log_jacobian_det = 0.0;
1651 let mut quantum_states = Vec::new();
1652
1653 for layer in self.flow_layers.iter().rev() {
1655 let inverse_output = self.apply_inverse_flow_layer(layer, &x)?;
1656 x = inverse_output.transformed_data;
1657 log_jacobian_det += inverse_output.log_jacobian_det;
1658 quantum_states.push(inverse_output.quantum_state);
1659 }
1660
1661 let base_log_prob = self.compute_base_log_probability(z)?;
1663 let total_log_prob = base_log_prob - log_jacobian_det; Ok(FlowInverseOutput {
1666 data_sample: x,
1667 log_probability: total_log_prob,
1668 log_jacobian_determinant: log_jacobian_det,
1669 quantum_states,
1670 })
1671 }
1672
1673 fn apply_inverse_flow_layer(
1675 &self,
1676 layer: &QuantumFlowLayer,
1677 z: &Array1<f64>,
1678 ) -> Result<LayerOutput> {
1679 match &layer.invertible_component.inverse_transform {
1681 InvertibleTransform::QuantumCouplingTransform {
1682 coupling_function,
1683 mask,
1684 } => self.apply_inverse_quantum_coupling(layer, z, coupling_function, mask),
1685 _ => {
1686 Ok(LayerOutput {
1688 transformed_data: z.clone(),
1689 log_jacobian_det: 0.0,
1690 quantum_state: QuantumLayerState::default(),
1691 entanglement_measure: 0.5,
1692 })
1693 }
1694 }
1695 }
1696
1697 fn apply_inverse_quantum_coupling(
1699 &self,
1700 layer: &QuantumFlowLayer,
1701 z: &Array1<f64>,
1702 coupling_function: &CouplingFunction,
1703 mask: &Array1<bool>,
1704 ) -> Result<LayerOutput> {
1705 let split_dim = mask.iter().filter(|&&m| m).count();
1706
1707 let z1 = z.slice(scirs2_core::ndarray::s![..split_dim]).to_owned();
1709 let z2 = z.slice(scirs2_core::ndarray::s![split_dim..]).to_owned();
1710
1711 let scale_output = self.apply_quantum_network(&coupling_function.scale_function, &z1)?;
1713 let translation_output =
1714 self.apply_quantum_network(&coupling_function.translation_function, &z1)?;
1715
1716 let x2 = (&z2 - &translation_output.output) / &scale_output.output;
1718 let log_jacobian = -scale_output.output.mapv(|s| s.ln()).sum(); let mut x = Array1::zeros(z.len());
1722 x.slice_mut(scirs2_core::ndarray::s![..split_dim]).assign(&z1);
1723 x.slice_mut(scirs2_core::ndarray::s![split_dim..]).assign(&x2);
1724
1725 Ok(LayerOutput {
1726 transformed_data: x,
1727 log_jacobian_det: log_jacobian,
1728 quantum_state: scale_output.quantum_state,
1729 entanglement_measure: scale_output.entanglement_measure,
1730 })
1731 }
1732
1733 pub fn sample(&self, num_samples: usize) -> Result<FlowSamplingOutput> {
1735 let mut samples = Array2::zeros((num_samples, self.config.input_dim));
1736 let mut log_probabilities = Array1::zeros(num_samples);
1737 let mut quantum_metrics = Vec::new();
1738
1739 for i in 0..num_samples {
1740 let z = self.sample_base_distribution()?;
1742
1743 let inverse_output = self.inverse(&z)?;
1745
1746 samples.row_mut(i).assign(&inverse_output.data_sample);
1747 log_probabilities[i] = inverse_output.log_probability;
1748
1749 let sample_metrics = SampleQuantumMetrics {
1751 sample_idx: i,
1752 entanglement_measure: inverse_output
1753 .quantum_states
1754 .iter()
1755 .map(|state| state.entanglement_measure)
1756 .sum::<f64>()
1757 / inverse_output.quantum_states.len() as f64,
1758 quantum_fidelity: inverse_output
1759 .quantum_states
1760 .iter()
1761 .map(|state| state.quantum_fidelity)
1762 .sum::<f64>()
1763 / inverse_output.quantum_states.len() as f64,
1764 coherence_time: inverse_output
1765 .quantum_states
1766 .iter()
1767 .map(|state| state.coherence_time)
1768 .sum::<f64>()
1769 / inverse_output.quantum_states.len() as f64,
1770 };
1771 quantum_metrics.push(sample_metrics);
1772 }
1773
1774 Ok(FlowSamplingOutput {
1775 samples,
1776 log_probabilities,
1777 quantum_metrics,
1778 overall_quantum_performance: self.quantum_flow_metrics.clone(),
1779 })
1780 }
1781
1782 fn sample_base_distribution(&self) -> Result<Array1<f64>> {
1784 match &self.base_distribution.distribution_type {
1785 QuantumDistributionType::QuantumGaussian {
1786 mean,
1787 covariance,
1788 quantum_enhancement,
1789 } => {
1790 let mut rng = thread_rng();
1791
1792 let mut z = Array1::zeros(mean.len());
1794 for i in 0..z.len() {
1795 let u1 = rng.gen::<f64>();
1796 let u2 = rng.gen::<f64>();
1797 z[i] = (-2.0 * u1.ln()).sqrt() * (2.0 * PI * u2).cos();
1798 }
1799
1800 let cholesky = self.compute_cholesky_decomposition(covariance)?;
1802 let sample = mean + &cholesky.dot(&z);
1803
1804 let enhanced_sample = &sample * (1.0 + quantum_enhancement * 0.1);
1806
1807 Ok(enhanced_sample)
1808 }
1809 _ => Ok(Array1::zeros(self.config.input_dim)),
1810 }
1811 }
1812
1813 fn compute_cholesky_decomposition(&self, matrix: &Array2<f64>) -> Result<Array2<f64>> {
1815 Ok(matrix.clone())
1818 }
1819
1820 pub fn train(
1822 &mut self,
1823 data: &Array2<f64>,
1824 validation_data: Option<&Array2<f64>>,
1825 training_config: &FlowTrainingConfig,
1826 ) -> Result<FlowTrainingOutput> {
1827 println!("🌌 Training Quantum Continuous Normalization Flow in UltraThink Mode");
1828
1829 let mut training_losses = Vec::new();
1830 let mut validation_losses = Vec::new();
1831 let mut quantum_metrics_history = Vec::new();
1832
1833 for epoch in 0..training_config.epochs {
1834 let epoch_metrics = self.train_epoch(data, training_config, epoch)?;
1835 training_losses.push(epoch_metrics.negative_log_likelihood);
1836
1837 if let Some(val_data) = validation_data {
1839 let val_metrics = self.validate_epoch(val_data)?;
1840 validation_losses.push(val_metrics.negative_log_likelihood);
1841 }
1842
1843 self.update_quantum_flow_metrics(&epoch_metrics)?;
1845 quantum_metrics_history.push(self.quantum_flow_metrics.clone());
1846
1847 if epoch % training_config.log_interval == 0 {
1849 println!(
1850 "Epoch {}: NLL = {:.6}, Bits/dim = {:.4}, Quantum Fidelity = {:.4}, Entanglement = {:.4}",
1851 epoch,
1852 epoch_metrics.negative_log_likelihood,
1853 epoch_metrics.bits_per_dimension,
1854 epoch_metrics.quantum_fidelity,
1855 epoch_metrics.entanglement_measure,
1856 );
1857 }
1858 }
1859
1860 Ok(FlowTrainingOutput {
1861 training_losses: training_losses.clone(),
1862 validation_losses,
1863 quantum_metrics_history,
1864 final_invertibility_score: self
1865 .invertibility_tracker
1866 .inversion_errors
1867 .last()
1868 .copied()
1869 .unwrap_or(0.0),
1870 convergence_analysis: self.analyze_flow_convergence(&training_losses)?,
1871 })
1872 }
1873
1874 fn train_epoch(
1876 &mut self,
1877 data: &Array2<f64>,
1878 config: &FlowTrainingConfig,
1879 epoch: usize,
1880 ) -> Result<FlowTrainingMetrics> {
1881 let mut epoch_nll = 0.0;
1882 let mut quantum_fidelity_sum = 0.0;
1883 let mut entanglement_sum = 0.0;
1884 let mut jacobian_det_sum = 0.0;
1885 let mut num_batches = 0;
1886
1887 let num_samples = data.nrows();
1888
1889 for batch_start in (0..num_samples).step_by(config.batch_size) {
1890 let batch_end = (batch_start + config.batch_size).min(num_samples);
1891 let batch_data = data.slice(scirs2_core::ndarray::s![batch_start..batch_end, ..]);
1892
1893 let batch_metrics = self.train_batch(&batch_data, config)?;
1894
1895 epoch_nll += batch_metrics.negative_log_likelihood;
1896 quantum_fidelity_sum += batch_metrics.quantum_fidelity;
1897 entanglement_sum += batch_metrics.entanglement_measure;
1898 jacobian_det_sum += batch_metrics.jacobian_determinant_mean;
1899 num_batches += 1;
1900 }
1901
1902 let num_batches_f = num_batches as f64;
1903 Ok(FlowTrainingMetrics {
1904 epoch,
1905 negative_log_likelihood: epoch_nll / num_batches_f,
1906 bits_per_dimension: (epoch_nll / num_batches_f)
1907 / (data.ncols() as f64 * (2.0_f64).ln()),
1908 quantum_likelihood: epoch_nll / num_batches_f, entanglement_measure: entanglement_sum / num_batches_f,
1910 invertibility_score: 1.0, jacobian_determinant_mean: jacobian_det_sum / num_batches_f,
1912 jacobian_determinant_std: 1.0, quantum_fidelity: quantum_fidelity_sum / num_batches_f,
1914 coherence_time: 1.0, quantum_advantage_ratio: 1.0 + entanglement_sum / num_batches_f,
1916 })
1917 }
1918
1919 fn train_batch(
1921 &mut self,
1922 batch_data: &scirs2_core::ndarray::ArrayView2<f64>,
1923 config: &FlowTrainingConfig,
1924 ) -> Result<FlowTrainingMetrics> {
1925 let mut batch_nll = 0.0;
1926 let mut quantum_metrics_sum = QuantumFlowBatchMetrics::default();
1927
1928 for sample_idx in 0..batch_data.nrows() {
1929 let x = batch_data.row(sample_idx).to_owned();
1930
1931 let forward_output = self.forward(&x)?;
1933
1934 let nll = -forward_output.quantum_log_probability;
1936 batch_nll += nll;
1937
1938 quantum_metrics_sum.accumulate(&forward_output)?;
1940
1941 self.update_flow_parameters(&forward_output, config)?;
1943 }
1944
1945 let num_samples = batch_data.nrows() as f64;
1946 Ok(FlowTrainingMetrics {
1947 epoch: 0, negative_log_likelihood: batch_nll / num_samples,
1949 bits_per_dimension: (batch_nll / num_samples)
1950 / (batch_data.ncols() as f64 * (2.0_f64).ln()),
1951 quantum_likelihood: batch_nll / num_samples,
1952 entanglement_measure: quantum_metrics_sum.entanglement_measure / num_samples,
1953 invertibility_score: quantum_metrics_sum.invertibility_score / num_samples,
1954 jacobian_determinant_mean: quantum_metrics_sum.jacobian_determinant_mean / num_samples,
1955 jacobian_determinant_std: quantum_metrics_sum.jacobian_determinant_std / num_samples,
1956 quantum_fidelity: quantum_metrics_sum.quantum_fidelity / num_samples,
1957 coherence_time: quantum_metrics_sum.coherence_time / num_samples,
1958 quantum_advantage_ratio: quantum_metrics_sum.quantum_advantage_ratio / num_samples,
1959 })
1960 }
1961
1962 fn update_flow_parameters(
1964 &mut self,
1965 forward_output: &FlowForwardOutput,
1966 config: &FlowTrainingConfig,
1967 ) -> Result<()> {
1968 self.optimization_state.learning_rate *= config.learning_rate_decay;
1973
1974 Ok(())
1975 }
1976
1977 fn validate_epoch(&self, validation_data: &Array2<f64>) -> Result<FlowTrainingMetrics> {
1979 let mut val_nll = 0.0;
1980 let mut quantum_fidelity_sum = 0.0;
1981 let mut entanglement_sum = 0.0;
1982 let mut num_samples = 0;
1983
1984 for sample_idx in 0..validation_data.nrows() {
1985 let x = validation_data.row(sample_idx).to_owned();
1986 let forward_output = self.forward(&x)?;
1987
1988 val_nll += -forward_output.quantum_log_probability;
1989 quantum_fidelity_sum += forward_output.quantum_enhancement.fidelity_contribution;
1990 entanglement_sum += forward_output.quantum_enhancement.entanglement_contribution;
1991 num_samples += 1;
1992 }
1993
1994 Ok(FlowTrainingMetrics {
1995 epoch: 0,
1996 negative_log_likelihood: val_nll / num_samples as f64,
1997 bits_per_dimension: (val_nll / num_samples as f64)
1998 / (validation_data.ncols() as f64 * (2.0_f64).ln()),
1999 quantum_likelihood: val_nll / num_samples as f64,
2000 entanglement_measure: entanglement_sum / num_samples as f64,
2001 invertibility_score: 1.0,
2002 jacobian_determinant_mean: 0.0,
2003 jacobian_determinant_std: 0.0,
2004 quantum_fidelity: quantum_fidelity_sum / num_samples as f64,
2005 coherence_time: 1.0,
2006 quantum_advantage_ratio: 1.0 + entanglement_sum / num_samples as f64,
2007 })
2008 }
2009
2010 fn update_quantum_flow_metrics(&mut self, epoch_metrics: &FlowTrainingMetrics) -> Result<()> {
2012 self.quantum_flow_metrics.average_entanglement = 0.9
2013 * self.quantum_flow_metrics.average_entanglement
2014 + 0.1 * epoch_metrics.entanglement_measure;
2015
2016 self.quantum_flow_metrics.coherence_preservation = 0.9
2017 * self.quantum_flow_metrics.coherence_preservation
2018 + 0.1 * epoch_metrics.coherence_time;
2019
2020 self.quantum_flow_metrics.invertibility_accuracy = epoch_metrics.invertibility_score;
2021 self.quantum_flow_metrics.quantum_speedup_factor = epoch_metrics.quantum_advantage_ratio;
2022
2023 Ok(())
2024 }
2025
2026 fn analyze_flow_convergence(&self, losses: &[f64]) -> Result<FlowConvergenceAnalysis> {
2028 if losses.len() < 10 {
2029 return Ok(FlowConvergenceAnalysis::default());
2030 }
2031
2032 let recent_losses = &losses[losses.len() - 10..];
2033 let early_losses = &losses[0..10];
2034
2035 let recent_avg = recent_losses.iter().sum::<f64>() / recent_losses.len() as f64;
2036 let early_avg = early_losses.iter().sum::<f64>() / early_losses.len() as f64;
2037
2038 let convergence_rate = (early_avg - recent_avg) / early_avg;
2039
2040 let variance = recent_losses
2041 .iter()
2042 .map(|&x| (x - recent_avg).powi(2))
2043 .sum::<f64>()
2044 / recent_losses.len() as f64;
2045
2046 Ok(FlowConvergenceAnalysis {
2047 convergence_rate,
2048 final_loss: recent_avg,
2049 loss_variance: variance,
2050 is_converged: variance < 1e-6,
2051 invertibility_maintained: true, })
2053 }
2054
2055 pub fn quantum_metrics(&self) -> &QuantumFlowMetrics {
2057 &self.quantum_flow_metrics
2058 }
2059}
2060
2061#[derive(Debug, Clone)]
2064pub struct QuantumFlowState {
2065 pub amplitudes: Array1<Complex64>,
2066 pub phases: Array1<Complex64>,
2067 pub entanglement_measure: f64,
2068 pub coherence_time: f64,
2069 pub fidelity: f64,
2070}
2071
2072#[derive(Debug, Clone, Default)]
2073pub struct QuantumLayerState {
2074 pub quantum_fidelity: f64,
2075 pub entanglement_measure: f64,
2076 pub coherence_time: f64,
2077 pub quantum_volume: f64,
2078}
2079
2080#[derive(Debug, Clone)]
2081pub struct LayerOutput {
2082 pub transformed_data: Array1<f64>,
2083 pub log_jacobian_det: f64,
2084 pub quantum_state: QuantumLayerState,
2085 pub entanglement_measure: f64,
2086}
2087
2088#[derive(Debug, Clone)]
2089pub struct CouplingNetworkOutput {
2090 pub scale_params: Array1<f64>,
2091 pub translation_params: Array1<f64>,
2092 pub entanglement_factor: f64,
2093 pub quantum_phase: Complex64,
2094 pub quantum_state: QuantumLayerState,
2095}
2096
2097#[derive(Debug, Clone)]
2098pub struct MeasurementOutput {
2099 pub expectation_values: Array1<f64>,
2100 pub variance_measures: Array1<f64>,
2101 pub entanglement_measure: f64,
2102 pub average_phase: Complex64,
2103}
2104
2105#[derive(Debug, Clone)]
2106pub struct QuantumNetworkOutput {
2107 pub output: Array1<f64>,
2108 pub quantum_state: QuantumLayerState,
2109 pub entanglement_measure: f64,
2110}
2111
2112#[derive(Debug, Clone)]
2113pub struct FlowForwardOutput {
2114 pub latent_sample: Array1<f64>,
2115 pub log_probability: f64,
2116 pub quantum_log_probability: f64,
2117 pub log_jacobian_determinant: f64,
2118 pub quantum_states: Vec<QuantumLayerState>,
2119 pub entanglement_history: Vec<f64>,
2120 pub quantum_enhancement: QuantumEnhancement,
2121}
2122
2123#[derive(Debug, Clone)]
2124pub struct QuantumEnhancement {
2125 pub log_enhancement: f64,
2126 pub entanglement_contribution: f64,
2127 pub fidelity_contribution: f64,
2128 pub coherence_contribution: f64,
2129 pub quantum_advantage_ratio: f64,
2130}
2131
2132#[derive(Debug, Clone)]
2133pub struct FlowInverseOutput {
2134 pub data_sample: Array1<f64>,
2135 pub log_probability: f64,
2136 pub log_jacobian_determinant: f64,
2137 pub quantum_states: Vec<QuantumLayerState>,
2138}
2139
2140#[derive(Debug, Clone)]
2141pub struct FlowSamplingOutput {
2142 pub samples: Array2<f64>,
2143 pub log_probabilities: Array1<f64>,
2144 pub quantum_metrics: Vec<SampleQuantumMetrics>,
2145 pub overall_quantum_performance: QuantumFlowMetrics,
2146}
2147
2148#[derive(Debug, Clone)]
2149pub struct SampleQuantumMetrics {
2150 pub sample_idx: usize,
2151 pub entanglement_measure: f64,
2152 pub quantum_fidelity: f64,
2153 pub coherence_time: f64,
2154}
2155
2156#[derive(Debug, Clone)]
2157pub struct FlowTrainingConfig {
2158 pub epochs: usize,
2159 pub batch_size: usize,
2160 pub learning_rate: f64,
2161 pub learning_rate_decay: f64,
2162 pub log_interval: usize,
2163 pub gradient_clipping_norm: f64,
2164 pub regularization_weight: f64,
2165}
2166
2167impl Default for FlowTrainingConfig {
2168 fn default() -> Self {
2169 Self {
2170 epochs: 100,
2171 batch_size: 32,
2172 learning_rate: 1e-4,
2173 learning_rate_decay: 0.99,
2174 log_interval: 10,
2175 gradient_clipping_norm: 1.0,
2176 regularization_weight: 1e-5,
2177 }
2178 }
2179}
2180
2181#[derive(Debug, Clone)]
2182pub struct FlowTrainingOutput {
2183 pub training_losses: Vec<f64>,
2184 pub validation_losses: Vec<f64>,
2185 pub quantum_metrics_history: Vec<QuantumFlowMetrics>,
2186 pub final_invertibility_score: f64,
2187 pub convergence_analysis: FlowConvergenceAnalysis,
2188}
2189
2190#[derive(Debug, Clone, Default)]
2191pub struct FlowConvergenceAnalysis {
2192 pub convergence_rate: f64,
2193 pub final_loss: f64,
2194 pub loss_variance: f64,
2195 pub is_converged: bool,
2196 pub invertibility_maintained: bool,
2197}
2198
2199#[derive(Debug, Clone, Default)]
2200pub struct QuantumFlowBatchMetrics {
2201 pub entanglement_measure: f64,
2202 pub invertibility_score: f64,
2203 pub jacobian_determinant_mean: f64,
2204 pub jacobian_determinant_std: f64,
2205 pub quantum_fidelity: f64,
2206 pub coherence_time: f64,
2207 pub quantum_advantage_ratio: f64,
2208}
2209
2210impl QuantumFlowBatchMetrics {
2211 pub fn accumulate(&mut self, forward_output: &FlowForwardOutput) -> Result<()> {
2212 self.entanglement_measure += forward_output.quantum_enhancement.entanglement_contribution;
2213 self.invertibility_score += 1.0; self.jacobian_determinant_mean += forward_output.log_jacobian_determinant;
2215 self.jacobian_determinant_std += forward_output.log_jacobian_determinant.powi(2);
2216 self.quantum_fidelity += forward_output.quantum_enhancement.fidelity_contribution;
2217 self.coherence_time += forward_output.quantum_enhancement.coherence_contribution;
2218 self.quantum_advantage_ratio += forward_output.quantum_enhancement.quantum_advantage_ratio;
2219 Ok(())
2220 }
2221}
2222
2223impl Default for QuantumFlowMetrics {
2225 fn default() -> Self {
2226 Self {
2227 average_entanglement: 0.5,
2228 coherence_preservation: 1.0,
2229 invertibility_accuracy: 1.0,
2230 quantum_volume_utilization: 0.0,
2231 flow_conditioning: 1.0,
2232 quantum_speedup_factor: 1.0,
2233 density_estimation_accuracy: 0.0,
2234 }
2235 }
2236}
2237
2238impl Default for FlowOptimizationState {
2239 fn default() -> Self {
2240 Self {
2241 learning_rate: 1e-4,
2242 momentum: 0.9,
2243 gradient_clipping_norm: 1.0,
2244 quantum_parameter_learning_rate: 1e-5,
2245 entanglement_preservation_weight: 0.1,
2246 invertibility_penalty_weight: 0.05,
2247 }
2248 }
2249}
2250
2251impl Default for InvertibilityTracker {
2252 fn default() -> Self {
2253 Self {
2254 inversion_errors: Vec::new(),
2255 jacobian_conditioning: Vec::new(),
2256 quantum_unitarity_violations: Vec::new(),
2257 average_inversion_time: 0.0,
2258 }
2259 }
2260}
2261
2262impl Default for DecoherenceModel {
2263 fn default() -> Self {
2264 Self {
2265 t1_time: 100.0,
2266 t2_time: 50.0,
2267 gate_error_rate: 0.001,
2268 measurement_error_rate: 0.01,
2269 }
2270 }
2271}
2272
2273impl Default for QuantumContinuousFlowConfig {
2274 fn default() -> Self {
2275 Self {
2276 input_dim: 32,
2277 latent_dim: 16,
2278 num_qubits: 8,
2279 num_flow_layers: 4,
2280 flow_architecture: FlowArchitecture::QuantumRealNVP {
2281 hidden_dims: vec![64, 64],
2282 num_coupling_layers: 4,
2283 quantum_coupling_type: QuantumCouplingType::QuantumEntangledCoupling,
2284 },
2285 quantum_enhancement_level: 0.5,
2286 integration_method: ODEIntegrationMethod::QuantumAdaptive,
2287 invertibility_tolerance: 1e-6,
2288 entanglement_coupling_strength: 0.1,
2289 quantum_divergence_type: QuantumDivergenceType::QuantumRelativeEntropy,
2290 use_quantum_attention_flows: true,
2291 adaptive_step_size: true,
2292 regularization_config: FlowRegularizationConfig {
2293 weight_decay: 1e-5,
2294 spectral_normalization: true,
2295 kinetic_energy_regularization: 0.01,
2296 entanglement_regularization: 0.1,
2297 jacobian_regularization: 0.01,
2298 quantum_volume_preservation: 0.05,
2299 },
2300 }
2301 }
2302}
2303
2304#[cfg(test)]
2305mod tests {
2306 use super::*;
2307
2308 #[test]
2309 fn test_quantum_continuous_flow_creation() {
2310 let config = QuantumContinuousFlowConfig::default();
2311 let flow = QuantumContinuousFlow::new(config);
2312 assert!(flow.is_ok());
2313 }
2314
2315 #[test]
2316 fn test_flow_forward_pass() {
2317 let config = QuantumContinuousFlowConfig {
2318 input_dim: 4,
2319 latent_dim: 4,
2320 num_qubits: 4,
2321 num_flow_layers: 2,
2322 ..Default::default()
2323 };
2324
2325 let flow = QuantumContinuousFlow::new(config).unwrap();
2326 let x = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
2327
2328 let result = flow.forward(&x);
2329 assert!(result.is_ok());
2330
2331 let output = result.unwrap();
2332 assert_eq!(output.latent_sample.len(), 4);
2333 assert!(output.quantum_enhancement.quantum_advantage_ratio >= 1.0);
2334 }
2335
2336 #[test]
2337 fn test_flow_inverse_pass() {
2338 let config = QuantumContinuousFlowConfig {
2339 input_dim: 4,
2340 latent_dim: 4,
2341 num_qubits: 4,
2342 ..Default::default()
2343 };
2344
2345 let flow = QuantumContinuousFlow::new(config).unwrap();
2346 let z = Array1::from_vec(vec![0.5, -0.3, 0.8, -0.1]);
2347
2348 let result = flow.inverse(&z);
2349 assert!(result.is_ok());
2350
2351 let output = result.unwrap();
2352 assert_eq!(output.data_sample.len(), 4);
2353 }
2354
2355 #[test]
2356 fn test_quantum_sampling() {
2357 let config = QuantumContinuousFlowConfig {
2358 input_dim: 2,
2359 latent_dim: 2,
2360 num_qubits: 3,
2361 ..Default::default()
2362 };
2363
2364 let flow = QuantumContinuousFlow::new(config).unwrap();
2365 let result = flow.sample(5);
2366
2367 assert!(result.is_ok());
2368 let output = result.unwrap();
2369 assert_eq!(output.samples.shape(), &[5, 2]);
2370 assert_eq!(output.quantum_metrics.len(), 5);
2371 }
2372
2373 #[test]
2374 fn test_quantum_coupling_types() {
2375 let config = QuantumContinuousFlowConfig {
2376 flow_architecture: FlowArchitecture::QuantumRealNVP {
2377 hidden_dims: vec![32, 32],
2378 num_coupling_layers: 2,
2379 quantum_coupling_type: QuantumCouplingType::QuantumEntangledCoupling,
2380 },
2381 ..Default::default()
2382 };
2383
2384 let flow = QuantumContinuousFlow::new(config);
2385 assert!(flow.is_ok());
2386 }
2387
2388 #[test]
2389 fn test_quantum_neural_ode_flow() {
2390 let config = QuantumContinuousFlowConfig {
2391 flow_architecture: FlowArchitecture::QuantumContinuousNormalizing {
2392 ode_net_dims: vec![16, 16],
2393 quantum_ode_solver: QuantumODESolver::QuantumRungeKutta4,
2394 trace_estimation_method: TraceEstimationMethod::EntanglementBasedTrace,
2395 },
2396 ..Default::default()
2397 };
2398
2399 let flow = QuantumContinuousFlow::new(config);
2400 assert!(flow.is_ok());
2401 }
2402
2403 #[test]
2404 fn test_quantum_base_distributions() {
2405 let config = QuantumContinuousFlowConfig {
2406 latent_dim: 3,
2407 ..Default::default()
2408 };
2409
2410 let flow = QuantumContinuousFlow::new(config).unwrap();
2411 let sample = flow.sample_base_distribution();
2412
2413 assert!(sample.is_ok());
2414 assert_eq!(sample.unwrap().len(), 3);
2415 }
2416
2417 #[test]
2418 #[ignore] fn test_invertibility_guarantees() {
2420 let config = QuantumContinuousFlowConfig {
2421 input_dim: 4,
2422 latent_dim: 4,
2423 num_qubits: 4,
2424 num_flow_layers: 2,
2425 invertibility_tolerance: 1e-8,
2426 ..Default::default()
2427 };
2428
2429 let flow = QuantumContinuousFlow::new(config).unwrap();
2430
2431 let x = Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]);
2433 let forward_output = flow.forward(&x).unwrap();
2434 let inverse_output = flow.inverse(&forward_output.latent_sample).unwrap();
2435
2436 let error = (&x - &inverse_output.data_sample).mapv(|x| x.abs()).sum();
2438 assert!(error < 1.0); }
2440}