quantrs2_ml/
optimization.rs

1use crate::error::{MLError, Result};
2use scirs2_core::ndarray::{Array1, ArrayView1};
3use std::collections::HashMap;
4use std::fmt;
5
6/// Optimization method to use for training quantum machine learning models
7#[derive(Debug, Clone, Copy)]
8pub enum OptimizationMethod {
9    /// Gradient descent
10    GradientDescent,
11
12    /// Adam optimizer
13    Adam,
14
15    /// SPSA (Simultaneous Perturbation Stochastic Approximation)
16    SPSA,
17
18    /// L-BFGS (Limited-memory Broyden–Fletcher–Goldfarb–Shanno)
19    LBFGS,
20
21    /// Quantum Natural Gradient
22    QuantumNaturalGradient,
23
24    /// SciRS2 Adam optimizer
25    SciRS2Adam,
26
27    /// SciRS2 L-BFGS optimizer
28    SciRS2LBFGS,
29
30    /// SciRS2 Conjugate Gradient
31    SciRS2CG,
32}
33
34/// Optimizer for quantum machine learning models
35#[derive(Debug, Clone)]
36pub enum Optimizer {
37    /// Gradient descent
38    GradientDescent {
39        /// Learning rate
40        learning_rate: f64,
41    },
42
43    /// Adam optimizer
44    Adam {
45        /// Learning rate
46        learning_rate: f64,
47
48        /// Beta1 parameter
49        beta1: f64,
50
51        /// Beta2 parameter
52        beta2: f64,
53
54        /// Epsilon parameter
55        epsilon: f64,
56    },
57
58    /// SPSA optimizer
59    SPSA {
60        /// Learning rate
61        learning_rate: f64,
62
63        /// Perturbation size
64        perturbation: f64,
65    },
66
67    /// SciRS2-based optimizers (placeholder for integration)
68    SciRS2 {
69        /// Optimizer method
70        method: String,
71        /// Configuration parameters
72        config: HashMap<String, f64>,
73    },
74}
75
76impl Optimizer {
77    /// Creates a new optimizer with default parameters
78    pub fn new(method: OptimizationMethod) -> Self {
79        match method {
80            OptimizationMethod::GradientDescent => Optimizer::GradientDescent {
81                learning_rate: 0.01,
82            },
83            OptimizationMethod::Adam => Optimizer::Adam {
84                learning_rate: 0.01,
85                beta1: 0.9,
86                beta2: 0.999,
87                epsilon: 1e-8,
88            },
89            OptimizationMethod::SPSA => Optimizer::SPSA {
90                learning_rate: 0.01,
91                perturbation: 0.01,
92            },
93            OptimizationMethod::LBFGS => {
94                // Default to Adam as LBFGS is not implemented yet
95                Optimizer::Adam {
96                    learning_rate: 0.01,
97                    beta1: 0.9,
98                    beta2: 0.999,
99                    epsilon: 1e-8,
100                }
101            }
102            OptimizationMethod::QuantumNaturalGradient => {
103                // Default to Adam as QNG is not implemented yet
104                Optimizer::Adam {
105                    learning_rate: 0.01,
106                    beta1: 0.9,
107                    beta2: 0.999,
108                    epsilon: 1e-8,
109                }
110            }
111            OptimizationMethod::SciRS2Adam => {
112                let mut config = HashMap::new();
113                config.insert("learning_rate".to_string(), 0.001);
114                config.insert("beta1".to_string(), 0.9);
115                config.insert("beta2".to_string(), 0.999);
116                config.insert("epsilon".to_string(), 1e-8);
117                Optimizer::SciRS2 {
118                    method: "adam".to_string(),
119                    config,
120                }
121            }
122            OptimizationMethod::SciRS2LBFGS => {
123                let mut config = HashMap::new();
124                config.insert("m".to_string(), 10.0); // Memory size
125                config.insert("c1".to_string(), 1e-4);
126                config.insert("c2".to_string(), 0.9);
127                Optimizer::SciRS2 {
128                    method: "lbfgs".to_string(),
129                    config,
130                }
131            }
132            OptimizationMethod::SciRS2CG => {
133                let mut config = HashMap::new();
134                config.insert("beta_method".to_string(), 0.0); // Fletcher-Reeves
135                config.insert("restart_threshold".to_string(), 100.0);
136                Optimizer::SciRS2 {
137                    method: "cg".to_string(),
138                    config,
139                }
140            }
141        }
142    }
143
144    /// Updates parameters based on gradients
145    pub fn update_parameters(
146        &self,
147        parameters: &mut Array1<f64>,
148        gradients: &ArrayView1<f64>,
149        iteration: usize,
150    ) -> Result<()> {
151        match self {
152            Optimizer::GradientDescent { learning_rate } => {
153                // Simple gradient descent update
154                for i in 0..parameters.len() {
155                    parameters[i] -= learning_rate * gradients[i];
156                }
157                Ok(())
158            }
159            Optimizer::Adam {
160                learning_rate,
161                beta1,
162                beta2,
163                epsilon,
164            } => {
165                // This is a simplified Adam implementation
166                // In a real implementation, we would track momentum and RMS
167                for i in 0..parameters.len() {
168                    parameters[i] -= learning_rate * gradients[i];
169                }
170                Ok(())
171            }
172            Optimizer::SPSA {
173                learning_rate,
174                perturbation,
175            } => {
176                // Simplified SPSA update
177                for i in 0..parameters.len() {
178                    parameters[i] -= learning_rate * gradients[i];
179                }
180                Ok(())
181            }
182            Optimizer::SciRS2 { method, config } => {
183                // Placeholder - would delegate to SciRS2 optimizers
184                let learning_rate = config.get("learning_rate").unwrap_or(&0.001);
185                match method.as_str() {
186                    "adam" => {
187                        // Use SciRS2 Adam when available
188                        for i in 0..parameters.len() {
189                            parameters[i] -= learning_rate * gradients[i];
190                        }
191                    }
192                    "lbfgs" => {
193                        // Use SciRS2 L-BFGS when available
194                        for i in 0..parameters.len() {
195                            parameters[i] -= learning_rate * gradients[i];
196                        }
197                    }
198                    "cg" => {
199                        // Use SciRS2 Conjugate Gradient when available
200                        for i in 0..parameters.len() {
201                            parameters[i] -= learning_rate * gradients[i];
202                        }
203                    }
204                    _ => {
205                        return Err(MLError::InvalidConfiguration(format!(
206                            "Unknown SciRS2 optimizer method: {}",
207                            method
208                        )));
209                    }
210                }
211                Ok(())
212            }
213        }
214    }
215}
216
217/// Objective function for optimization
218pub trait ObjectiveFunction {
219    /// Evaluates the objective function at the given parameters
220    fn evaluate(&self, parameters: &ArrayView1<f64>) -> Result<f64>;
221
222    /// Computes the gradient of the objective function
223    fn gradient(&self, parameters: &ArrayView1<f64>) -> Result<Array1<f64>> {
224        // Default implementation uses finite differences
225        let epsilon = 1e-6;
226        let n = parameters.len();
227        let mut gradient = Array1::zeros(n);
228
229        let f0 = self.evaluate(parameters)?;
230
231        for i in 0..n {
232            let mut params_plus = parameters.to_owned();
233            params_plus[i] += epsilon;
234
235            let f_plus = self.evaluate(&params_plus.view())?;
236
237            gradient[i] = (f_plus - f0) / epsilon;
238        }
239
240        Ok(gradient)
241    }
242}
243
244impl fmt::Display for OptimizationMethod {
245    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
246        match self {
247            OptimizationMethod::GradientDescent => write!(f, "Gradient Descent"),
248            OptimizationMethod::Adam => write!(f, "Adam"),
249            OptimizationMethod::SPSA => write!(f, "SPSA"),
250            OptimizationMethod::LBFGS => write!(f, "L-BFGS"),
251            OptimizationMethod::QuantumNaturalGradient => write!(f, "Quantum Natural Gradient"),
252            OptimizationMethod::SciRS2Adam => write!(f, "SciRS2 Adam"),
253            OptimizationMethod::SciRS2LBFGS => write!(f, "SciRS2 L-BFGS"),
254            OptimizationMethod::SciRS2CG => write!(f, "SciRS2 Conjugate Gradient"),
255        }
256    }
257}
258
259impl fmt::Display for Optimizer {
260    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
261        match self {
262            Optimizer::GradientDescent { learning_rate } => {
263                write!(f, "Gradient Descent (learning_rate: {})", learning_rate)
264            }
265            Optimizer::Adam {
266                learning_rate,
267                beta1,
268                beta2,
269                epsilon,
270            } => {
271                write!(
272                    f,
273                    "Adam (learning_rate: {}, beta1: {}, beta2: {}, epsilon: {})",
274                    learning_rate, beta1, beta2, epsilon
275                )
276            }
277            Optimizer::SPSA {
278                learning_rate,
279                perturbation,
280            } => {
281                write!(
282                    f,
283                    "SPSA (learning_rate: {}, perturbation: {})",
284                    learning_rate, perturbation
285                )
286            }
287            Optimizer::SciRS2 { method, config } => {
288                write!(f, "SciRS2 {} with config: {:?}", method, config)
289            }
290        }
291    }
292}