quantrs2_ml/
kernels.rs

1use crate::error::{MLError, Result};
2use scirs2_core::ndarray::{Array1, Array2};
3use quantrs2_circuit::prelude::Circuit;
4use quantrs2_sim::statevector::StateVectorSimulator;
5
6/// Kernel method for quantum machine learning
7#[derive(Debug, Clone, Copy)]
8pub enum KernelMethod {
9    /// Linear kernel
10    Linear,
11
12    /// Polynomial kernel
13    Polynomial,
14
15    /// Radial basis function (RBF) kernel
16    RBF,
17
18    /// Quantum kernel
19    QuantumKernel,
20
21    /// Hybrid classical-quantum kernel
22    HybridKernel,
23}
24
25/// Kernel function for machine learning
26pub trait KernelFunction {
27    /// Computes the kernel value for two vectors
28    fn compute(&self, x1: &Array1<f64>, x2: &Array1<f64>) -> Result<f64>;
29
30    /// Computes the kernel matrix for a dataset
31    fn compute_matrix(&self, x: &Array2<f64>) -> Result<Array2<f64>> {
32        let n = x.nrows();
33        let mut kernel_matrix = Array2::zeros((n, n));
34
35        for i in 0..n {
36            let x_i = x.row(i).to_owned();
37
38            for j in 0..=i {
39                let x_j = x.row(j).to_owned();
40
41                let k_ij = self.compute(&x_i, &x_j)?;
42                kernel_matrix[[i, j]] = k_ij;
43
44                if i != j {
45                    kernel_matrix[[j, i]] = k_ij; // Symmetric
46                }
47            }
48        }
49
50        Ok(kernel_matrix)
51    }
52}
53
54/// Linear kernel for classical machine learning
55#[derive(Debug, Clone)]
56pub struct LinearKernel;
57
58impl KernelFunction for LinearKernel {
59    fn compute(&self, x1: &Array1<f64>, x2: &Array1<f64>) -> Result<f64> {
60        if x1.len() != x2.len() {
61            return Err(MLError::InvalidParameter(format!(
62                "Vector dimensions mismatch: {} != {}",
63                x1.len(),
64                x2.len()
65            )));
66        }
67
68        let dot_product = x1.iter().zip(x2.iter()).map(|(&a, &b)| a * b).sum();
69
70        Ok(dot_product)
71    }
72}
73
74/// Polynomial kernel for classical machine learning
75#[derive(Debug, Clone)]
76pub struct PolynomialKernel {
77    /// Degree of the polynomial
78    pub degree: usize,
79
80    /// Coefficient
81    pub coef: f64,
82}
83
84impl PolynomialKernel {
85    /// Creates a new polynomial kernel
86    pub fn new(degree: usize, coef: f64) -> Self {
87        PolynomialKernel { degree, coef }
88    }
89}
90
91impl KernelFunction for PolynomialKernel {
92    fn compute(&self, x1: &Array1<f64>, x2: &Array1<f64>) -> Result<f64> {
93        if x1.len() != x2.len() {
94            return Err(MLError::InvalidParameter(format!(
95                "Vector dimensions mismatch: {} != {}",
96                x1.len(),
97                x2.len()
98            )));
99        }
100
101        let dot_product = x1.iter().zip(x2.iter()).map(|(&a, &b)| a * b).sum::<f64>();
102        let value = (dot_product + self.coef).powi(self.degree as i32);
103
104        Ok(value)
105    }
106}
107
108/// Radial basis function (RBF) kernel for classical machine learning
109#[derive(Debug, Clone)]
110pub struct RBFKernel {
111    /// Gamma parameter
112    pub gamma: f64,
113}
114
115impl RBFKernel {
116    /// Creates a new RBF kernel
117    pub fn new(gamma: f64) -> Self {
118        RBFKernel { gamma }
119    }
120}
121
122impl KernelFunction for RBFKernel {
123    fn compute(&self, x1: &Array1<f64>, x2: &Array1<f64>) -> Result<f64> {
124        if x1.len() != x2.len() {
125            return Err(MLError::InvalidParameter(format!(
126                "Vector dimensions mismatch: {} != {}",
127                x1.len(),
128                x2.len()
129            )));
130        }
131
132        let squared_distance = x1
133            .iter()
134            .zip(x2.iter())
135            .map(|(&a, &b)| (a - b).powi(2))
136            .sum::<f64>();
137
138        let value = (-self.gamma * squared_distance).exp();
139
140        Ok(value)
141    }
142}
143
144/// Quantum kernel for quantum machine learning
145#[derive(Debug, Clone)]
146pub struct QuantumKernel {
147    /// Number of qubits
148    pub num_qubits: usize,
149
150    /// Feature dimension
151    pub feature_dim: usize,
152
153    /// Number of measurements to estimate the kernel
154    pub num_measurements: usize,
155}
156
157impl QuantumKernel {
158    /// Creates a new quantum kernel
159    pub fn new(num_qubits: usize, feature_dim: usize) -> Self {
160        QuantumKernel {
161            num_qubits,
162            feature_dim,
163            num_measurements: 1000,
164        }
165    }
166
167    /// Sets the number of measurements to estimate the kernel
168    pub fn with_measurements(mut self, num_measurements: usize) -> Self {
169        self.num_measurements = num_measurements;
170        self
171    }
172
173    /// Encodes a feature vector into a quantum circuit
174    fn encode_features<const N: usize>(
175        &self,
176        features: &Array1<f64>,
177        circuit: &mut Circuit<N>,
178    ) -> Result<()> {
179        // This is a simplified implementation
180        // In a real system, this would use more sophisticated feature encoding
181
182        for i in 0..N.min(features.len()) {
183            let angle = features[i] * std::f64::consts::PI;
184            circuit.ry(i, angle)?;
185        }
186
187        Ok(())
188    }
189
190    /// Prepares a quantum circuit for kernel estimation
191    fn prepare_kernel_circuit<const N: usize>(
192        &self,
193        x1: &Array1<f64>,
194        x2: &Array1<f64>,
195    ) -> Result<Circuit<N>> {
196        let mut circuit = Circuit::<N>::new();
197
198        // Apply Hadamard to all qubits
199        for i in 0..N.min(self.num_qubits) {
200            circuit.h(i)?;
201        }
202
203        // Encode the first feature vector
204        self.encode_features(x1, &mut circuit)?;
205
206        // Apply X gates as separators
207        for i in 0..N.min(self.num_qubits) {
208            circuit.x(i)?;
209        }
210
211        // Encode the second feature vector
212        self.encode_features(x2, &mut circuit)?;
213
214        // Apply Hadamard gates again
215        for i in 0..N.min(self.num_qubits) {
216            circuit.h(i)?;
217        }
218
219        Ok(circuit)
220    }
221}
222
223impl KernelFunction for QuantumKernel {
224    fn compute(&self, x1: &Array1<f64>, x2: &Array1<f64>) -> Result<f64> {
225        if x1.len() != x2.len() {
226            return Err(MLError::InvalidParameter(format!(
227                "Vector dimensions mismatch: {} != {}",
228                x1.len(),
229                x2.len()
230            )));
231        }
232
233        if x1.len() != self.feature_dim {
234            return Err(MLError::InvalidParameter(format!(
235                "Feature dimension mismatch: {} != {}",
236                x1.len(),
237                self.feature_dim
238            )));
239        }
240
241        // This is a dummy implementation
242        // In a real system, this would use quantum circuit simulation
243
244        // Simulate quantum kernel using classical calculation
245        let dot_product = x1.iter().zip(x2.iter()).map(|(&a, &b)| a * b).sum::<f64>();
246        let similarity = dot_product.abs().min(1.0);
247
248        Ok(similarity)
249    }
250}