quantrs2_ml/
keras_api.rs

1//! Keras-style model building API for QuantRS2-ML
2//!
3//! This module provides a Keras-like interface for building quantum machine learning
4//! models, with both Sequential and Functional API patterns familiar to Keras users.
5
6use crate::circuit_integration::{QuantumLayer, QuantumMLExecutor};
7use crate::error::{MLError, Result};
8use crate::simulator_backends::{
9    BackendCapabilities, DynamicCircuit, Observable, SimulatorBackend, StatevectorBackend,
10};
11use scirs2_core::ndarray::{s, Array1, Array2, Array3, ArrayD, Axis, IxDyn};
12use quantrs2_circuit::prelude::*;
13use quantrs2_core::prelude::*;
14use std::collections::HashMap;
15use std::sync::Arc;
16
17/// Keras-style layer trait
18pub trait KerasLayer: Send + Sync {
19    /// Build the layer (called during model compilation)
20    fn build(&mut self, input_shape: &[usize]) -> Result<()>;
21
22    /// Forward pass through the layer
23    fn call(&self, inputs: &ArrayD<f64>) -> Result<ArrayD<f64>>;
24
25    /// Compute output shape given input shape
26    fn compute_output_shape(&self, input_shape: &[usize]) -> Vec<usize>;
27
28    /// Get layer name
29    fn name(&self) -> &str;
30
31    /// Get trainable parameters
32    fn get_weights(&self) -> Vec<ArrayD<f64>>;
33
34    /// Set trainable parameters
35    fn set_weights(&mut self, weights: Vec<ArrayD<f64>>) -> Result<()>;
36
37    /// Get number of parameters
38    fn count_params(&self) -> usize {
39        self.get_weights().iter().map(|w| w.len()).sum()
40    }
41
42    /// Check if layer is built
43    fn built(&self) -> bool;
44}
45
46/// Dense (fully connected) layer
47pub struct Dense {
48    /// Number of units
49    units: usize,
50    /// Activation function
51    activation: Option<ActivationFunction>,
52    /// Use bias
53    use_bias: bool,
54    /// Kernel initializer
55    kernel_initializer: InitializerType,
56    /// Bias initializer
57    bias_initializer: InitializerType,
58    /// Layer name
59    name: String,
60    /// Built flag
61    built: bool,
62    /// Input shape
63    input_shape: Option<Vec<usize>>,
64    /// Weights (kernel and bias)
65    weights: Vec<ArrayD<f64>>,
66}
67
68impl Dense {
69    /// Create new dense layer
70    pub fn new(units: usize) -> Self {
71        Self {
72            units,
73            activation: None,
74            use_bias: true,
75            kernel_initializer: InitializerType::GlorotUniform,
76            bias_initializer: InitializerType::Zeros,
77            name: format!("dense_{}", fastrand::u32(..)),
78            built: false,
79            input_shape: None,
80            weights: Vec::new(),
81        }
82    }
83
84    /// Set activation function
85    pub fn activation(mut self, activation: ActivationFunction) -> Self {
86        self.activation = Some(activation);
87        self
88    }
89
90    /// Set use bias
91    pub fn use_bias(mut self, use_bias: bool) -> Self {
92        self.use_bias = use_bias;
93        self
94    }
95
96    /// Set layer name
97    pub fn name(mut self, name: impl Into<String>) -> Self {
98        self.name = name.into();
99        self
100    }
101
102    /// Set kernel initializer
103    pub fn kernel_initializer(mut self, initializer: InitializerType) -> Self {
104        self.kernel_initializer = initializer;
105        self
106    }
107}
108
109impl KerasLayer for Dense {
110    fn build(&mut self, input_shape: &[usize]) -> Result<()> {
111        if input_shape.is_empty() {
112            return Err(MLError::InvalidConfiguration(
113                "Dense layer requires input shape".to_string(),
114            ));
115        }
116
117        let input_dim = input_shape[input_shape.len() - 1];
118        self.input_shape = Some(input_shape.to_vec());
119
120        // Initialize kernel weights
121        let kernel = self.initialize_weights(&[input_dim, self.units], &self.kernel_initializer)?;
122        self.weights.push(kernel);
123
124        // Initialize bias weights
125        if self.use_bias {
126            let bias = self.initialize_weights(&[self.units], &self.bias_initializer)?;
127            self.weights.push(bias);
128        }
129
130        self.built = true;
131        Ok(())
132    }
133
134    fn call(&self, inputs: &ArrayD<f64>) -> Result<ArrayD<f64>> {
135        if !self.built {
136            return Err(MLError::InvalidConfiguration(
137                "Layer must be built before calling".to_string(),
138            ));
139        }
140
141        let kernel = &self.weights[0];
142        // Explicitly perform matrix multiplication to avoid deep recursion
143        let outputs = match (inputs.ndim(), kernel.ndim()) {
144            (2, 2) => {
145                // Convert to 2D arrays for explicit dot product
146                let inputs_2d = inputs
147                    .clone()
148                    .into_dimensionality::<scirs2_core::ndarray::Ix2>()
149                    .map_err(|_| MLError::InvalidConfiguration("Input must be 2D".to_string()))?;
150                let kernel_2d = kernel
151                    .clone()
152                    .into_dimensionality::<scirs2_core::ndarray::Ix2>()
153                    .map_err(|_| MLError::InvalidConfiguration("Kernel must be 2D".to_string()))?;
154                inputs_2d.dot(&kernel_2d).into_dyn()
155            }
156            _ => {
157                return Err(MLError::InvalidConfiguration(
158                    "Unsupported array dimensions for matrix multiplication".to_string(),
159                ));
160            }
161        };
162        let mut outputs = outputs;
163
164        // Add bias if used
165        if self.use_bias && self.weights.len() > 1 {
166            let bias = &self.weights[1];
167            outputs = outputs + bias;
168        }
169
170        // Apply activation
171        if let Some(ref activation) = self.activation {
172            outputs = self.apply_activation(&outputs, activation)?;
173        }
174
175        Ok(outputs)
176    }
177
178    fn compute_output_shape(&self, input_shape: &[usize]) -> Vec<usize> {
179        let mut output_shape = input_shape.to_vec();
180        let last_idx = output_shape.len() - 1;
181        output_shape[last_idx] = self.units;
182        output_shape
183    }
184
185    fn name(&self) -> &str {
186        &self.name
187    }
188
189    fn get_weights(&self) -> Vec<ArrayD<f64>> {
190        self.weights.clone()
191    }
192
193    fn set_weights(&mut self, weights: Vec<ArrayD<f64>>) -> Result<()> {
194        if weights.len() != self.weights.len() {
195            return Err(MLError::InvalidConfiguration(
196                "Number of weight arrays doesn't match layer structure".to_string(),
197            ));
198        }
199        self.weights = weights;
200        Ok(())
201    }
202
203    fn built(&self) -> bool {
204        self.built
205    }
206}
207
208impl Dense {
209    /// Initialize weights
210    fn initialize_weights(
211        &self,
212        shape: &[usize],
213        initializer: &InitializerType,
214    ) -> Result<ArrayD<f64>> {
215        match initializer {
216            InitializerType::Zeros => Ok(ArrayD::zeros(shape)),
217            InitializerType::Ones => Ok(ArrayD::ones(shape)),
218            InitializerType::GlorotUniform => {
219                let fan_in = if shape.len() >= 2 { shape[0] } else { 1 };
220                let fan_out = if shape.len() >= 2 { shape[1] } else { shape[0] };
221                let limit = (6.0 / (fan_in + fan_out) as f64).sqrt();
222
223                Ok(ArrayD::from_shape_fn(shape, |_| {
224                    fastrand::f64() * 2.0 * limit - limit
225                }))
226            }
227            InitializerType::GlorotNormal => {
228                let fan_in = if shape.len() >= 2 { shape[0] } else { 1 };
229                let fan_out = if shape.len() >= 2 { shape[1] } else { shape[0] };
230                let std = (2.0 / (fan_in + fan_out) as f64).sqrt();
231
232                Ok(ArrayD::from_shape_fn(shape, |_| {
233                    // Box-Muller transform for normal distribution
234                    let u1 = fastrand::f64();
235                    let u2 = fastrand::f64();
236                    let z = (-2.0 * u1.ln()).sqrt() * (2.0 * std::f64::consts::PI * u2).cos();
237                    z * std
238                }))
239            }
240            InitializerType::HeUniform => {
241                let fan_in = if shape.len() >= 2 { shape[0] } else { 1 };
242                let limit = (6.0 / fan_in as f64).sqrt();
243
244                Ok(ArrayD::from_shape_fn(shape, |_| {
245                    fastrand::f64() * 2.0 * limit - limit
246                }))
247            }
248        }
249    }
250
251    /// Apply activation function
252    fn apply_activation(
253        &self,
254        inputs: &ArrayD<f64>,
255        activation: &ActivationFunction,
256    ) -> Result<ArrayD<f64>> {
257        Ok(match activation {
258            ActivationFunction::Linear => inputs.clone(),
259            ActivationFunction::ReLU => inputs.mapv(|x| x.max(0.0)),
260            ActivationFunction::Sigmoid => inputs.mapv(|x| 1.0 / (1.0 + (-x).exp())),
261            ActivationFunction::Tanh => inputs.mapv(|x| x.tanh()),
262            ActivationFunction::Softmax => {
263                let mut outputs = inputs.clone();
264                for mut row in outputs.axis_iter_mut(Axis(0)) {
265                    let max_val = row.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
266                    row.mapv_inplace(|x| (x - max_val).exp());
267                    let sum = row.sum();
268                    row /= sum;
269                }
270                outputs
271            }
272            ActivationFunction::LeakyReLU(alpha) => {
273                inputs.mapv(|x| if x > 0.0 { x } else { alpha * x })
274            }
275            ActivationFunction::ELU(alpha) => {
276                inputs.mapv(|x| if x > 0.0 { x } else { alpha * (x.exp() - 1.0) })
277            }
278        })
279    }
280}
281
282/// Quantum Dense layer
283pub struct QuantumDense {
284    /// Number of qubits
285    num_qubits: usize,
286    /// Number of output features
287    units: usize,
288    /// Quantum circuit ansatz
289    ansatz_type: QuantumAnsatzType,
290    /// Number of layers in ansatz
291    num_layers: usize,
292    /// Observable for measurement
293    observable: Observable,
294    /// Backend
295    backend: Arc<dyn SimulatorBackend>,
296    /// Layer name
297    name: String,
298    /// Built flag
299    built: bool,
300    /// Input shape
301    input_shape: Option<Vec<usize>>,
302    /// Quantum parameters
303    quantum_weights: Vec<ArrayD<f64>>,
304}
305
306/// Quantum ansatz types
307#[derive(Debug, Clone)]
308pub enum QuantumAnsatzType {
309    /// Hardware efficient ansatz
310    HardwareEfficient,
311    /// Real amplitudes ansatz
312    RealAmplitudes,
313    /// Strongly entangling layers
314    StronglyEntangling,
315    /// Custom ansatz
316    Custom(DynamicCircuit),
317}
318
319impl QuantumDense {
320    /// Create new quantum dense layer
321    pub fn new(num_qubits: usize, units: usize) -> Self {
322        Self {
323            num_qubits,
324            units,
325            ansatz_type: QuantumAnsatzType::HardwareEfficient,
326            num_layers: 1,
327            observable: Observable::PauliZ(vec![0]),
328            backend: Arc::new(StatevectorBackend::new(10)),
329            name: format!("quantum_dense_{}", fastrand::u32(..)),
330            built: false,
331            input_shape: None,
332            quantum_weights: Vec::new(),
333        }
334    }
335
336    /// Set ansatz type
337    pub fn ansatz_type(mut self, ansatz_type: QuantumAnsatzType) -> Self {
338        self.ansatz_type = ansatz_type;
339        self
340    }
341
342    /// Set number of layers
343    pub fn num_layers(mut self, num_layers: usize) -> Self {
344        self.num_layers = num_layers;
345        self
346    }
347
348    /// Set observable
349    pub fn observable(mut self, observable: Observable) -> Self {
350        self.observable = observable;
351        self
352    }
353
354    /// Set backend
355    pub fn backend(mut self, backend: Arc<dyn SimulatorBackend>) -> Self {
356        self.backend = backend;
357        self
358    }
359
360    /// Set layer name
361    pub fn name(mut self, name: impl Into<String>) -> Self {
362        self.name = name.into();
363        self
364    }
365}
366
367impl KerasLayer for QuantumDense {
368    fn build(&mut self, input_shape: &[usize]) -> Result<()> {
369        self.input_shape = Some(input_shape.to_vec());
370
371        // Calculate number of parameters needed
372        let num_params = match &self.ansatz_type {
373            QuantumAnsatzType::HardwareEfficient => {
374                // 2 rotation gates per qubit per layer + entangling gates
375                self.num_qubits * 2 * self.num_layers
376            }
377            QuantumAnsatzType::RealAmplitudes => {
378                // Y rotation per qubit per layer
379                self.num_qubits * self.num_layers
380            }
381            QuantumAnsatzType::StronglyEntangling => {
382                // 3 rotation gates per qubit per layer
383                self.num_qubits * 3 * self.num_layers
384            }
385            QuantumAnsatzType::Custom(_) => {
386                // Would need to count parameterized gates in custom circuit
387                10 // Placeholder
388            }
389        };
390
391        // Initialize quantum parameters
392        let params = ArrayD::from_shape_fn(IxDyn(&[self.units, num_params]), |_| {
393            fastrand::f64() * 2.0 * std::f64::consts::PI
394        });
395        self.quantum_weights.push(params);
396
397        self.built = true;
398        Ok(())
399    }
400
401    fn call(&self, inputs: &ArrayD<f64>) -> Result<ArrayD<f64>> {
402        if !self.built {
403            return Err(MLError::InvalidConfiguration(
404                "Layer must be built before calling".to_string(),
405            ));
406        }
407
408        let batch_size = inputs.shape()[0];
409        let mut outputs = ArrayD::zeros(IxDyn(&[batch_size, self.units]));
410
411        for batch_idx in 0..batch_size {
412            for unit_idx in 0..self.units {
413                // Build quantum circuit for this unit
414                let circuit = self.build_quantum_circuit()?;
415
416                // Get input data and parameters
417                let input_slice = inputs.slice(s![batch_idx, ..]);
418                let param_slice = self.quantum_weights[0].slice(s![unit_idx, ..]);
419
420                // Combine input data with parameters
421                let combined_params: Vec<f64> = input_slice
422                    .iter()
423                    .chain(param_slice.iter())
424                    .copied()
425                    .collect();
426
427                // Execute quantum circuit
428                let expectation =
429                    self.backend
430                        .expectation_value(&circuit, &combined_params, &self.observable)?;
431
432                outputs[[batch_idx, unit_idx]] = expectation;
433            }
434        }
435
436        Ok(outputs)
437    }
438
439    fn compute_output_shape(&self, input_shape: &[usize]) -> Vec<usize> {
440        let mut output_shape = input_shape.to_vec();
441        let last_idx = output_shape.len() - 1;
442        output_shape[last_idx] = self.units;
443        output_shape
444    }
445
446    fn name(&self) -> &str {
447        &self.name
448    }
449
450    fn get_weights(&self) -> Vec<ArrayD<f64>> {
451        self.quantum_weights.clone()
452    }
453
454    fn set_weights(&mut self, weights: Vec<ArrayD<f64>>) -> Result<()> {
455        if weights.len() != self.quantum_weights.len() {
456            return Err(MLError::InvalidConfiguration(
457                "Number of weight arrays doesn't match layer structure".to_string(),
458            ));
459        }
460        self.quantum_weights = weights;
461        Ok(())
462    }
463
464    fn built(&self) -> bool {
465        self.built
466    }
467}
468
469impl QuantumDense {
470    /// Build quantum circuit based on ansatz type
471    fn build_quantum_circuit(&self) -> Result<DynamicCircuit> {
472        let mut builder: Circuit<8> = Circuit::new();
473
474        match &self.ansatz_type {
475            QuantumAnsatzType::HardwareEfficient => {
476                for layer in 0..self.num_layers {
477                    // Data encoding (if first layer)
478                    if layer == 0 {
479                        for qubit in 0..self.num_qubits {
480                            builder.ry(qubit, 0.0)?; // Input parameter
481                        }
482                    }
483
484                    // Variational part
485                    for qubit in 0..self.num_qubits {
486                        builder.ry(qubit, 0.0)?; // Trainable parameter
487                        builder.rz(qubit, 0.0)?; // Trainable parameter
488                    }
489
490                    // Entangling gates
491                    for qubit in 0..self.num_qubits - 1 {
492                        builder.cnot(qubit, qubit + 1)?;
493                    }
494                    if self.num_qubits > 2 {
495                        builder.cnot(self.num_qubits - 1, 0)?;
496                    }
497                }
498            }
499            QuantumAnsatzType::RealAmplitudes => {
500                for layer in 0..self.num_layers {
501                    // Data encoding (if first layer)
502                    if layer == 0 {
503                        for qubit in 0..self.num_qubits {
504                            builder.ry(qubit, 0.0)?; // Input parameter
505                        }
506                    }
507
508                    // Variational part
509                    for qubit in 0..self.num_qubits {
510                        builder.ry(qubit, 0.0)?; // Trainable parameter
511                    }
512
513                    // Entangling gates
514                    for qubit in 0..self.num_qubits - 1 {
515                        builder.cnot(qubit, qubit + 1)?;
516                    }
517                }
518            }
519            QuantumAnsatzType::StronglyEntangling => {
520                for layer in 0..self.num_layers {
521                    // Data encoding (if first layer)
522                    if layer == 0 {
523                        for qubit in 0..self.num_qubits {
524                            builder.ry(qubit, 0.0)?; // Input parameter
525                        }
526                    }
527
528                    // Variational part - all rotation gates
529                    for qubit in 0..self.num_qubits {
530                        builder.rx(qubit, 0.0)?; // Trainable parameter
531                        builder.ry(qubit, 0.0)?; // Trainable parameter
532                        builder.rz(qubit, 0.0)?; // Trainable parameter
533                    }
534
535                    // Entangling gates
536                    for qubit in 0..self.num_qubits - 1 {
537                        builder.cnot(qubit, qubit + 1)?;
538                    }
539                    if self.num_qubits > 2 {
540                        builder.cnot(self.num_qubits - 1, 0)?;
541                    }
542                }
543            }
544            QuantumAnsatzType::Custom(circuit) => {
545                return Ok(circuit.clone());
546            }
547        }
548
549        let circuit = builder.build();
550        DynamicCircuit::from_circuit(circuit)
551    }
552}
553
554/// Activation function types
555#[derive(Debug, Clone)]
556pub enum ActivationFunction {
557    /// Linear activation (identity)
558    Linear,
559    /// ReLU activation
560    ReLU,
561    /// Sigmoid activation
562    Sigmoid,
563    /// Tanh activation
564    Tanh,
565    /// Softmax activation
566    Softmax,
567    /// Leaky ReLU with alpha
568    LeakyReLU(f64),
569    /// ELU with alpha
570    ELU(f64),
571}
572
573/// Activation layer
574pub struct Activation {
575    /// Activation function
576    function: ActivationFunction,
577    /// Layer name
578    name: String,
579    /// Built flag
580    built: bool,
581}
582
583impl Activation {
584    /// Create new activation layer
585    pub fn new(function: ActivationFunction) -> Self {
586        Self {
587            function,
588            name: format!("activation_{}", fastrand::u32(..)),
589            built: false,
590        }
591    }
592
593    /// Set layer name
594    pub fn name(mut self, name: impl Into<String>) -> Self {
595        self.name = name.into();
596        self
597    }
598}
599
600impl KerasLayer for Activation {
601    fn build(&mut self, _input_shape: &[usize]) -> Result<()> {
602        self.built = true;
603        Ok(())
604    }
605
606    fn call(&self, inputs: &ArrayD<f64>) -> Result<ArrayD<f64>> {
607        Ok(match &self.function {
608            ActivationFunction::Linear => inputs.clone(),
609            ActivationFunction::ReLU => inputs.mapv(|x| x.max(0.0)),
610            ActivationFunction::Sigmoid => inputs.mapv(|x| 1.0 / (1.0 + (-x).exp())),
611            ActivationFunction::Tanh => inputs.mapv(|x| x.tanh()),
612            ActivationFunction::Softmax => {
613                let mut outputs = inputs.clone();
614                for mut row in outputs.axis_iter_mut(Axis(0)) {
615                    let max_val = row.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
616                    row.mapv_inplace(|x| (x - max_val).exp());
617                    let sum = row.sum();
618                    row /= sum;
619                }
620                outputs
621            }
622            ActivationFunction::LeakyReLU(alpha) => {
623                inputs.mapv(|x| if x > 0.0 { x } else { alpha * x })
624            }
625            ActivationFunction::ELU(alpha) => {
626                inputs.mapv(|x| if x > 0.0 { x } else { alpha * (x.exp() - 1.0) })
627            }
628        })
629    }
630
631    fn compute_output_shape(&self, input_shape: &[usize]) -> Vec<usize> {
632        input_shape.to_vec()
633    }
634
635    fn name(&self) -> &str {
636        &self.name
637    }
638
639    fn get_weights(&self) -> Vec<ArrayD<f64>> {
640        Vec::new()
641    }
642
643    fn set_weights(&mut self, _weights: Vec<ArrayD<f64>>) -> Result<()> {
644        Ok(())
645    }
646
647    fn built(&self) -> bool {
648        self.built
649    }
650}
651
652/// Weight initializer types
653#[derive(Debug, Clone)]
654pub enum InitializerType {
655    /// All zeros
656    Zeros,
657    /// All ones
658    Ones,
659    /// Glorot uniform (Xavier uniform)
660    GlorotUniform,
661    /// Glorot normal (Xavier normal)
662    GlorotNormal,
663    /// He uniform
664    HeUniform,
665}
666
667/// Sequential model
668pub struct Sequential {
669    /// Layers in the model
670    layers: Vec<Box<dyn KerasLayer>>,
671    /// Model name
672    name: String,
673    /// Built flag
674    built: bool,
675    /// Compiled flag
676    compiled: bool,
677    /// Input shape
678    input_shape: Option<Vec<usize>>,
679    /// Loss function
680    loss: Option<LossFunction>,
681    /// Optimizer
682    optimizer: Option<OptimizerType>,
683    /// Metrics
684    metrics: Vec<MetricType>,
685}
686
687impl Sequential {
688    /// Create new sequential model
689    pub fn new() -> Self {
690        Self {
691            layers: Vec::new(),
692            name: format!("sequential_{}", fastrand::u32(..)),
693            built: false,
694            compiled: false,
695            input_shape: None,
696            loss: None,
697            optimizer: None,
698            metrics: Vec::new(),
699        }
700    }
701
702    /// Set model name
703    pub fn name(mut self, name: impl Into<String>) -> Self {
704        self.name = name.into();
705        self
706    }
707
708    /// Add layer to model
709    pub fn add(&mut self, layer: Box<dyn KerasLayer>) {
710        self.layers.push(layer);
711        self.built = false; // Mark as needing rebuild
712    }
713
714    /// Build the model with given input shape
715    pub fn build(&mut self, input_shape: Vec<usize>) -> Result<()> {
716        self.input_shape = Some(input_shape.clone());
717        let mut current_shape = input_shape;
718
719        for layer in &mut self.layers {
720            layer.build(&current_shape)?;
721            current_shape = layer.compute_output_shape(&current_shape);
722        }
723
724        self.built = true;
725        Ok(())
726    }
727
728    /// Compile the model
729    pub fn compile(
730        mut self,
731        loss: LossFunction,
732        optimizer: OptimizerType,
733        metrics: Vec<MetricType>,
734    ) -> Self {
735        self.loss = Some(loss);
736        self.optimizer = Some(optimizer);
737        self.metrics = metrics;
738        self.compiled = true;
739        self
740    }
741
742    /// Get model summary
743    pub fn summary(&self) -> ModelSummary {
744        let mut layers_info = Vec::new();
745        let mut total_params = 0;
746        let mut trainable_params = 0;
747
748        let mut current_shape = self.input_shape.clone().unwrap_or_default();
749
750        for layer in &self.layers {
751            let output_shape = layer.compute_output_shape(&current_shape);
752            let params = layer.count_params();
753
754            layers_info.push(LayerInfo {
755                name: layer.name().to_string(),
756                layer_type: "Layer".to_string(), // Would be more specific in real implementation
757                output_shape: output_shape.clone(),
758                param_count: params,
759            });
760
761            total_params += params;
762            trainable_params += params; // Assuming all params are trainable
763            current_shape = output_shape;
764        }
765
766        ModelSummary {
767            layers: layers_info,
768            total_params,
769            trainable_params,
770            non_trainable_params: 0,
771        }
772    }
773
774    /// Forward pass (predict)
775    pub fn predict(&self, inputs: &ArrayD<f64>) -> Result<ArrayD<f64>> {
776        if !self.built {
777            return Err(MLError::InvalidConfiguration(
778                "Model must be built before prediction".to_string(),
779            ));
780        }
781
782        let mut current = inputs.clone();
783
784        for layer in &self.layers {
785            current = layer.call(&current)?;
786        }
787
788        Ok(current)
789    }
790
791    /// Train the model
792    pub fn fit(
793        &mut self,
794        X: &ArrayD<f64>,
795        y: &ArrayD<f64>,
796        epochs: usize,
797        batch_size: Option<usize>,
798        validation_data: Option<(&ArrayD<f64>, &ArrayD<f64>)>,
799        callbacks: Vec<Box<dyn Callback>>,
800    ) -> Result<TrainingHistory> {
801        if !self.compiled {
802            return Err(MLError::InvalidConfiguration(
803                "Model must be compiled before training".to_string(),
804            ));
805        }
806
807        let batch_size = batch_size.unwrap_or(32);
808        let n_samples = X.shape()[0];
809        let n_batches = (n_samples + batch_size - 1) / batch_size;
810
811        let mut history = TrainingHistory::new();
812
813        for epoch in 0..epochs {
814            let mut epoch_loss = 0.0;
815            let mut epoch_metrics: HashMap<String, f64> = HashMap::new();
816
817            // Initialize metrics
818            for metric in &self.metrics {
819                epoch_metrics.insert(metric.name(), 0.0);
820            }
821
822            // Training loop
823            for batch_idx in 0..n_batches {
824                let start_idx = batch_idx * batch_size;
825                let end_idx = ((batch_idx + 1) * batch_size).min(n_samples);
826
827                // Get batch data
828                let X_batch = X.slice(s![start_idx..end_idx, ..]);
829                let y_batch = y.slice(s![start_idx..end_idx, ..]);
830
831                // Forward pass
832                let predictions = self.predict(&X_batch.to_owned().into_dyn())?;
833
834                // Compute loss
835                let loss = self.compute_loss(&predictions, &y_batch.to_owned().into_dyn())?;
836                epoch_loss += loss;
837
838                // Compute gradients and update weights (placeholder)
839                self.backward_pass(&predictions, &y_batch.to_owned().into_dyn())?;
840
841                // Compute metrics
842                for metric in &self.metrics {
843                    let metric_value =
844                        metric.compute(&predictions, &y_batch.to_owned().into_dyn())?;
845                    *epoch_metrics.get_mut(&metric.name()).unwrap() += metric_value;
846                }
847            }
848
849            // Average loss and metrics
850            epoch_loss /= n_batches as f64;
851            for value in epoch_metrics.values_mut() {
852                *value /= n_batches as f64;
853            }
854
855            // Validation
856            let (val_loss, val_metrics) = if let Some((X_val, y_val)) = validation_data {
857                let val_predictions = self.predict(X_val)?;
858                let val_loss = self.compute_loss(&val_predictions, y_val)?;
859
860                let mut val_metrics = HashMap::new();
861                for metric in &self.metrics {
862                    let metric_value = metric.compute(&val_predictions, y_val)?;
863                    val_metrics.insert(format!("val_{}", metric.name()), metric_value);
864                }
865
866                (Some(val_loss), val_metrics)
867            } else {
868                (None, HashMap::new())
869            };
870
871            // Update history
872            history.add_epoch(epoch_loss, epoch_metrics, val_loss, val_metrics);
873
874            // Call callbacks
875            for callback in &callbacks {
876                callback.on_epoch_end(epoch, &history)?;
877            }
878
879            println!("Epoch {}/{} - loss: {:.4}", epoch + 1, epochs, epoch_loss);
880        }
881
882        Ok(history)
883    }
884
885    /// Evaluate the model
886    pub fn evaluate(
887        &self,
888        X: &ArrayD<f64>,
889        y: &ArrayD<f64>,
890        batch_size: Option<usize>,
891    ) -> Result<HashMap<String, f64>> {
892        let predictions = self.predict(X)?;
893        let loss = self.compute_loss(&predictions, y)?;
894
895        let mut results = HashMap::new();
896        results.insert("loss".to_string(), loss);
897
898        for metric in &self.metrics {
899            let metric_value = metric.compute(&predictions, y)?;
900            results.insert(metric.name(), metric_value);
901        }
902
903        Ok(results)
904    }
905
906    /// Compute loss
907    fn compute_loss(&self, predictions: &ArrayD<f64>, targets: &ArrayD<f64>) -> Result<f64> {
908        if let Some(ref loss_fn) = self.loss {
909            loss_fn.compute(predictions, targets)
910        } else {
911            Err(MLError::InvalidConfiguration(
912                "Loss function not specified".to_string(),
913            ))
914        }
915    }
916
917    /// Backward pass (placeholder)
918    fn backward_pass(&mut self, _predictions: &ArrayD<f64>, _targets: &ArrayD<f64>) -> Result<()> {
919        // Placeholder for gradient computation and weight updates
920        // In a real implementation, this would compute gradients and update weights
921        Ok(())
922    }
923}
924
925/// Loss functions
926#[derive(Debug, Clone)]
927pub enum LossFunction {
928    /// Mean squared error
929    MeanSquaredError,
930    /// Binary crossentropy
931    BinaryCrossentropy,
932    /// Categorical crossentropy
933    CategoricalCrossentropy,
934    /// Sparse categorical crossentropy
935    SparseCategoricalCrossentropy,
936    /// Mean absolute error
937    MeanAbsoluteError,
938    /// Huber loss
939    Huber(f64),
940}
941
942impl LossFunction {
943    /// Compute loss
944    pub fn compute(&self, predictions: &ArrayD<f64>, targets: &ArrayD<f64>) -> Result<f64> {
945        match self {
946            LossFunction::MeanSquaredError => {
947                let diff = predictions - targets;
948                Ok(diff.mapv(|x| x * x).mean().unwrap())
949            }
950            LossFunction::BinaryCrossentropy => {
951                let epsilon = 1e-15;
952                let clipped_preds = predictions.mapv(|x| x.max(epsilon).min(1.0 - epsilon));
953                let loss = targets * clipped_preds.mapv(|x| x.ln())
954                    + (1.0 - targets) * clipped_preds.mapv(|x| (1.0 - x).ln());
955                Ok(-loss.mean().unwrap())
956            }
957            LossFunction::MeanAbsoluteError => {
958                let diff = predictions - targets;
959                Ok(diff.mapv(|x| x.abs()).mean().unwrap())
960            }
961            _ => Err(MLError::InvalidConfiguration(
962                "Loss function not implemented".to_string(),
963            )),
964        }
965    }
966}
967
968/// Optimizer types
969#[derive(Debug, Clone)]
970pub enum OptimizerType {
971    /// Stochastic Gradient Descent
972    SGD { learning_rate: f64, momentum: f64 },
973    /// Adam optimizer
974    Adam {
975        learning_rate: f64,
976        beta1: f64,
977        beta2: f64,
978        epsilon: f64,
979    },
980    /// RMSprop optimizer
981    RMSprop {
982        learning_rate: f64,
983        rho: f64,
984        epsilon: f64,
985    },
986    /// AdaGrad optimizer
987    AdaGrad { learning_rate: f64, epsilon: f64 },
988}
989
990/// Metric types
991#[derive(Debug, Clone)]
992pub enum MetricType {
993    /// Accuracy
994    Accuracy,
995    /// Precision
996    Precision,
997    /// Recall
998    Recall,
999    /// F1 Score
1000    F1Score,
1001    /// Mean Absolute Error
1002    MeanAbsoluteError,
1003    /// Mean Squared Error
1004    MeanSquaredError,
1005}
1006
1007impl MetricType {
1008    /// Get metric name
1009    pub fn name(&self) -> String {
1010        match self {
1011            MetricType::Accuracy => "accuracy".to_string(),
1012            MetricType::Precision => "precision".to_string(),
1013            MetricType::Recall => "recall".to_string(),
1014            MetricType::F1Score => "f1_score".to_string(),
1015            MetricType::MeanAbsoluteError => "mean_absolute_error".to_string(),
1016            MetricType::MeanSquaredError => "mean_squared_error".to_string(),
1017        }
1018    }
1019
1020    /// Compute metric
1021    pub fn compute(&self, predictions: &ArrayD<f64>, targets: &ArrayD<f64>) -> Result<f64> {
1022        match self {
1023            MetricType::Accuracy => {
1024                let pred_classes = predictions.mapv(|x| if x > 0.5 { 1.0 } else { 0.0 });
1025                let correct = pred_classes
1026                    .iter()
1027                    .zip(targets.iter())
1028                    .filter(|(&pred, &target)| (pred - target).abs() < 1e-6)
1029                    .count();
1030                Ok(correct as f64 / targets.len() as f64)
1031            }
1032            MetricType::MeanAbsoluteError => {
1033                let diff = predictions - targets;
1034                Ok(diff.mapv(|x| x.abs()).mean().unwrap())
1035            }
1036            MetricType::MeanSquaredError => {
1037                let diff = predictions - targets;
1038                Ok(diff.mapv(|x| x * x).mean().unwrap())
1039            }
1040            _ => Err(MLError::InvalidConfiguration(
1041                "Metric not implemented".to_string(),
1042            )),
1043        }
1044    }
1045}
1046
1047/// Callback trait for training
1048pub trait Callback: Send + Sync {
1049    /// Called at the end of each epoch
1050    fn on_epoch_end(&self, epoch: usize, history: &TrainingHistory) -> Result<()>;
1051}
1052
1053/// Early stopping callback
1054pub struct EarlyStopping {
1055    /// Metric to monitor
1056    monitor: String,
1057    /// Minimum change to qualify as improvement
1058    min_delta: f64,
1059    /// Number of epochs with no improvement to wait
1060    patience: usize,
1061    /// Best value seen so far
1062    best: f64,
1063    /// Number of epochs without improvement
1064    wait: usize,
1065    /// Whether to stop training
1066    stopped: bool,
1067}
1068
1069impl EarlyStopping {
1070    /// Create new early stopping callback
1071    pub fn new(monitor: String, min_delta: f64, patience: usize) -> Self {
1072        Self {
1073            monitor,
1074            min_delta,
1075            patience,
1076            best: f64::INFINITY,
1077            wait: 0,
1078            stopped: false,
1079        }
1080    }
1081}
1082
1083impl Callback for EarlyStopping {
1084    fn on_epoch_end(&self, _epoch: usize, _history: &TrainingHistory) -> Result<()> {
1085        // Placeholder implementation
1086        Ok(())
1087    }
1088}
1089
1090/// Training history
1091#[derive(Debug, Clone)]
1092pub struct TrainingHistory {
1093    /// Training loss for each epoch
1094    pub loss: Vec<f64>,
1095    /// Training metrics for each epoch
1096    pub metrics: Vec<HashMap<String, f64>>,
1097    /// Validation loss for each epoch
1098    pub val_loss: Vec<f64>,
1099    /// Validation metrics for each epoch
1100    pub val_metrics: Vec<HashMap<String, f64>>,
1101}
1102
1103impl TrainingHistory {
1104    /// Create new training history
1105    pub fn new() -> Self {
1106        Self {
1107            loss: Vec::new(),
1108            metrics: Vec::new(),
1109            val_loss: Vec::new(),
1110            val_metrics: Vec::new(),
1111        }
1112    }
1113
1114    /// Add epoch results
1115    pub fn add_epoch(
1116        &mut self,
1117        loss: f64,
1118        metrics: HashMap<String, f64>,
1119        val_loss: Option<f64>,
1120        val_metrics: HashMap<String, f64>,
1121    ) {
1122        self.loss.push(loss);
1123        self.metrics.push(metrics);
1124
1125        if let Some(val_loss) = val_loss {
1126            self.val_loss.push(val_loss);
1127        }
1128        self.val_metrics.push(val_metrics);
1129    }
1130}
1131
1132/// Model summary information
1133#[derive(Debug)]
1134pub struct ModelSummary {
1135    /// Layer information
1136    pub layers: Vec<LayerInfo>,
1137    /// Total number of parameters
1138    pub total_params: usize,
1139    /// Number of trainable parameters
1140    pub trainable_params: usize,
1141    /// Number of non-trainable parameters
1142    pub non_trainable_params: usize,
1143}
1144
1145/// Layer information for summary
1146#[derive(Debug)]
1147pub struct LayerInfo {
1148    /// Layer name
1149    pub name: String,
1150    /// Layer type
1151    pub layer_type: String,
1152    /// Output shape
1153    pub output_shape: Vec<usize>,
1154    /// Parameter count
1155    pub param_count: usize,
1156}
1157
1158/// Model input specification
1159pub struct Input {
1160    /// Input shape (excluding batch dimension)
1161    pub shape: Vec<usize>,
1162    /// Input name
1163    pub name: Option<String>,
1164    /// Data type
1165    pub dtype: DataType,
1166}
1167
1168impl Input {
1169    /// Create new input specification
1170    pub fn new(shape: Vec<usize>) -> Self {
1171        Self {
1172            shape,
1173            name: None,
1174            dtype: DataType::Float64,
1175        }
1176    }
1177
1178    /// Set input name
1179    pub fn name(mut self, name: impl Into<String>) -> Self {
1180        self.name = Some(name.into());
1181        self
1182    }
1183
1184    /// Set data type
1185    pub fn dtype(mut self, dtype: DataType) -> Self {
1186        self.dtype = dtype;
1187        self
1188    }
1189}
1190
1191/// Data types
1192#[derive(Debug, Clone)]
1193pub enum DataType {
1194    /// 32-bit float
1195    Float32,
1196    /// 64-bit float
1197    Float64,
1198    /// 32-bit integer
1199    Int32,
1200    /// 64-bit integer
1201    Int64,
1202}
1203
1204/// Utility functions for building models
1205pub mod utils {
1206    use super::*;
1207
1208    /// Create a simple sequential model for classification
1209    pub fn create_classification_model(
1210        input_dim: usize,
1211        num_classes: usize,
1212        hidden_layers: Vec<usize>,
1213    ) -> Sequential {
1214        let mut model = Sequential::new();
1215
1216        // Add hidden layers
1217        for (i, &units) in hidden_layers.iter().enumerate() {
1218            model.add(Box::new(
1219                Dense::new(units)
1220                    .activation(ActivationFunction::ReLU)
1221                    .name(format!("dense_{}", i)),
1222            ));
1223        }
1224
1225        // Add output layer
1226        let output_activation = if num_classes == 2 {
1227            ActivationFunction::Sigmoid
1228        } else {
1229            ActivationFunction::Softmax
1230        };
1231
1232        model.add(Box::new(
1233            Dense::new(num_classes)
1234                .activation(output_activation)
1235                .name("output"),
1236        ));
1237
1238        model
1239    }
1240
1241    /// Create a quantum neural network model
1242    pub fn create_quantum_model(
1243        num_qubits: usize,
1244        num_classes: usize,
1245        num_layers: usize,
1246    ) -> Sequential {
1247        let mut model = Sequential::new();
1248
1249        // Add quantum layer
1250        model.add(Box::new(
1251            QuantumDense::new(num_qubits, num_classes)
1252                .num_layers(num_layers)
1253                .ansatz_type(QuantumAnsatzType::HardwareEfficient)
1254                .name("quantum_layer"),
1255        ));
1256
1257        // Add classical output processing if needed
1258        if num_classes > 1 {
1259            model.add(Box::new(
1260                Activation::new(ActivationFunction::Softmax).name("softmax"),
1261            ));
1262        }
1263
1264        model
1265    }
1266
1267    /// Create a hybrid quantum-classical model
1268    pub fn create_hybrid_model(
1269        input_dim: usize,
1270        num_qubits: usize,
1271        num_classes: usize,
1272        classical_hidden: Vec<usize>,
1273    ) -> Sequential {
1274        let mut model = Sequential::new();
1275
1276        // Classical preprocessing
1277        for (i, &units) in classical_hidden.iter().enumerate() {
1278            model.add(Box::new(
1279                Dense::new(units)
1280                    .activation(ActivationFunction::ReLU)
1281                    .name(format!("classical_{}", i)),
1282            ));
1283        }
1284
1285        // Quantum layer
1286        model.add(Box::new(
1287            QuantumDense::new(num_qubits, 64)
1288                .num_layers(2)
1289                .ansatz_type(QuantumAnsatzType::HardwareEfficient)
1290                .name("quantum_layer"),
1291        ));
1292
1293        // Classical postprocessing
1294        model.add(Box::new(
1295            Dense::new(num_classes)
1296                .activation(if num_classes == 2 {
1297                    ActivationFunction::Sigmoid
1298                } else {
1299                    ActivationFunction::Softmax
1300                })
1301                .name("output"),
1302        ));
1303
1304        model
1305    }
1306}
1307
1308#[cfg(test)]
1309mod tests {
1310    use super::*;
1311    use scirs2_core::ndarray::Array;
1312
1313    #[test]
1314    fn test_dense_layer() {
1315        let mut dense = Dense::new(10)
1316            .activation(ActivationFunction::ReLU)
1317            .name("test_dense");
1318
1319        assert!(!dense.built());
1320
1321        dense.build(&[5]).unwrap();
1322        assert!(dense.built());
1323        assert_eq!(dense.compute_output_shape(&[32, 5]), vec![32, 10]);
1324
1325        let input = ArrayD::from_shape_vec(
1326            vec![2, 5],
1327            vec![1.0, 2.0, 3.0, 4.0, 5.0, 0.5, 1.5, 2.5, 3.5, 4.5],
1328        )
1329        .unwrap();
1330
1331        let output = dense.call(&input);
1332        assert!(output.is_ok());
1333        assert_eq!(output.unwrap().shape(), &[2, 10]);
1334    }
1335
1336    #[test]
1337    fn test_activation_layer() {
1338        let mut activation = Activation::new(ActivationFunction::ReLU);
1339        activation.build(&[10]).unwrap();
1340
1341        let input =
1342            ArrayD::from_shape_vec(vec![2, 3], vec![-1.0, 0.0, 1.0, -2.0, 0.5, 2.0]).unwrap();
1343
1344        let output = activation.call(&input).unwrap();
1345        let expected =
1346            ArrayD::from_shape_vec(vec![2, 3], vec![0.0, 0.0, 1.0, 0.0, 0.5, 2.0]).unwrap();
1347
1348        assert_eq!(output.shape(), expected.shape());
1349    }
1350
1351    #[test]
1352    fn test_sequential_model() {
1353        let mut model = Sequential::new();
1354
1355        model.add(Box::new(
1356            Dense::new(10).activation(ActivationFunction::ReLU),
1357        ));
1358        model.add(Box::new(
1359            Dense::new(1).activation(ActivationFunction::Sigmoid),
1360        ));
1361
1362        model.build(vec![5]).unwrap();
1363        assert!(model.built);
1364
1365        let summary = model.summary();
1366        assert_eq!(summary.layers.len(), 2);
1367
1368        let input = ArrayD::from_shape_vec(
1369            vec![2, 5],
1370            vec![1.0, 2.0, 3.0, 4.0, 5.0, 0.5, 1.5, 2.5, 3.5, 4.5],
1371        )
1372        .unwrap();
1373
1374        let output = model.predict(&input);
1375        assert!(output.is_ok());
1376        assert_eq!(output.unwrap().shape(), &[2, 1]);
1377    }
1378
1379    #[test]
1380    fn test_loss_functions() {
1381        let predictions = ArrayD::from_shape_vec(vec![2, 1], vec![0.8, 0.3]).unwrap();
1382        let targets = ArrayD::from_shape_vec(vec![2, 1], vec![1.0, 0.0]).unwrap();
1383
1384        let mse = LossFunction::MeanSquaredError;
1385        let loss = mse.compute(&predictions, &targets).unwrap();
1386        assert!(loss > 0.0);
1387
1388        let bce = LossFunction::BinaryCrossentropy;
1389        let loss = bce.compute(&predictions, &targets).unwrap();
1390        assert!(loss > 0.0);
1391    }
1392
1393    #[test]
1394    fn test_metrics() {
1395        let predictions = ArrayD::from_shape_vec(vec![4, 1], vec![0.8, 0.3, 0.9, 0.1]).unwrap();
1396        let targets = ArrayD::from_shape_vec(vec![4, 1], vec![1.0, 0.0, 1.0, 0.0]).unwrap();
1397
1398        let accuracy = MetricType::Accuracy;
1399        let acc_value = accuracy.compute(&predictions, &targets).unwrap();
1400        assert!(acc_value >= 0.0 && acc_value <= 1.0);
1401    }
1402
1403    #[test]
1404    #[ignore]
1405    fn test_model_utils() {
1406        let model = utils::create_classification_model(10, 3, vec![20, 15]);
1407        let summary = model.summary();
1408        assert_eq!(summary.layers.len(), 3); // 2 hidden + 1 output
1409
1410        let quantum_model = utils::create_quantum_model(4, 2, 2);
1411        let summary = quantum_model.summary();
1412        assert!(summary.layers.len() >= 1);
1413    }
1414}