1use crate::error::Result;
8use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayD, Axis};
9use std::collections::HashMap;
10use std::sync::Arc;
11
12pub struct QuantumMLErrorMitigator {
14 pub mitigation_strategy: MitigationStrategy,
15 pub noise_model: NoiseModel,
16 pub calibration_data: CalibrationData,
17 pub adaptive_config: AdaptiveConfig,
18 pub performance_metrics: PerformanceMetrics,
19}
20
21#[derive(Debug, Clone)]
23pub struct PerformanceTracker {
24 pub metrics_history: Vec<PerformanceMetrics>,
26 pub current_performance: PerformanceMetrics,
28}
29
30#[derive(Debug, Clone)]
32pub enum MitigationStrategy {
33 ZNE {
35 scale_factors: Vec<f64>,
36 extrapolation_method: ExtrapolationMethod,
37 circuit_folding: CircuitFoldingMethod,
38 },
39 ReadoutErrorMitigation {
41 calibration_matrix: Array2<f64>,
42 correction_method: ReadoutCorrectionMethod,
43 regularization: f64,
44 },
45 CDR {
47 training_circuits: Vec<CliffordCircuit>,
48 regression_model: CDRModel,
49 feature_extraction: FeatureExtractionMethod,
50 },
51 SymmetryVerification {
53 symmetry_groups: Vec<SymmetryGroup>,
54 verification_circuits: Vec<VerificationCircuit>,
55 post_selection: bool,
56 },
57 VirtualDistillation {
59 distillation_rounds: usize,
60 entanglement_protocol: EntanglementProtocol,
61 purification_threshold: f64,
62 },
63 MLMitigation {
65 noise_predictor: NoisePredictorModel,
66 correction_network: CorrectionNetwork,
67 training_data: TrainingDataSet,
68 },
69 HybridErrorCorrection {
71 classical_preprocessing: ClassicalPreprocessor,
72 quantum_correction: QuantumErrorCorrector,
73 post_processing: ClassicalPostprocessor,
74 },
75 AdaptiveMultiStrategy {
77 strategies: Vec<MitigationStrategy>,
78 selection_policy: StrategySelectionPolicy,
79 performance_tracker: PerformanceTracker,
80 },
81}
82
83#[derive(Debug, Clone)]
85pub struct NoiseModel {
86 pub gate_errors: HashMap<String, GateErrorModel>,
87 pub measurement_errors: MeasurementErrorModel,
88 pub coherence_times: CoherenceTimeModel,
89 pub crosstalk_matrix: Array2<f64>,
90 pub temporal_correlations: TemporalCorrelationModel,
91}
92
93#[derive(Debug, Clone)]
95pub struct GateErrorModel {
96 pub error_rate: f64,
97 pub error_type: ErrorType,
98 pub coherence_limited: bool,
99 pub gate_time: f64,
100 pub fidelity_model: FidelityModel,
101}
102
103#[derive(Debug, Clone)]
105pub enum ErrorType {
106 Depolarizing {
107 strength: f64,
108 },
109 Amplitude {
110 damping_rate: f64,
111 },
112 Phase {
113 dephasing_rate: f64,
114 },
115 Pauli {
116 px: f64,
117 py: f64,
118 pz: f64,
119 },
120 Coherent {
121 rotation_angle: f64,
122 rotation_axis: Array1<f64>,
123 },
124 Correlated {
125 correlation_matrix: Array2<f64>,
126 },
127}
128
129#[derive(Debug, Clone)]
131pub struct MeasurementErrorModel {
132 pub readout_fidelity: f64,
133 pub assignment_matrix: Array2<f64>,
134 pub state_preparation_errors: Array1<f64>,
135 pub measurement_crosstalk: Array2<f64>,
136}
137
138#[derive(Debug, Clone)]
140pub struct CoherenceTimeModel {
141 pub t1_times: Array1<f64>, pub t2_times: Array1<f64>, pub t2_echo_times: Array1<f64>, pub temporal_fluctuations: TemporalFluctuation,
145}
146
147#[derive(Debug, Clone)]
149pub struct TemporalCorrelationModel {
150 pub correlation_function: CorrelationFunction,
151 pub correlation_time: f64,
152 pub noise_spectrum: NoiseSpectrum,
153}
154
155#[derive(Debug, Clone)]
157pub struct CalibrationData {
158 pub process_tomography: HashMap<String, ProcessMatrix>,
159 pub state_tomography: HashMap<String, StateMatrix>,
160 pub randomized_benchmarking: RBData,
161 pub gate_set_tomography: GSTData,
162 pub noise_spectroscopy: SpectroscopyData,
163}
164
165#[derive(Debug, Clone)]
167pub struct AdaptiveConfig {
168 pub adaptation_frequency: usize,
169 pub performance_threshold: f64,
170 pub strategy_switching_policy: SwitchingPolicy,
171 pub online_calibration: bool,
172 pub feedback_mechanism: FeedbackMechanism,
173}
174
175impl QuantumMLErrorMitigator {
176 pub fn new(mitigation_strategy: MitigationStrategy, noise_model: NoiseModel) -> Result<Self> {
178 let calibration_data = CalibrationData::default();
179 let adaptive_config = AdaptiveConfig::default();
180 let performance_metrics = PerformanceMetrics::new();
181
182 Ok(Self {
183 mitigation_strategy,
184 noise_model,
185 calibration_data,
186 adaptive_config,
187 performance_metrics,
188 })
189 }
190
191 pub fn mitigate_training_errors(
193 &mut self,
194 circuit: &QuantumCircuit,
195 parameters: &Array1<f64>,
196 measurement_results: &Array2<f64>,
197 gradient_estimates: &Array1<f64>,
198 ) -> Result<MitigatedTrainingData> {
199 self.update_noise_model(measurement_results)?;
201
202 let mitigated_measurements =
204 self.apply_measurement_mitigation(circuit, measurement_results)?;
205
206 let mitigated_gradients =
207 self.apply_gradient_mitigation(circuit, parameters, gradient_estimates)?;
208
209 self.performance_metrics
211 .update(&mitigated_measurements, &mitigated_gradients)?;
212
213 if self.should_adapt_strategy()? {
215 self.adapt_mitigation_strategy()?;
216 }
217
218 Ok(MitigatedTrainingData {
219 measurements: mitigated_measurements,
220 gradients: mitigated_gradients,
221 confidence_scores: self.compute_confidence_scores(circuit)?,
222 mitigation_overhead: self.performance_metrics.mitigation_overhead,
223 })
224 }
225
226 pub fn mitigate_inference_errors(
228 &mut self,
229 circuit: &QuantumCircuit,
230 measurement_results: &Array2<f64>,
231 ) -> Result<MitigatedInferenceData> {
232 let mitigated_measurements =
233 self.apply_measurement_mitigation(circuit, measurement_results)?;
234
235 let uncertainty_estimates =
236 self.compute_uncertainty_estimates(circuit, &mitigated_measurements)?;
237
238 Ok(MitigatedInferenceData {
239 measurements: mitigated_measurements,
240 uncertainty: uncertainty_estimates,
241 reliability_score: self.compute_reliability_score(circuit)?,
242 })
243 }
244
245 fn apply_measurement_mitigation(
247 &self,
248 circuit: &QuantumCircuit,
249 measurements: &Array2<f64>,
250 ) -> Result<Array2<f64>> {
251 match &self.mitigation_strategy {
252 MitigationStrategy::ZNE {
253 scale_factors,
254 extrapolation_method,
255 ..
256 } => self.apply_zne_mitigation(
257 circuit,
258 measurements,
259 scale_factors,
260 extrapolation_method,
261 ),
262 MitigationStrategy::ReadoutErrorMitigation {
263 calibration_matrix,
264 correction_method,
265 ..
266 } => self.apply_readout_error_mitigation(
267 measurements,
268 calibration_matrix,
269 correction_method,
270 ),
271 MitigationStrategy::CDR {
272 training_circuits,
273 regression_model,
274 ..
275 } => self.apply_cdr_mitigation(
276 circuit,
277 measurements,
278 training_circuits,
279 regression_model,
280 ),
281 MitigationStrategy::SymmetryVerification {
282 symmetry_groups, ..
283 } => self.apply_symmetry_verification(circuit, measurements, symmetry_groups),
284 MitigationStrategy::VirtualDistillation {
285 distillation_rounds,
286 ..
287 } => self.apply_virtual_distillation(circuit, measurements, *distillation_rounds),
288 MitigationStrategy::MLMitigation {
289 noise_predictor,
290 correction_network,
291 ..
292 } => {
293 self.apply_ml_mitigation(circuit, measurements, noise_predictor, correction_network)
294 }
295 MitigationStrategy::HybridErrorCorrection {
296 classical_preprocessing,
297 quantum_correction,
298 post_processing,
299 } => self.apply_hybrid_error_correction(
300 circuit,
301 measurements,
302 classical_preprocessing,
303 quantum_correction,
304 post_processing,
305 ),
306 MitigationStrategy::AdaptiveMultiStrategy {
307 strategies,
308 selection_policy,
309 ..
310 } => self.apply_adaptive_multi_strategy(
311 circuit,
312 measurements,
313 strategies,
314 selection_policy,
315 ),
316 }
317 }
318
319 fn apply_zne_mitigation(
321 &self,
322 circuit: &QuantumCircuit,
323 measurements: &Array2<f64>,
324 scale_factors: &[f64],
325 extrapolation_method: &ExtrapolationMethod,
326 ) -> Result<Array2<f64>> {
327 let mut scaled_results = Vec::new();
328
329 for &scale_factor in scale_factors {
330 let scaled_circuit = self.scale_circuit_noise(circuit, scale_factor)?;
331 let scaled_measurements = self.execute_scaled_circuit(&scaled_circuit)?;
332 scaled_results.push((scale_factor, scaled_measurements));
333 }
334
335 self.extrapolate_to_zero_noise(&scaled_results, extrapolation_method)
337 }
338
339 fn apply_readout_error_mitigation(
341 &self,
342 measurements: &Array2<f64>,
343 calibration_matrix: &Array2<f64>,
344 correction_method: &ReadoutCorrectionMethod,
345 ) -> Result<Array2<f64>> {
346 match correction_method {
347 ReadoutCorrectionMethod::MatrixInversion => {
348 self.apply_matrix_inversion_correction(measurements, calibration_matrix)
349 }
350 ReadoutCorrectionMethod::ConstrainedLeastSquares => {
351 self.apply_constrained_least_squares_correction(measurements, calibration_matrix)
352 }
353 ReadoutCorrectionMethod::IterativeMaximumLikelihood => {
354 self.apply_ml_correction(measurements, calibration_matrix)
355 }
356 }
357 }
358
359 fn apply_cdr_mitigation(
361 &self,
362 circuit: &QuantumCircuit,
363 measurements: &Array2<f64>,
364 training_circuits: &[CliffordCircuit],
365 regression_model: &CDRModel,
366 ) -> Result<Array2<f64>> {
367 let circuit_features = self.extract_circuit_features(circuit)?;
369
370 let training_features = self.generate_training_features(training_circuits)?;
372 let training_labels = self.execute_clifford_circuits(training_circuits)?;
373
374 let trained_model = regression_model.train(&training_features, &training_labels)?;
376
377 let predicted_values = trained_model.predict(&circuit_features)?;
379
380 self.apply_cdr_correction(measurements, &predicted_values)
382 }
383
384 fn apply_symmetry_verification(
386 &self,
387 circuit: &QuantumCircuit,
388 measurements: &Array2<f64>,
389 symmetry_groups: &[SymmetryGroup],
390 ) -> Result<Array2<f64>> {
391 let mut verified_measurements = measurements.clone();
392
393 for symmetry_group in symmetry_groups {
394 let symmetry_violations =
395 self.detect_symmetry_violations(circuit, &verified_measurements, symmetry_group)?;
396
397 verified_measurements = self.apply_symmetry_constraints(
398 &verified_measurements,
399 &symmetry_violations,
400 symmetry_group,
401 )?;
402 }
403
404 Ok(verified_measurements)
405 }
406
407 fn apply_virtual_distillation(
409 &self,
410 circuit: &QuantumCircuit,
411 measurements: &Array2<f64>,
412 distillation_rounds: usize,
413 ) -> Result<Array2<f64>> {
414 let mut distilled_measurements = measurements.clone();
415
416 for _ in 0..distillation_rounds {
417 let virtual_copies = self.create_virtual_copies(circuit, 2)?;
419
420 let entanglement_measures = self.measure_virtual_entanglement(&virtual_copies)?;
422
423 distilled_measurements =
425 self.apply_distillation_protocol(&distilled_measurements, &entanglement_measures)?;
426 }
427
428 Ok(distilled_measurements)
429 }
430
431 fn apply_ml_mitigation(
433 &self,
434 circuit: &QuantumCircuit,
435 measurements: &Array2<f64>,
436 noise_predictor: &NoisePredictorModel,
437 correction_network: &CorrectionNetwork,
438 ) -> Result<Array2<f64>> {
439 let circuit_features = self.extract_circuit_features(circuit)?;
441 let predicted_noise = noise_predictor.predict(&circuit_features)?;
442
443 let correction_input = self.prepare_correction_input(measurements, &predicted_noise)?;
445 let corrections = correction_network.forward(&correction_input)?;
446
447 Ok(measurements + &corrections)
449 }
450
451 fn apply_hybrid_error_correction(
453 &self,
454 circuit: &QuantumCircuit,
455 measurements: &Array2<f64>,
456 classical_preprocessing: &ClassicalPreprocessor,
457 quantum_correction: &QuantumErrorCorrector,
458 post_processing: &ClassicalPostprocessor,
459 ) -> Result<Array2<f64>> {
460 let preprocessed_data = classical_preprocessing.process(measurements)?;
462
463 let quantum_corrected = quantum_correction.correct(circuit, &preprocessed_data)?;
465
466 post_processing.process(&quantum_corrected)
468 }
469
470 fn apply_adaptive_multi_strategy(
472 &self,
473 circuit: &QuantumCircuit,
474 measurements: &Array2<f64>,
475 strategies: &[MitigationStrategy],
476 selection_policy: &StrategySelectionPolicy,
477 ) -> Result<Array2<f64>> {
478 let selected_strategy =
480 selection_policy.select_strategy(circuit, &self.performance_metrics, strategies)?;
481
482 let mitigator = QuantumMLErrorMitigator {
484 mitigation_strategy: selected_strategy,
485 noise_model: self.noise_model.clone(),
486 calibration_data: self.calibration_data.clone(),
487 adaptive_config: self.adaptive_config.clone(),
488 performance_metrics: self.performance_metrics.clone(),
489 };
490
491 mitigator.apply_measurement_mitigation(circuit, measurements)
492 }
493
494 fn apply_gradient_mitigation(
496 &self,
497 circuit: &QuantumCircuit,
498 parameters: &Array1<f64>,
499 gradients: &Array1<f64>,
500 ) -> Result<Array1<f64>> {
501 let mut mitigated_gradients = Array1::zeros(gradients.len());
503
504 for (i, ¶m) in parameters.iter().enumerate() {
505 let mut params_plus = parameters.clone();
507 let mut params_minus = parameters.clone();
508 params_plus[i] = param + std::f64::consts::PI / 2.0;
509 params_minus[i] = param - std::f64::consts::PI / 2.0;
510
511 let circuit_plus = circuit.with_parameters(¶ms_plus)?;
513 let circuit_minus = circuit.with_parameters(¶ms_minus)?;
514
515 let measurements_plus = self.measure_circuit(&circuit_plus)?;
516 let measurements_minus = self.measure_circuit(&circuit_minus)?;
517
518 let mitigated_plus =
519 self.apply_measurement_mitigation(&circuit_plus, &measurements_plus)?;
520 let mitigated_minus =
521 self.apply_measurement_mitigation(&circuit_minus, &measurements_minus)?;
522
523 mitigated_gradients[i] = (mitigated_plus.mean().unwrap_or(0.0)
525 - mitigated_minus.mean().unwrap_or(0.0))
526 / 2.0;
527 }
528
529 Ok(mitigated_gradients)
530 }
531
532 fn update_noise_model(&mut self, measurements: &Array2<f64>) -> Result<()> {
534 let noise_statistics = self.analyze_noise_statistics(measurements)?;
536
537 for (gate_name, error_model) in &mut self.noise_model.gate_errors {
539 error_model.update_from_statistics(&noise_statistics)?;
540 }
541
542 self.noise_model
544 .measurement_errors
545 .update_from_measurements(measurements)?;
546
547 Ok(())
548 }
549
550 fn should_adapt_strategy(&self) -> Result<bool> {
552 let current_performance = self.performance_metrics.current_performance();
553 let adaptation_threshold = self.adaptive_config.performance_threshold;
554
555 Ok(current_performance < adaptation_threshold)
556 }
557
558 fn adapt_mitigation_strategy(&mut self) -> Result<()> {
560 match &self.adaptive_config.strategy_switching_policy {
561 SwitchingPolicy::PerformanceBased => {
562 self.switch_to_best_performing_strategy()?;
563 }
564 SwitchingPolicy::ResourceOptimized => {
565 self.switch_to_resource_optimal_strategy()?;
566 }
567 SwitchingPolicy::HybridAdaptive => {
568 self.switch_to_hybrid_adaptive_strategy()?;
569 }
570 }
571
572 Ok(())
573 }
574
575 fn compute_confidence_scores(&self, circuit: &QuantumCircuit) -> Result<Array1<f64>> {
577 let circuit_complexity = self.assess_circuit_complexity(circuit)?;
578 let noise_level = self.estimate_noise_level(circuit)?;
579 let mitigation_effectiveness = self.estimate_mitigation_effectiveness()?;
580
581 let base_confidence = 1.0 - (circuit_complexity * noise_level);
582 let adjusted_confidence = base_confidence * mitigation_effectiveness;
583
584 Ok(Array1::from_elem(circuit.num_qubits(), adjusted_confidence))
585 }
586
587 fn compute_uncertainty_estimates(
589 &self,
590 circuit: &QuantumCircuit,
591 measurements: &Array2<f64>,
592 ) -> Result<Array1<f64>> {
593 let num_bootstrap_samples = 1000;
595 let mut bootstrap_results = Vec::new();
596
597 for _ in 0..num_bootstrap_samples {
598 let bootstrap_measurements = self.bootstrap_sample(measurements)?;
599 let mitigated_bootstrap =
600 self.apply_measurement_mitigation(circuit, &bootstrap_measurements)?;
601 bootstrap_results.push(mitigated_bootstrap.mean().unwrap_or(0.0));
602 }
603
604 let mean_result = bootstrap_results.iter().sum::<f64>() / bootstrap_results.len() as f64;
606 let variance = bootstrap_results
607 .iter()
608 .map(|&x| (x - mean_result).powi(2))
609 .sum::<f64>()
610 / bootstrap_results.len() as f64;
611 let uncertainty = variance.sqrt();
612
613 Ok(Array1::from_elem(1, uncertainty))
614 }
615
616 fn compute_reliability_score(&self, circuit: &QuantumCircuit) -> Result<f64> {
618 let mitigation_fidelity = self.estimate_mitigation_fidelity(circuit)?;
619 let noise_resilience = self.assess_noise_resilience(circuit)?;
620 let calibration_quality = self.assess_calibration_quality()?;
621
622 Ok(mitigation_fidelity * noise_resilience * calibration_quality)
623 }
624
625 fn scale_circuit_noise(
628 &self,
629 circuit: &QuantumCircuit,
630 scale_factor: f64,
631 ) -> Result<QuantumCircuit> {
632 Ok(circuit.clone())
635 }
636
637 fn execute_scaled_circuit(&self, circuit: &QuantumCircuit) -> Result<Array2<f64>> {
638 Ok(Array2::zeros((100, circuit.num_qubits())))
641 }
642
643 fn extrapolate_to_zero_noise(
644 &self,
645 scaled_results: &[(f64, Array2<f64>)],
646 extrapolation_method: &ExtrapolationMethod,
647 ) -> Result<Array2<f64>> {
648 Ok(scaled_results[0].1.clone())
651 }
652
653 fn measure_circuit(&self, circuit: &QuantumCircuit) -> Result<Array2<f64>> {
654 Ok(Array2::zeros((100, circuit.num_qubits())))
657 }
658
659 fn analyze_noise_statistics(&self, measurements: &Array2<f64>) -> Result<NoiseStatistics> {
660 Ok(NoiseStatistics::default())
662 }
663
664 fn assess_circuit_complexity(&self, circuit: &QuantumCircuit) -> Result<f64> {
665 Ok(0.5) }
668
669 fn estimate_noise_level(&self, circuit: &QuantumCircuit) -> Result<f64> {
670 Ok(0.1) }
673
674 fn estimate_mitigation_effectiveness(&self) -> Result<f64> {
675 Ok(0.8) }
678
679 fn bootstrap_sample(&self, measurements: &Array2<f64>) -> Result<Array2<f64>> {
680 Ok(measurements.clone()) }
683
684 fn estimate_mitigation_fidelity(&self, circuit: &QuantumCircuit) -> Result<f64> {
685 Ok(0.9) }
688
689 fn assess_noise_resilience(&self, circuit: &QuantumCircuit) -> Result<f64> {
690 Ok(0.7) }
693
694 fn assess_calibration_quality(&self) -> Result<f64> {
695 Ok(0.85) }
698
699 }
701
702#[derive(Debug, Clone)]
705pub struct MitigatedTrainingData {
706 pub measurements: Array2<f64>,
707 pub gradients: Array1<f64>,
708 pub confidence_scores: Array1<f64>,
709 pub mitigation_overhead: f64,
710}
711
712#[derive(Debug, Clone)]
713pub struct MitigatedInferenceData {
714 pub measurements: Array2<f64>,
715 pub uncertainty: Array1<f64>,
716 pub reliability_score: f64,
717}
718
719#[derive(Debug, Clone)]
720pub enum ExtrapolationMethod {
721 Polynomial { degree: usize },
722 Exponential { exponential_form: ExponentialForm },
723 Richardson { orders: Vec<usize> },
724 Adaptive { method_selection: MethodSelection },
725}
726
727#[derive(Debug, Clone)]
728pub enum ReadoutCorrectionMethod {
729 MatrixInversion,
730 ConstrainedLeastSquares,
731 IterativeMaximumLikelihood,
732}
733
734#[derive(Debug, Clone)]
735pub enum CircuitFoldingMethod {
736 GlobalFolding,
737 LocalFolding { gate_priorities: Vec<String> },
738 ParametricFolding { scaling_function: ScalingFunction },
739}
740
741#[derive(Debug, Clone)]
744pub struct QuantumCircuit {
745 pub gates: Vec<QuantumGate>,
746 pub qubits: usize,
747}
748
749impl QuantumCircuit {
750 pub fn num_qubits(&self) -> usize {
751 self.qubits
752 }
753
754 pub fn with_parameters(&self, params: &Array1<f64>) -> Result<Self> {
755 Ok(self.clone())
757 }
758
759 pub fn clone(&self) -> Self {
760 Self {
761 gates: self.gates.clone(),
762 qubits: self.qubits,
763 }
764 }
765}
766
767#[derive(Debug, Clone)]
768pub struct QuantumGate {
769 pub name: String,
770 pub qubits: Vec<usize>,
771 pub parameters: Array1<f64>,
772}
773
774impl Default for CalibrationData {
776 fn default() -> Self {
777 Self {
778 process_tomography: HashMap::new(),
779 state_tomography: HashMap::new(),
780 randomized_benchmarking: RBData::default(),
781 gate_set_tomography: GSTData::default(),
782 noise_spectroscopy: SpectroscopyData::default(),
783 }
784 }
785}
786
787impl Default for AdaptiveConfig {
788 fn default() -> Self {
789 Self {
790 adaptation_frequency: 100,
791 performance_threshold: 0.8,
792 strategy_switching_policy: SwitchingPolicy::PerformanceBased,
793 online_calibration: true,
794 feedback_mechanism: FeedbackMechanism::default(),
795 }
796 }
797}
798
799impl Default for PerformanceTracker {
800 fn default() -> Self {
801 Self {
802 metrics_history: Vec::new(),
803 current_performance: PerformanceMetrics::new(),
804 }
805 }
806}
807
808#[derive(Debug, Clone, Default)]
810pub struct ProcessMatrix;
811
812#[derive(Debug, Clone, Default)]
813pub struct StateMatrix;
814
815#[derive(Debug, Clone, Default)]
816pub struct RBData;
817
818#[derive(Debug, Clone, Default)]
819pub struct GSTData;
820
821#[derive(Debug, Clone, Default)]
822pub struct SpectroscopyData;
823
824#[derive(Debug, Clone)]
825pub enum SwitchingPolicy {
826 PerformanceBased,
827 ResourceOptimized,
828 HybridAdaptive,
829}
830
831#[derive(Debug, Clone, Default)]
832pub struct FeedbackMechanism;
833
834#[derive(Debug, Clone, Default)]
835pub struct PerformanceMetrics {
836 pub mitigation_overhead: f64,
837}
838
839impl PerformanceMetrics {
840 pub fn new() -> Self {
841 Self {
842 mitigation_overhead: 0.1,
843 }
844 }
845
846 pub fn update(&mut self, _measurements: &Array2<f64>, _gradients: &Array1<f64>) -> Result<()> {
847 Ok(())
849 }
850
851 pub fn current_performance(&self) -> f64 {
852 0.85 }
854}
855
856#[derive(Debug, Clone)]
858pub struct CliffordCircuit;
859
860#[derive(Debug, Clone)]
861pub struct CDRModel;
862
863#[derive(Debug, Clone)]
864pub enum FeatureExtractionMethod {
865 CircuitDepth,
866 GateCount,
867 EntanglementStructure,
868}
869
870#[derive(Debug, Clone)]
871pub struct SymmetryGroup;
872
873#[derive(Debug, Clone)]
874pub struct VerificationCircuit;
875
876#[derive(Debug, Clone)]
877pub enum EntanglementProtocol {
878 Bell,
879 GHZ,
880 Cluster,
881}
882
883#[derive(Debug, Clone)]
884pub struct NoisePredictorModel;
885
886#[derive(Debug, Clone)]
887pub struct CorrectionNetwork;
888
889#[derive(Debug, Clone)]
890pub struct TrainingDataSet;
891
892#[derive(Debug, Clone)]
893pub struct ClassicalPreprocessor;
894
895#[derive(Debug, Clone)]
896pub struct QuantumErrorCorrector;
897
898#[derive(Debug, Clone)]
899pub struct ClassicalPostprocessor;
900
901#[derive(Debug, Clone)]
902pub struct StrategySelectionPolicy;
903
904#[derive(Debug, Clone)]
905pub enum ExponentialForm {
906 SingleExponential,
907 DoubleExponential,
908 Stretched,
909}
910
911#[derive(Debug, Clone)]
912pub enum MethodSelection {
913 CrossValidation,
914 BayesianOptimization,
915 AdaptiveGrid,
916}
917
918#[derive(Debug, Clone)]
919pub enum ScalingFunction {
920 Linear,
921 Polynomial,
922 Exponential,
923}
924
925#[derive(Debug, Clone)]
926pub struct FidelityModel;
927
928#[derive(Debug, Clone)]
929pub struct TemporalFluctuation;
930
931#[derive(Debug, Clone)]
932pub enum CorrelationFunction {
933 Exponential,
934 Gaussian,
935 PowerLaw,
936}
937
938#[derive(Debug, Clone)]
939pub struct NoiseSpectrum;
940
941#[derive(Debug, Clone, Default)]
942pub struct NoiseStatistics;
943
944impl GateErrorModel {
946 pub fn update_from_statistics(&mut self, _stats: &NoiseStatistics) -> Result<()> {
947 Ok(())
949 }
950}
951
952impl MeasurementErrorModel {
953 pub fn update_from_measurements(&mut self, _measurements: &Array2<f64>) -> Result<()> {
954 Ok(())
956 }
957}
958
959impl QuantumMLErrorMitigator {
960 fn apply_matrix_inversion_correction(
962 &self,
963 measurements: &Array2<f64>,
964 calibration_matrix: &Array2<f64>,
965 ) -> Result<Array2<f64>> {
966 Ok(measurements.clone()) }
969
970 fn apply_constrained_least_squares_correction(
971 &self,
972 measurements: &Array2<f64>,
973 calibration_matrix: &Array2<f64>,
974 ) -> Result<Array2<f64>> {
975 Ok(measurements.clone()) }
978
979 fn apply_ml_correction(
980 &self,
981 measurements: &Array2<f64>,
982 calibration_matrix: &Array2<f64>,
983 ) -> Result<Array2<f64>> {
984 Ok(measurements.clone()) }
987
988 fn extract_circuit_features(&self, circuit: &QuantumCircuit) -> Result<Array1<f64>> {
989 Ok(Array1::zeros(10)) }
992
993 fn generate_training_features(&self, circuits: &[CliffordCircuit]) -> Result<Array2<f64>> {
994 Ok(Array2::zeros((circuits.len(), 10))) }
997
998 fn execute_clifford_circuits(&self, circuits: &[CliffordCircuit]) -> Result<Array1<f64>> {
999 Ok(Array1::zeros(circuits.len())) }
1002
1003 fn apply_cdr_correction(
1004 &self,
1005 measurements: &Array2<f64>,
1006 predicted_values: &Array1<f64>,
1007 ) -> Result<Array2<f64>> {
1008 Ok(measurements.clone()) }
1011
1012 fn detect_symmetry_violations(
1013 &self,
1014 circuit: &QuantumCircuit,
1015 measurements: &Array2<f64>,
1016 symmetry_group: &SymmetryGroup,
1017 ) -> Result<Array1<f64>> {
1018 Ok(Array1::zeros(measurements.nrows())) }
1021
1022 fn apply_symmetry_constraints(
1023 &self,
1024 measurements: &Array2<f64>,
1025 violations: &Array1<f64>,
1026 symmetry_group: &SymmetryGroup,
1027 ) -> Result<Array2<f64>> {
1028 Ok(measurements.clone()) }
1031
1032 fn create_virtual_copies(
1033 &self,
1034 circuit: &QuantumCircuit,
1035 num_copies: usize,
1036 ) -> Result<Vec<QuantumCircuit>> {
1037 Ok(vec![circuit.clone(); num_copies]) }
1040
1041 fn measure_virtual_entanglement(&self, circuits: &[QuantumCircuit]) -> Result<Array1<f64>> {
1042 Ok(Array1::zeros(circuits.len())) }
1045
1046 fn apply_distillation_protocol(
1047 &self,
1048 measurements: &Array2<f64>,
1049 entanglement_measures: &Array1<f64>,
1050 ) -> Result<Array2<f64>> {
1051 Ok(measurements.clone()) }
1054
1055 fn prepare_correction_input(
1056 &self,
1057 measurements: &Array2<f64>,
1058 predicted_noise: &Array1<f64>,
1059 ) -> Result<Array2<f64>> {
1060 Ok(measurements.clone()) }
1063
1064 fn switch_to_best_performing_strategy(&mut self) -> Result<()> {
1065 Ok(())
1067 }
1068
1069 fn switch_to_resource_optimal_strategy(&mut self) -> Result<()> {
1070 Ok(())
1072 }
1073
1074 fn switch_to_hybrid_adaptive_strategy(&mut self) -> Result<()> {
1075 Ok(())
1077 }
1078}
1079
1080impl CDRModel {
1082 pub fn train(&self, features: &Array2<f64>, labels: &Array1<f64>) -> Result<TrainedCDRModel> {
1083 Ok(TrainedCDRModel::default())
1085 }
1086}
1087
1088#[derive(Debug, Clone, Default)]
1089pub struct TrainedCDRModel;
1090
1091impl TrainedCDRModel {
1092 pub fn predict(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
1093 Ok(Array1::zeros(features.len())) }
1096}
1097
1098impl NoisePredictorModel {
1099 pub fn predict(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
1100 Ok(Array1::zeros(features.len())) }
1103}
1104
1105impl CorrectionNetwork {
1106 pub fn forward(&self, input: &Array2<f64>) -> Result<Array2<f64>> {
1107 Ok(Array2::zeros(input.dim())) }
1110}
1111
1112impl ClassicalPreprocessor {
1113 pub fn process(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1114 Ok(data.clone()) }
1117}
1118
1119impl QuantumErrorCorrector {
1120 pub fn correct(&self, circuit: &QuantumCircuit, data: &Array2<f64>) -> Result<Array2<f64>> {
1121 Ok(data.clone()) }
1124}
1125
1126impl ClassicalPostprocessor {
1127 pub fn process(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1128 Ok(data.clone()) }
1131}
1132
1133impl StrategySelectionPolicy {
1134 pub fn select_strategy(
1135 &self,
1136 circuit: &QuantumCircuit,
1137 metrics: &PerformanceMetrics,
1138 strategies: &[MitigationStrategy],
1139 ) -> Result<MitigationStrategy> {
1140 Ok(strategies[0].clone()) }
1143}