quantrs2_ml/
error_mitigation.rs

1//! Advanced Error Mitigation for Quantum Machine Learning
2//!
3//! This module provides comprehensive error mitigation techniques specifically designed
4//! for quantum machine learning applications, including noise-aware training,
5//! error correction protocols, and adaptive mitigation strategies.
6
7use crate::error::Result;
8use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayD, Axis};
9use std::collections::HashMap;
10use std::sync::Arc;
11
12/// Advanced error mitigation framework for quantum ML
13pub struct QuantumMLErrorMitigator {
14    pub mitigation_strategy: MitigationStrategy,
15    pub noise_model: NoiseModel,
16    pub calibration_data: CalibrationData,
17    pub adaptive_config: AdaptiveConfig,
18    pub performance_metrics: PerformanceMetrics,
19}
20
21/// Performance tracker for mitigation strategies
22#[derive(Debug, Clone)]
23pub struct PerformanceTracker {
24    /// Performance metrics over time
25    pub metrics_history: Vec<PerformanceMetrics>,
26    /// Current performance
27    pub current_performance: PerformanceMetrics,
28}
29
30/// Error mitigation strategies for quantum ML
31#[derive(Debug, Clone)]
32pub enum MitigationStrategy {
33    /// Zero Noise Extrapolation
34    ZNE {
35        scale_factors: Vec<f64>,
36        extrapolation_method: ExtrapolationMethod,
37        circuit_folding: CircuitFoldingMethod,
38    },
39    /// Readout Error Mitigation
40    ReadoutErrorMitigation {
41        calibration_matrix: Array2<f64>,
42        correction_method: ReadoutCorrectionMethod,
43        regularization: f64,
44    },
45    /// Clifford Data Regression
46    CDR {
47        training_circuits: Vec<CliffordCircuit>,
48        regression_model: CDRModel,
49        feature_extraction: FeatureExtractionMethod,
50    },
51    /// Symmetry Verification
52    SymmetryVerification {
53        symmetry_groups: Vec<SymmetryGroup>,
54        verification_circuits: Vec<VerificationCircuit>,
55        post_selection: bool,
56    },
57    /// Virtual Distillation
58    VirtualDistillation {
59        distillation_rounds: usize,
60        entanglement_protocol: EntanglementProtocol,
61        purification_threshold: f64,
62    },
63    /// Machine Learning-based Mitigation
64    MLMitigation {
65        noise_predictor: NoisePredictorModel,
66        correction_network: CorrectionNetwork,
67        training_data: TrainingDataSet,
68    },
69    /// Hybrid Classical-Quantum Error Correction
70    HybridErrorCorrection {
71        classical_preprocessing: ClassicalPreprocessor,
72        quantum_correction: QuantumErrorCorrector,
73        post_processing: ClassicalPostprocessor,
74    },
75    /// Adaptive Multi-Strategy
76    AdaptiveMultiStrategy {
77        strategies: Vec<MitigationStrategy>,
78        selection_policy: StrategySelectionPolicy,
79        performance_tracker: PerformanceTracker,
80    },
81}
82
83/// Noise models for quantum devices
84#[derive(Debug, Clone)]
85pub struct NoiseModel {
86    pub gate_errors: HashMap<String, GateErrorModel>,
87    pub measurement_errors: MeasurementErrorModel,
88    pub coherence_times: CoherenceTimeModel,
89    pub crosstalk_matrix: Array2<f64>,
90    pub temporal_correlations: TemporalCorrelationModel,
91}
92
93/// Gate error models
94#[derive(Debug, Clone)]
95pub struct GateErrorModel {
96    pub error_rate: f64,
97    pub error_type: ErrorType,
98    pub coherence_limited: bool,
99    pub gate_time: f64,
100    pub fidelity_model: FidelityModel,
101}
102
103/// Types of quantum errors
104#[derive(Debug, Clone)]
105pub enum ErrorType {
106    Depolarizing {
107        strength: f64,
108    },
109    Amplitude {
110        damping_rate: f64,
111    },
112    Phase {
113        dephasing_rate: f64,
114    },
115    Pauli {
116        px: f64,
117        py: f64,
118        pz: f64,
119    },
120    Coherent {
121        rotation_angle: f64,
122        rotation_axis: Array1<f64>,
123    },
124    Correlated {
125        correlation_matrix: Array2<f64>,
126    },
127}
128
129/// Measurement error model
130#[derive(Debug, Clone)]
131pub struct MeasurementErrorModel {
132    pub readout_fidelity: f64,
133    pub assignment_matrix: Array2<f64>,
134    pub state_preparation_errors: Array1<f64>,
135    pub measurement_crosstalk: Array2<f64>,
136}
137
138/// Coherence time parameters
139#[derive(Debug, Clone)]
140pub struct CoherenceTimeModel {
141    pub t1_times: Array1<f64>,      // Relaxation times
142    pub t2_times: Array1<f64>,      // Dephasing times
143    pub t2_echo_times: Array1<f64>, // Echo dephasing times
144    pub temporal_fluctuations: TemporalFluctuation,
145}
146
147/// Temporal correlation model for noise
148#[derive(Debug, Clone)]
149pub struct TemporalCorrelationModel {
150    pub correlation_function: CorrelationFunction,
151    pub correlation_time: f64,
152    pub noise_spectrum: NoiseSpectrum,
153}
154
155/// Calibration data for error mitigation
156#[derive(Debug, Clone)]
157pub struct CalibrationData {
158    pub process_tomography: HashMap<String, ProcessMatrix>,
159    pub state_tomography: HashMap<String, StateMatrix>,
160    pub randomized_benchmarking: RBData,
161    pub gate_set_tomography: GSTData,
162    pub noise_spectroscopy: SpectroscopyData,
163}
164
165/// Adaptive configuration for dynamic error mitigation
166#[derive(Debug, Clone)]
167pub struct AdaptiveConfig {
168    pub adaptation_frequency: usize,
169    pub performance_threshold: f64,
170    pub strategy_switching_policy: SwitchingPolicy,
171    pub online_calibration: bool,
172    pub feedback_mechanism: FeedbackMechanism,
173}
174
175impl QuantumMLErrorMitigator {
176    /// Create a new error mitigation framework
177    pub fn new(mitigation_strategy: MitigationStrategy, noise_model: NoiseModel) -> Result<Self> {
178        let calibration_data = CalibrationData::default();
179        let adaptive_config = AdaptiveConfig::default();
180        let performance_metrics = PerformanceMetrics::new();
181
182        Ok(Self {
183            mitigation_strategy,
184            noise_model,
185            calibration_data,
186            adaptive_config,
187            performance_metrics,
188        })
189    }
190
191    /// Apply error mitigation to quantum ML training
192    pub fn mitigate_training_errors(
193        &mut self,
194        circuit: &QuantumCircuit,
195        parameters: &Array1<f64>,
196        measurement_results: &Array2<f64>,
197        gradient_estimates: &Array1<f64>,
198    ) -> Result<MitigatedTrainingData> {
199        // Update noise model based on current measurements
200        self.update_noise_model(measurement_results)?;
201
202        // Apply mitigation strategy
203        let mitigated_measurements =
204            self.apply_measurement_mitigation(circuit, measurement_results)?;
205
206        let mitigated_gradients =
207            self.apply_gradient_mitigation(circuit, parameters, gradient_estimates)?;
208
209        // Update performance metrics
210        self.performance_metrics
211            .update(&mitigated_measurements, &mitigated_gradients)?;
212
213        // Adaptive strategy adjustment
214        if self.should_adapt_strategy()? {
215            self.adapt_mitigation_strategy()?;
216        }
217
218        Ok(MitigatedTrainingData {
219            measurements: mitigated_measurements,
220            gradients: mitigated_gradients,
221            confidence_scores: self.compute_confidence_scores(circuit)?,
222            mitigation_overhead: self.performance_metrics.mitigation_overhead,
223        })
224    }
225
226    /// Apply error mitigation to quantum ML inference
227    pub fn mitigate_inference_errors(
228        &mut self,
229        circuit: &QuantumCircuit,
230        measurement_results: &Array2<f64>,
231    ) -> Result<MitigatedInferenceData> {
232        let mitigated_measurements =
233            self.apply_measurement_mitigation(circuit, measurement_results)?;
234
235        let uncertainty_estimates =
236            self.compute_uncertainty_estimates(circuit, &mitigated_measurements)?;
237
238        Ok(MitigatedInferenceData {
239            measurements: mitigated_measurements,
240            uncertainty: uncertainty_estimates,
241            reliability_score: self.compute_reliability_score(circuit)?,
242        })
243    }
244
245    /// Apply measurement error mitigation
246    fn apply_measurement_mitigation(
247        &self,
248        circuit: &QuantumCircuit,
249        measurements: &Array2<f64>,
250    ) -> Result<Array2<f64>> {
251        match &self.mitigation_strategy {
252            MitigationStrategy::ZNE {
253                scale_factors,
254                extrapolation_method,
255                ..
256            } => self.apply_zne_mitigation(
257                circuit,
258                measurements,
259                scale_factors,
260                extrapolation_method,
261            ),
262            MitigationStrategy::ReadoutErrorMitigation {
263                calibration_matrix,
264                correction_method,
265                ..
266            } => self.apply_readout_error_mitigation(
267                measurements,
268                calibration_matrix,
269                correction_method,
270            ),
271            MitigationStrategy::CDR {
272                training_circuits,
273                regression_model,
274                ..
275            } => self.apply_cdr_mitigation(
276                circuit,
277                measurements,
278                training_circuits,
279                regression_model,
280            ),
281            MitigationStrategy::SymmetryVerification {
282                symmetry_groups, ..
283            } => self.apply_symmetry_verification(circuit, measurements, symmetry_groups),
284            MitigationStrategy::VirtualDistillation {
285                distillation_rounds,
286                ..
287            } => self.apply_virtual_distillation(circuit, measurements, *distillation_rounds),
288            MitigationStrategy::MLMitigation {
289                noise_predictor,
290                correction_network,
291                ..
292            } => {
293                self.apply_ml_mitigation(circuit, measurements, noise_predictor, correction_network)
294            }
295            MitigationStrategy::HybridErrorCorrection {
296                classical_preprocessing,
297                quantum_correction,
298                post_processing,
299            } => self.apply_hybrid_error_correction(
300                circuit,
301                measurements,
302                classical_preprocessing,
303                quantum_correction,
304                post_processing,
305            ),
306            MitigationStrategy::AdaptiveMultiStrategy {
307                strategies,
308                selection_policy,
309                ..
310            } => self.apply_adaptive_multi_strategy(
311                circuit,
312                measurements,
313                strategies,
314                selection_policy,
315            ),
316        }
317    }
318
319    /// Apply Zero Noise Extrapolation
320    fn apply_zne_mitigation(
321        &self,
322        circuit: &QuantumCircuit,
323        measurements: &Array2<f64>,
324        scale_factors: &[f64],
325        extrapolation_method: &ExtrapolationMethod,
326    ) -> Result<Array2<f64>> {
327        let mut scaled_results = Vec::new();
328
329        for &scale_factor in scale_factors {
330            let scaled_circuit = self.scale_circuit_noise(circuit, scale_factor)?;
331            let scaled_measurements = self.execute_scaled_circuit(&scaled_circuit)?;
332            scaled_results.push((scale_factor, scaled_measurements));
333        }
334
335        // Extrapolate to zero noise
336        self.extrapolate_to_zero_noise(&scaled_results, extrapolation_method)
337    }
338
339    /// Apply readout error mitigation
340    fn apply_readout_error_mitigation(
341        &self,
342        measurements: &Array2<f64>,
343        calibration_matrix: &Array2<f64>,
344        correction_method: &ReadoutCorrectionMethod,
345    ) -> Result<Array2<f64>> {
346        match correction_method {
347            ReadoutCorrectionMethod::MatrixInversion => {
348                self.apply_matrix_inversion_correction(measurements, calibration_matrix)
349            }
350            ReadoutCorrectionMethod::ConstrainedLeastSquares => {
351                self.apply_constrained_least_squares_correction(measurements, calibration_matrix)
352            }
353            ReadoutCorrectionMethod::IterativeMaximumLikelihood => {
354                self.apply_ml_correction(measurements, calibration_matrix)
355            }
356        }
357    }
358
359    /// Apply Clifford Data Regression
360    fn apply_cdr_mitigation(
361        &self,
362        circuit: &QuantumCircuit,
363        measurements: &Array2<f64>,
364        training_circuits: &[CliffordCircuit],
365        regression_model: &CDRModel,
366    ) -> Result<Array2<f64>> {
367        // Extract features from the circuit
368        let circuit_features = self.extract_circuit_features(circuit)?;
369
370        // Generate training data from Clifford circuits
371        let training_features = self.generate_training_features(training_circuits)?;
372        let training_labels = self.execute_clifford_circuits(training_circuits)?;
373
374        // Train regression model
375        let trained_model = regression_model.train(&training_features, &training_labels)?;
376
377        // Predict error-free expectation values
378        let predicted_values = trained_model.predict(&circuit_features)?;
379
380        // Apply correction
381        self.apply_cdr_correction(measurements, &predicted_values)
382    }
383
384    /// Apply symmetry verification
385    fn apply_symmetry_verification(
386        &self,
387        circuit: &QuantumCircuit,
388        measurements: &Array2<f64>,
389        symmetry_groups: &[SymmetryGroup],
390    ) -> Result<Array2<f64>> {
391        let mut verified_measurements = measurements.clone();
392
393        for symmetry_group in symmetry_groups {
394            let symmetry_violations =
395                self.detect_symmetry_violations(circuit, &verified_measurements, symmetry_group)?;
396
397            verified_measurements = self.apply_symmetry_constraints(
398                &verified_measurements,
399                &symmetry_violations,
400                symmetry_group,
401            )?;
402        }
403
404        Ok(verified_measurements)
405    }
406
407    /// Apply virtual distillation
408    fn apply_virtual_distillation(
409        &self,
410        circuit: &QuantumCircuit,
411        measurements: &Array2<f64>,
412        distillation_rounds: usize,
413    ) -> Result<Array2<f64>> {
414        let mut distilled_measurements = measurements.clone();
415
416        for _ in 0..distillation_rounds {
417            // Create virtual copies with different random states
418            let virtual_copies = self.create_virtual_copies(circuit, 2)?;
419
420            // Measure entanglement between copies
421            let entanglement_measures = self.measure_virtual_entanglement(&virtual_copies)?;
422
423            // Apply distillation protocol
424            distilled_measurements =
425                self.apply_distillation_protocol(&distilled_measurements, &entanglement_measures)?;
426        }
427
428        Ok(distilled_measurements)
429    }
430
431    /// Apply ML-based error mitigation
432    fn apply_ml_mitigation(
433        &self,
434        circuit: &QuantumCircuit,
435        measurements: &Array2<f64>,
436        noise_predictor: &NoisePredictorModel,
437        correction_network: &CorrectionNetwork,
438    ) -> Result<Array2<f64>> {
439        // Predict noise characteristics
440        let circuit_features = self.extract_circuit_features(circuit)?;
441        let predicted_noise = noise_predictor.predict(&circuit_features)?;
442
443        // Apply neural network correction
444        let correction_input = self.prepare_correction_input(measurements, &predicted_noise)?;
445        let corrections = correction_network.forward(&correction_input)?;
446
447        // Apply corrections to measurements
448        Ok(measurements + &corrections)
449    }
450
451    /// Apply hybrid error correction
452    fn apply_hybrid_error_correction(
453        &self,
454        circuit: &QuantumCircuit,
455        measurements: &Array2<f64>,
456        classical_preprocessing: &ClassicalPreprocessor,
457        quantum_correction: &QuantumErrorCorrector,
458        post_processing: &ClassicalPostprocessor,
459    ) -> Result<Array2<f64>> {
460        // Classical preprocessing
461        let preprocessed_data = classical_preprocessing.process(measurements)?;
462
463        // Quantum error correction
464        let quantum_corrected = quantum_correction.correct(circuit, &preprocessed_data)?;
465
466        // Classical post-processing
467        post_processing.process(&quantum_corrected)
468    }
469
470    /// Apply adaptive multi-strategy mitigation
471    fn apply_adaptive_multi_strategy(
472        &self,
473        circuit: &QuantumCircuit,
474        measurements: &Array2<f64>,
475        strategies: &[MitigationStrategy],
476        selection_policy: &StrategySelectionPolicy,
477    ) -> Result<Array2<f64>> {
478        // Select best strategy based on current circuit and performance history
479        let selected_strategy =
480            selection_policy.select_strategy(circuit, &self.performance_metrics, strategies)?;
481
482        // Apply selected strategy
483        let mitigator = QuantumMLErrorMitigator {
484            mitigation_strategy: selected_strategy,
485            noise_model: self.noise_model.clone(),
486            calibration_data: self.calibration_data.clone(),
487            adaptive_config: self.adaptive_config.clone(),
488            performance_metrics: self.performance_metrics.clone(),
489        };
490
491        mitigator.apply_measurement_mitigation(circuit, measurements)
492    }
493
494    /// Apply gradient error mitigation
495    fn apply_gradient_mitigation(
496        &self,
497        circuit: &QuantumCircuit,
498        parameters: &Array1<f64>,
499        gradients: &Array1<f64>,
500    ) -> Result<Array1<f64>> {
501        // Parameter shift rule with error mitigation
502        let mut mitigated_gradients = Array1::zeros(gradients.len());
503
504        for (i, &param) in parameters.iter().enumerate() {
505            // Create shifted circuits
506            let mut params_plus = parameters.clone();
507            let mut params_minus = parameters.clone();
508            params_plus[i] = param + std::f64::consts::PI / 2.0;
509            params_minus[i] = param - std::f64::consts::PI / 2.0;
510
511            // Apply error mitigation to shifted measurements
512            let circuit_plus = circuit.with_parameters(&params_plus)?;
513            let circuit_minus = circuit.with_parameters(&params_minus)?;
514
515            let measurements_plus = self.measure_circuit(&circuit_plus)?;
516            let measurements_minus = self.measure_circuit(&circuit_minus)?;
517
518            let mitigated_plus =
519                self.apply_measurement_mitigation(&circuit_plus, &measurements_plus)?;
520            let mitigated_minus =
521                self.apply_measurement_mitigation(&circuit_minus, &measurements_minus)?;
522
523            // Compute mitigated gradient
524            mitigated_gradients[i] = (mitigated_plus.mean().unwrap_or(0.0)
525                - mitigated_minus.mean().unwrap_or(0.0))
526                / 2.0;
527        }
528
529        Ok(mitigated_gradients)
530    }
531
532    /// Update noise model based on current measurements
533    fn update_noise_model(&mut self, measurements: &Array2<f64>) -> Result<()> {
534        // Analyze measurement statistics to infer noise characteristics
535        let noise_statistics = self.analyze_noise_statistics(measurements)?;
536
537        // Update gate error models
538        for (gate_name, error_model) in &mut self.noise_model.gate_errors {
539            error_model.update_from_statistics(&noise_statistics)?;
540        }
541
542        // Update measurement error model
543        self.noise_model
544            .measurement_errors
545            .update_from_measurements(measurements)?;
546
547        Ok(())
548    }
549
550    /// Check if mitigation strategy should be adapted
551    fn should_adapt_strategy(&self) -> Result<bool> {
552        let current_performance = self.performance_metrics.current_performance();
553        let adaptation_threshold = self.adaptive_config.performance_threshold;
554
555        Ok(current_performance < adaptation_threshold)
556    }
557
558    /// Adapt mitigation strategy based on performance
559    fn adapt_mitigation_strategy(&mut self) -> Result<()> {
560        match &self.adaptive_config.strategy_switching_policy {
561            SwitchingPolicy::PerformanceBased => {
562                self.switch_to_best_performing_strategy()?;
563            }
564            SwitchingPolicy::ResourceOptimized => {
565                self.switch_to_resource_optimal_strategy()?;
566            }
567            SwitchingPolicy::HybridAdaptive => {
568                self.switch_to_hybrid_adaptive_strategy()?;
569            }
570        }
571
572        Ok(())
573    }
574
575    /// Compute confidence scores for mitigation results
576    fn compute_confidence_scores(&self, circuit: &QuantumCircuit) -> Result<Array1<f64>> {
577        let circuit_complexity = self.assess_circuit_complexity(circuit)?;
578        let noise_level = self.estimate_noise_level(circuit)?;
579        let mitigation_effectiveness = self.estimate_mitigation_effectiveness()?;
580
581        let base_confidence = 1.0 - (circuit_complexity * noise_level);
582        let adjusted_confidence = base_confidence * mitigation_effectiveness;
583
584        Ok(Array1::from_elem(circuit.num_qubits(), adjusted_confidence))
585    }
586
587    /// Compute uncertainty estimates
588    fn compute_uncertainty_estimates(
589        &self,
590        circuit: &QuantumCircuit,
591        measurements: &Array2<f64>,
592    ) -> Result<Array1<f64>> {
593        // Bootstrap sampling for uncertainty estimation
594        let num_bootstrap_samples = 1000;
595        let mut bootstrap_results = Vec::new();
596
597        for _ in 0..num_bootstrap_samples {
598            let bootstrap_measurements = self.bootstrap_sample(measurements)?;
599            let mitigated_bootstrap =
600                self.apply_measurement_mitigation(circuit, &bootstrap_measurements)?;
601            bootstrap_results.push(mitigated_bootstrap.mean().unwrap_or(0.0));
602        }
603
604        // Compute standard deviation as uncertainty
605        let mean_result = bootstrap_results.iter().sum::<f64>() / bootstrap_results.len() as f64;
606        let variance = bootstrap_results
607            .iter()
608            .map(|&x| (x - mean_result).powi(2))
609            .sum::<f64>()
610            / bootstrap_results.len() as f64;
611        let uncertainty = variance.sqrt();
612
613        Ok(Array1::from_elem(1, uncertainty))
614    }
615
616    /// Compute reliability score
617    fn compute_reliability_score(&self, circuit: &QuantumCircuit) -> Result<f64> {
618        let mitigation_fidelity = self.estimate_mitigation_fidelity(circuit)?;
619        let noise_resilience = self.assess_noise_resilience(circuit)?;
620        let calibration_quality = self.assess_calibration_quality()?;
621
622        Ok(mitigation_fidelity * noise_resilience * calibration_quality)
623    }
624
625    // Helper methods for implementation details...
626
627    fn scale_circuit_noise(
628        &self,
629        circuit: &QuantumCircuit,
630        scale_factor: f64,
631    ) -> Result<QuantumCircuit> {
632        // Implement noise scaling by circuit folding or gate repetition
633        // This is a placeholder implementation
634        Ok(circuit.clone())
635    }
636
637    fn execute_scaled_circuit(&self, circuit: &QuantumCircuit) -> Result<Array2<f64>> {
638        // Execute circuit with scaled noise and return measurements
639        // This is a placeholder implementation
640        Ok(Array2::zeros((100, circuit.num_qubits())))
641    }
642
643    fn extrapolate_to_zero_noise(
644        &self,
645        scaled_results: &[(f64, Array2<f64>)],
646        extrapolation_method: &ExtrapolationMethod,
647    ) -> Result<Array2<f64>> {
648        // Implement polynomial or exponential extrapolation
649        // This is a placeholder implementation
650        Ok(scaled_results[0].1.clone())
651    }
652
653    fn measure_circuit(&self, circuit: &QuantumCircuit) -> Result<Array2<f64>> {
654        // Execute circuit and return measurements
655        // This is a placeholder implementation
656        Ok(Array2::zeros((100, circuit.num_qubits())))
657    }
658
659    fn analyze_noise_statistics(&self, measurements: &Array2<f64>) -> Result<NoiseStatistics> {
660        // Analyze measurement data to extract noise characteristics
661        Ok(NoiseStatistics::default())
662    }
663
664    fn assess_circuit_complexity(&self, circuit: &QuantumCircuit) -> Result<f64> {
665        // Assess circuit complexity for confidence scoring
666        Ok(0.5) // Placeholder
667    }
668
669    fn estimate_noise_level(&self, circuit: &QuantumCircuit) -> Result<f64> {
670        // Estimate current noise level
671        Ok(0.1) // Placeholder
672    }
673
674    fn estimate_mitigation_effectiveness(&self) -> Result<f64> {
675        // Estimate how effective the current mitigation strategy is
676        Ok(0.8) // Placeholder
677    }
678
679    fn bootstrap_sample(&self, measurements: &Array2<f64>) -> Result<Array2<f64>> {
680        // Create bootstrap sample from measurements
681        Ok(measurements.clone()) // Placeholder
682    }
683
684    fn estimate_mitigation_fidelity(&self, circuit: &QuantumCircuit) -> Result<f64> {
685        // Estimate fidelity of mitigation process
686        Ok(0.9) // Placeholder
687    }
688
689    fn assess_noise_resilience(&self, circuit: &QuantumCircuit) -> Result<f64> {
690        // Assess how resilient the circuit is to noise
691        Ok(0.7) // Placeholder
692    }
693
694    fn assess_calibration_quality(&self) -> Result<f64> {
695        // Assess quality of calibration data
696        Ok(0.85) // Placeholder
697    }
698
699    // Additional helper methods would be implemented here...
700}
701
702// Supporting structures and implementations...
703
704#[derive(Debug, Clone)]
705pub struct MitigatedTrainingData {
706    pub measurements: Array2<f64>,
707    pub gradients: Array1<f64>,
708    pub confidence_scores: Array1<f64>,
709    pub mitigation_overhead: f64,
710}
711
712#[derive(Debug, Clone)]
713pub struct MitigatedInferenceData {
714    pub measurements: Array2<f64>,
715    pub uncertainty: Array1<f64>,
716    pub reliability_score: f64,
717}
718
719#[derive(Debug, Clone)]
720pub enum ExtrapolationMethod {
721    Polynomial { degree: usize },
722    Exponential { exponential_form: ExponentialForm },
723    Richardson { orders: Vec<usize> },
724    Adaptive { method_selection: MethodSelection },
725}
726
727#[derive(Debug, Clone)]
728pub enum ReadoutCorrectionMethod {
729    MatrixInversion,
730    ConstrainedLeastSquares,
731    IterativeMaximumLikelihood,
732}
733
734#[derive(Debug, Clone)]
735pub enum CircuitFoldingMethod {
736    GlobalFolding,
737    LocalFolding { gate_priorities: Vec<String> },
738    ParametricFolding { scaling_function: ScalingFunction },
739}
740
741// Additional supporting types and implementations...
742
743#[derive(Debug, Clone)]
744pub struct QuantumCircuit {
745    pub gates: Vec<QuantumGate>,
746    pub qubits: usize,
747}
748
749impl QuantumCircuit {
750    pub fn num_qubits(&self) -> usize {
751        self.qubits
752    }
753
754    pub fn with_parameters(&self, params: &Array1<f64>) -> Result<Self> {
755        // Create circuit with new parameters
756        Ok(self.clone())
757    }
758
759    pub fn clone(&self) -> Self {
760        Self {
761            gates: self.gates.clone(),
762            qubits: self.qubits,
763        }
764    }
765}
766
767#[derive(Debug, Clone)]
768pub struct QuantumGate {
769    pub name: String,
770    pub qubits: Vec<usize>,
771    pub parameters: Array1<f64>,
772}
773
774// Default implementations
775impl Default for CalibrationData {
776    fn default() -> Self {
777        Self {
778            process_tomography: HashMap::new(),
779            state_tomography: HashMap::new(),
780            randomized_benchmarking: RBData::default(),
781            gate_set_tomography: GSTData::default(),
782            noise_spectroscopy: SpectroscopyData::default(),
783        }
784    }
785}
786
787impl Default for AdaptiveConfig {
788    fn default() -> Self {
789        Self {
790            adaptation_frequency: 100,
791            performance_threshold: 0.8,
792            strategy_switching_policy: SwitchingPolicy::PerformanceBased,
793            online_calibration: true,
794            feedback_mechanism: FeedbackMechanism::default(),
795        }
796    }
797}
798
799impl Default for PerformanceTracker {
800    fn default() -> Self {
801        Self {
802            metrics_history: Vec::new(),
803            current_performance: PerformanceMetrics::new(),
804        }
805    }
806}
807
808// Additional placeholder structures for compilation
809#[derive(Debug, Clone, Default)]
810pub struct ProcessMatrix;
811
812#[derive(Debug, Clone, Default)]
813pub struct StateMatrix;
814
815#[derive(Debug, Clone, Default)]
816pub struct RBData;
817
818#[derive(Debug, Clone, Default)]
819pub struct GSTData;
820
821#[derive(Debug, Clone, Default)]
822pub struct SpectroscopyData;
823
824#[derive(Debug, Clone)]
825pub enum SwitchingPolicy {
826    PerformanceBased,
827    ResourceOptimized,
828    HybridAdaptive,
829}
830
831#[derive(Debug, Clone, Default)]
832pub struct FeedbackMechanism;
833
834#[derive(Debug, Clone, Default)]
835pub struct PerformanceMetrics {
836    pub mitigation_overhead: f64,
837}
838
839impl PerformanceMetrics {
840    pub fn new() -> Self {
841        Self {
842            mitigation_overhead: 0.1,
843        }
844    }
845
846    pub fn update(&mut self, _measurements: &Array2<f64>, _gradients: &Array1<f64>) -> Result<()> {
847        // Update performance metrics
848        Ok(())
849    }
850
851    pub fn current_performance(&self) -> f64 {
852        0.85 // Placeholder
853    }
854}
855
856// Additional placeholder types for full compilation
857#[derive(Debug, Clone)]
858pub struct CliffordCircuit;
859
860#[derive(Debug, Clone)]
861pub struct CDRModel;
862
863#[derive(Debug, Clone)]
864pub enum FeatureExtractionMethod {
865    CircuitDepth,
866    GateCount,
867    EntanglementStructure,
868}
869
870#[derive(Debug, Clone)]
871pub struct SymmetryGroup;
872
873#[derive(Debug, Clone)]
874pub struct VerificationCircuit;
875
876#[derive(Debug, Clone)]
877pub enum EntanglementProtocol {
878    Bell,
879    GHZ,
880    Cluster,
881}
882
883#[derive(Debug, Clone)]
884pub struct NoisePredictorModel;
885
886#[derive(Debug, Clone)]
887pub struct CorrectionNetwork;
888
889#[derive(Debug, Clone)]
890pub struct TrainingDataSet;
891
892#[derive(Debug, Clone)]
893pub struct ClassicalPreprocessor;
894
895#[derive(Debug, Clone)]
896pub struct QuantumErrorCorrector;
897
898#[derive(Debug, Clone)]
899pub struct ClassicalPostprocessor;
900
901#[derive(Debug, Clone)]
902pub struct StrategySelectionPolicy;
903
904#[derive(Debug, Clone)]
905pub enum ExponentialForm {
906    SingleExponential,
907    DoubleExponential,
908    Stretched,
909}
910
911#[derive(Debug, Clone)]
912pub enum MethodSelection {
913    CrossValidation,
914    BayesianOptimization,
915    AdaptiveGrid,
916}
917
918#[derive(Debug, Clone)]
919pub enum ScalingFunction {
920    Linear,
921    Polynomial,
922    Exponential,
923}
924
925#[derive(Debug, Clone)]
926pub struct FidelityModel;
927
928#[derive(Debug, Clone)]
929pub struct TemporalFluctuation;
930
931#[derive(Debug, Clone)]
932pub enum CorrelationFunction {
933    Exponential,
934    Gaussian,
935    PowerLaw,
936}
937
938#[derive(Debug, Clone)]
939pub struct NoiseSpectrum;
940
941#[derive(Debug, Clone, Default)]
942pub struct NoiseStatistics;
943
944// Additional implementation methods for supporting types
945impl GateErrorModel {
946    pub fn update_from_statistics(&mut self, _stats: &NoiseStatistics) -> Result<()> {
947        // Update gate error model from statistics
948        Ok(())
949    }
950}
951
952impl MeasurementErrorModel {
953    pub fn update_from_measurements(&mut self, _measurements: &Array2<f64>) -> Result<()> {
954        // Update measurement error model
955        Ok(())
956    }
957}
958
959impl QuantumMLErrorMitigator {
960    // Additional helper method implementations
961    fn apply_matrix_inversion_correction(
962        &self,
963        measurements: &Array2<f64>,
964        calibration_matrix: &Array2<f64>,
965    ) -> Result<Array2<f64>> {
966        // Implement matrix inversion correction
967        Ok(measurements.clone()) // Placeholder
968    }
969
970    fn apply_constrained_least_squares_correction(
971        &self,
972        measurements: &Array2<f64>,
973        calibration_matrix: &Array2<f64>,
974    ) -> Result<Array2<f64>> {
975        // Implement constrained least squares correction
976        Ok(measurements.clone()) // Placeholder
977    }
978
979    fn apply_ml_correction(
980        &self,
981        measurements: &Array2<f64>,
982        calibration_matrix: &Array2<f64>,
983    ) -> Result<Array2<f64>> {
984        // Implement maximum likelihood correction
985        Ok(measurements.clone()) // Placeholder
986    }
987
988    fn extract_circuit_features(&self, circuit: &QuantumCircuit) -> Result<Array1<f64>> {
989        // Extract features from quantum circuit
990        Ok(Array1::zeros(10)) // Placeholder
991    }
992
993    fn generate_training_features(&self, circuits: &[CliffordCircuit]) -> Result<Array2<f64>> {
994        // Generate training features from Clifford circuits
995        Ok(Array2::zeros((circuits.len(), 10))) // Placeholder
996    }
997
998    fn execute_clifford_circuits(&self, circuits: &[CliffordCircuit]) -> Result<Array1<f64>> {
999        // Execute Clifford circuits and return results
1000        Ok(Array1::zeros(circuits.len())) // Placeholder
1001    }
1002
1003    fn apply_cdr_correction(
1004        &self,
1005        measurements: &Array2<f64>,
1006        predicted_values: &Array1<f64>,
1007    ) -> Result<Array2<f64>> {
1008        // Apply CDR correction
1009        Ok(measurements.clone()) // Placeholder
1010    }
1011
1012    fn detect_symmetry_violations(
1013        &self,
1014        circuit: &QuantumCircuit,
1015        measurements: &Array2<f64>,
1016        symmetry_group: &SymmetryGroup,
1017    ) -> Result<Array1<f64>> {
1018        // Detect symmetry violations
1019        Ok(Array1::zeros(measurements.nrows())) // Placeholder
1020    }
1021
1022    fn apply_symmetry_constraints(
1023        &self,
1024        measurements: &Array2<f64>,
1025        violations: &Array1<f64>,
1026        symmetry_group: &SymmetryGroup,
1027    ) -> Result<Array2<f64>> {
1028        // Apply symmetry constraints
1029        Ok(measurements.clone()) // Placeholder
1030    }
1031
1032    fn create_virtual_copies(
1033        &self,
1034        circuit: &QuantumCircuit,
1035        num_copies: usize,
1036    ) -> Result<Vec<QuantumCircuit>> {
1037        // Create virtual copies of circuit
1038        Ok(vec![circuit.clone(); num_copies]) // Placeholder
1039    }
1040
1041    fn measure_virtual_entanglement(&self, circuits: &[QuantumCircuit]) -> Result<Array1<f64>> {
1042        // Measure entanglement between virtual copies
1043        Ok(Array1::zeros(circuits.len())) // Placeholder
1044    }
1045
1046    fn apply_distillation_protocol(
1047        &self,
1048        measurements: &Array2<f64>,
1049        entanglement_measures: &Array1<f64>,
1050    ) -> Result<Array2<f64>> {
1051        // Apply virtual distillation protocol
1052        Ok(measurements.clone()) // Placeholder
1053    }
1054
1055    fn prepare_correction_input(
1056        &self,
1057        measurements: &Array2<f64>,
1058        predicted_noise: &Array1<f64>,
1059    ) -> Result<Array2<f64>> {
1060        // Prepare input for correction network
1061        Ok(measurements.clone()) // Placeholder
1062    }
1063
1064    fn switch_to_best_performing_strategy(&mut self) -> Result<()> {
1065        // Switch to best performing mitigation strategy
1066        Ok(())
1067    }
1068
1069    fn switch_to_resource_optimal_strategy(&mut self) -> Result<()> {
1070        // Switch to most resource efficient strategy
1071        Ok(())
1072    }
1073
1074    fn switch_to_hybrid_adaptive_strategy(&mut self) -> Result<()> {
1075        // Switch to hybrid adaptive strategy
1076        Ok(())
1077    }
1078}
1079
1080// Trait implementations for ML models
1081impl CDRModel {
1082    pub fn train(&self, features: &Array2<f64>, labels: &Array1<f64>) -> Result<TrainedCDRModel> {
1083        // Train CDR regression model
1084        Ok(TrainedCDRModel::default())
1085    }
1086}
1087
1088#[derive(Debug, Clone, Default)]
1089pub struct TrainedCDRModel;
1090
1091impl TrainedCDRModel {
1092    pub fn predict(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
1093        // Predict using trained CDR model
1094        Ok(Array1::zeros(features.len())) // Placeholder
1095    }
1096}
1097
1098impl NoisePredictorModel {
1099    pub fn predict(&self, features: &Array1<f64>) -> Result<Array1<f64>> {
1100        // Predict noise characteristics
1101        Ok(Array1::zeros(features.len())) // Placeholder
1102    }
1103}
1104
1105impl CorrectionNetwork {
1106    pub fn forward(&self, input: &Array2<f64>) -> Result<Array2<f64>> {
1107        // Forward pass through correction network
1108        Ok(Array2::zeros(input.dim())) // Placeholder
1109    }
1110}
1111
1112impl ClassicalPreprocessor {
1113    pub fn process(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1114        // Classical preprocessing
1115        Ok(data.clone()) // Placeholder
1116    }
1117}
1118
1119impl QuantumErrorCorrector {
1120    pub fn correct(&self, circuit: &QuantumCircuit, data: &Array2<f64>) -> Result<Array2<f64>> {
1121        // Quantum error correction
1122        Ok(data.clone()) // Placeholder
1123    }
1124}
1125
1126impl ClassicalPostprocessor {
1127    pub fn process(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
1128        // Classical post-processing
1129        Ok(data.clone()) // Placeholder
1130    }
1131}
1132
1133impl StrategySelectionPolicy {
1134    pub fn select_strategy(
1135        &self,
1136        circuit: &QuantumCircuit,
1137        metrics: &PerformanceMetrics,
1138        strategies: &[MitigationStrategy],
1139    ) -> Result<MitigationStrategy> {
1140        // Select best strategy based on policy
1141        Ok(strategies[0].clone()) // Placeholder
1142    }
1143}