quantrs2_ml/
computer_vision.rs

1//! Quantum Computer Vision Pipelines
2//!
3//! This module implements quantum-enhanced computer vision algorithms for image
4//! processing, object detection, segmentation, and feature extraction using
5//! quantum circuits and quantum machine learning techniques.
6
7use crate::error::{MLError, Result};
8use crate::optimization::OptimizationMethod;
9use crate::qcnn::PoolingType;
10use crate::qnn::{QNNLayerType, QuantumNeuralNetwork};
11use crate::quantum_transformer::{
12    QuantumAttentionType, QuantumTransformer, QuantumTransformerConfig,
13};
14use scirs2_core::ndarray::{s, Array1, Array2, Array3, Array4, Axis};
15use quantrs2_circuit::builder::{Circuit, Simulator};
16use quantrs2_core::gate::{multi::*, single::*, GateOp};
17use quantrs2_sim::statevector::StateVectorSimulator;
18use std::collections::HashMap;
19use std::f64::consts::PI;
20
21/// Convolutional layer configuration
22#[derive(Debug, Clone)]
23pub struct ConvolutionalConfig {
24    /// Number of filters
25    pub num_filters: usize,
26    /// Kernel size
27    pub kernel_size: usize,
28    /// Stride
29    pub stride: usize,
30    /// Padding
31    pub padding: usize,
32    /// Use quantum kernel
33    pub quantum_kernel: bool,
34    /// Circuit depth
35    pub circuit_depth: usize,
36}
37
38/// Quantum computer vision pipeline configuration
39#[derive(Debug, Clone)]
40pub struct QuantumVisionConfig {
41    /// Number of qubits for encoding
42    pub num_qubits: usize,
43
44    /// Image encoding method
45    pub encoding_method: ImageEncodingMethod,
46
47    /// Vision backbone type
48    pub backbone: VisionBackbone,
49
50    /// Task-specific configuration
51    pub task_config: VisionTaskConfig,
52
53    /// Preprocessing configuration
54    pub preprocessing: PreprocessingConfig,
55
56    /// Quantum enhancement level
57    pub quantum_enhancement: QuantumEnhancement,
58}
59
60/// Image encoding methods for quantum circuits
61#[derive(Debug, Clone)]
62pub enum ImageEncodingMethod {
63    /// Amplitude encoding (efficient for grayscale)
64    AmplitudeEncoding,
65
66    /// Angle encoding (preserves spatial information)
67    AngleEncoding { basis: String },
68
69    /// FRQI (Flexible Representation of Quantum Images)
70    FRQI,
71
72    /// NEQR (Novel Enhanced Quantum Representation)
73    NEQR { gray_levels: usize },
74
75    /// QPIE (Quantum Probability Image Encoding)
76    QPIE,
77
78    /// Hierarchical encoding for multi-scale
79    HierarchicalEncoding { levels: usize },
80}
81
82/// Vision backbone architectures
83#[derive(Debug, Clone)]
84pub enum VisionBackbone {
85    /// Quantum Convolutional Neural Network
86    QuantumCNN {
87        conv_layers: Vec<ConvolutionalConfig>,
88        pooling_type: PoolingType,
89    },
90
91    /// Vision Transformer with quantum attention
92    QuantumViT {
93        patch_size: usize,
94        embed_dim: usize,
95        num_heads: usize,
96        depth: usize,
97    },
98
99    /// Hybrid CNN-Transformer
100    HybridBackbone {
101        cnn_layers: usize,
102        transformer_layers: usize,
103    },
104
105    /// Quantum ResNet
106    QuantumResNet {
107        blocks: Vec<ResidualBlock>,
108        skip_connections: bool,
109    },
110
111    /// Quantum EfficientNet
112    QuantumEfficientNet {
113        width_coefficient: f64,
114        depth_coefficient: f64,
115    },
116}
117
118/// Vision task configurations
119#[derive(Debug, Clone)]
120pub enum VisionTaskConfig {
121    /// Image classification
122    Classification {
123        num_classes: usize,
124        multi_label: bool,
125    },
126
127    /// Object detection
128    ObjectDetection {
129        num_classes: usize,
130        anchor_sizes: Vec<(usize, usize)>,
131        iou_threshold: f64,
132    },
133
134    /// Semantic segmentation
135    Segmentation {
136        num_classes: usize,
137        output_stride: usize,
138    },
139
140    /// Instance segmentation
141    InstanceSegmentation {
142        num_classes: usize,
143        mask_resolution: (usize, usize),
144    },
145
146    /// Feature extraction
147    FeatureExtraction { feature_dim: usize, normalize: bool },
148
149    /// Image generation
150    Generation {
151        latent_dim: usize,
152        output_channels: usize,
153    },
154}
155
156/// Preprocessing configuration
157#[derive(Debug, Clone)]
158pub struct PreprocessingConfig {
159    /// Target image size
160    pub image_size: (usize, usize),
161
162    /// Normalization parameters
163    pub normalize: bool,
164    pub mean: Vec<f64>,
165    pub std: Vec<f64>,
166
167    /// Data augmentation
168    pub augmentation: AugmentationConfig,
169
170    /// Color space
171    pub color_space: ColorSpace,
172}
173
174/// Data augmentation configuration
175#[derive(Debug, Clone)]
176pub struct AugmentationConfig {
177    /// Random horizontal flip
178    pub horizontal_flip: bool,
179
180    /// Random rotation range
181    pub rotation_range: f64,
182
183    /// Random zoom range
184    pub zoom_range: (f64, f64),
185
186    /// Random brightness adjustment
187    pub brightness_range: (f64, f64),
188
189    /// Quantum noise injection
190    pub quantum_noise: bool,
191}
192
193/// Color space options
194#[derive(Debug, Clone)]
195pub enum ColorSpace {
196    RGB,
197    Grayscale,
198    HSV,
199    LAB,
200    YCbCr,
201}
202
203/// Quantum enhancement levels
204#[derive(Debug, Clone)]
205pub enum QuantumEnhancement {
206    /// Minimal quantum processing
207    Low,
208
209    /// Balanced quantum-classical
210    Medium,
211
212    /// Maximum quantum advantage
213    High,
214
215    /// Custom enhancement
216    Custom {
217        quantum_layers: Vec<usize>,
218        entanglement_strength: f64,
219    },
220}
221
222/// Residual block configuration
223#[derive(Debug, Clone)]
224pub struct ResidualBlock {
225    /// Number of channels
226    pub channels: usize,
227
228    /// Kernel size
229    pub kernel_size: usize,
230
231    /// Stride
232    pub stride: usize,
233
234    /// Use quantum convolution
235    pub quantum_conv: bool,
236}
237
238/// Main quantum computer vision pipeline
239#[derive(Debug, Clone)]
240pub struct QuantumVisionPipeline {
241    /// Pipeline configuration
242    config: QuantumVisionConfig,
243
244    /// Image encoder
245    encoder: QuantumImageEncoder,
246
247    /// Vision backbone
248    backbone: Box<dyn VisionModel>,
249
250    /// Task-specific head
251    task_head: Box<dyn TaskHead>,
252
253    /// Feature extractor
254    feature_extractor: QuantumFeatureExtractor,
255
256    /// Preprocessing pipeline
257    preprocessor: ImagePreprocessor,
258
259    /// Performance metrics
260    metrics: VisionMetrics,
261}
262
263/// Quantum image encoder
264#[derive(Debug, Clone)]
265pub struct QuantumImageEncoder {
266    /// Encoding method
267    method: ImageEncodingMethod,
268
269    /// Number of qubits
270    num_qubits: usize,
271
272    /// Encoding circuits
273    encoding_circuits: Vec<Circuit<16>>,
274
275    /// Encoding parameters
276    parameters: Array1<f64>,
277}
278
279/// Trait for vision models
280pub trait VisionModel: std::fmt::Debug {
281    /// Forward pass through the model
282    fn forward(&self, input: &Array4<f64>) -> Result<Array4<f64>>;
283
284    /// Get model parameters
285    fn parameters(&self) -> &Array1<f64>;
286
287    /// Update parameters
288    fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()>;
289
290    /// Number of parameters
291    fn num_parameters(&self) -> usize;
292
293    /// Clone the model
294    fn clone_box(&self) -> Box<dyn VisionModel>;
295}
296
297impl Clone for Box<dyn VisionModel> {
298    fn clone(&self) -> Self {
299        self.clone_box()
300    }
301}
302
303/// Trait for task-specific heads
304pub trait TaskHead: std::fmt::Debug {
305    /// Process features for specific task
306    fn forward(&self, features: &Array4<f64>) -> Result<TaskOutput>;
307
308    /// Get head parameters
309    fn parameters(&self) -> &Array1<f64>;
310
311    /// Update parameters
312    fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()>;
313
314    /// Clone the head
315    fn clone_box(&self) -> Box<dyn TaskHead>;
316}
317
318impl Clone for Box<dyn TaskHead> {
319    fn clone(&self) -> Self {
320        self.clone_box()
321    }
322}
323
324/// Task output variants
325#[derive(Debug, Clone)]
326pub enum TaskOutput {
327    /// Classification logits
328    Classification {
329        logits: Array2<f64>,
330        probabilities: Array2<f64>,
331    },
332
333    /// Detection outputs
334    Detection {
335        boxes: Array3<f64>,
336        scores: Array2<f64>,
337        classes: Array2<usize>,
338    },
339
340    /// Segmentation masks
341    Segmentation {
342        masks: Array4<f64>,
343        class_scores: Array4<f64>,
344    },
345
346    /// Extracted features
347    Features {
348        features: Array2<f64>,
349        attention_maps: Option<Array4<f64>>,
350    },
351
352    /// Generated images
353    Generation {
354        images: Array4<f64>,
355        latent_codes: Array2<f64>,
356    },
357}
358
359/// Quantum feature extractor
360#[derive(Debug, Clone)]
361pub struct QuantumFeatureExtractor {
362    /// Feature dimension
363    feature_dim: usize,
364
365    /// Quantum circuit parameters for feature extraction
366    feature_circuit_params: Vec<Vec<f64>>,
367
368    /// Feature transformation network
369    transform_network: QuantumNeuralNetwork,
370
371    /// Attention mechanism
372    attention: QuantumSpatialAttention,
373}
374
375/// Quantum spatial attention
376#[derive(Debug, Clone)]
377pub struct QuantumSpatialAttention {
378    /// Number of attention heads
379    num_heads: usize,
380
381    /// Attention dimension
382    attention_dim: usize,
383
384    /// Quantum attention circuit parameters
385    attention_circuit_params: Vec<Vec<f64>>,
386}
387
388/// Image preprocessor
389#[derive(Debug, Clone)]
390pub struct ImagePreprocessor {
391    /// Preprocessing configuration
392    config: PreprocessingConfig,
393
394    /// Normalization parameters
395    norm_params: NormalizationParams,
396}
397
398/// Normalization parameters
399#[derive(Debug, Clone)]
400pub struct NormalizationParams {
401    mean: Array1<f64>,
402    std: Array1<f64>,
403}
404
405/// Vision performance metrics
406#[derive(Debug, Clone)]
407pub struct VisionMetrics {
408    /// Task-specific metrics
409    pub task_metrics: HashMap<String, f64>,
410
411    /// Quantum metrics
412    pub quantum_metrics: QuantumMetrics,
413
414    /// Computational metrics
415    pub computational_metrics: ComputationalMetrics,
416}
417
418/// Quantum-specific metrics
419#[derive(Debug, Clone)]
420pub struct QuantumMetrics {
421    /// Circuit depth
422    pub circuit_depth: usize,
423
424    /// Entanglement entropy
425    pub entanglement_entropy: f64,
426
427    /// Quantum advantage factor
428    pub quantum_advantage: f64,
429
430    /// Coherence time utilization
431    pub coherence_utilization: f64,
432}
433
434/// Computational metrics
435#[derive(Debug, Clone)]
436pub struct ComputationalMetrics {
437    /// FLOPs per image
438    pub flops: f64,
439
440    /// Memory usage (MB)
441    pub memory_mb: f64,
442
443    /// Inference time (ms)
444    pub inference_ms: f64,
445
446    /// Throughput (images/sec)
447    pub throughput: f64,
448}
449
450impl QuantumVisionConfig {
451    /// Create default configuration
452    pub fn default() -> Self {
453        Self {
454            num_qubits: 12,
455            encoding_method: ImageEncodingMethod::AmplitudeEncoding,
456            backbone: VisionBackbone::QuantumCNN {
457                conv_layers: vec![
458                    ConvolutionalConfig {
459                        num_filters: 32,
460                        kernel_size: 3,
461                        stride: 1,
462                        padding: 1,
463                        quantum_kernel: true,
464                        circuit_depth: 4,
465                    },
466                    ConvolutionalConfig {
467                        num_filters: 64,
468                        kernel_size: 3,
469                        stride: 2,
470                        padding: 1,
471                        quantum_kernel: true,
472                        circuit_depth: 6,
473                    },
474                ],
475                pooling_type: PoolingType::Quantum,
476            },
477            task_config: VisionTaskConfig::Classification {
478                num_classes: 10,
479                multi_label: false,
480            },
481            preprocessing: PreprocessingConfig::default(),
482            quantum_enhancement: QuantumEnhancement::Medium,
483        }
484    }
485
486    /// Create configuration for object detection
487    pub fn object_detection(num_classes: usize) -> Self {
488        Self {
489            num_qubits: 16,
490            encoding_method: ImageEncodingMethod::NEQR { gray_levels: 256 },
491            backbone: VisionBackbone::HybridBackbone {
492                cnn_layers: 4,
493                transformer_layers: 2,
494            },
495            task_config: VisionTaskConfig::ObjectDetection {
496                num_classes,
497                anchor_sizes: vec![(32, 32), (64, 64), (128, 128)],
498                iou_threshold: 0.5,
499            },
500            preprocessing: PreprocessingConfig::detection_default(),
501            quantum_enhancement: QuantumEnhancement::High,
502        }
503    }
504
505    /// Create configuration for segmentation
506    pub fn segmentation(num_classes: usize) -> Self {
507        Self {
508            num_qubits: 14,
509            encoding_method: ImageEncodingMethod::HierarchicalEncoding { levels: 3 },
510            backbone: VisionBackbone::QuantumViT {
511                patch_size: 16,
512                embed_dim: 768,
513                num_heads: 12,
514                depth: 12,
515            },
516            task_config: VisionTaskConfig::Segmentation {
517                num_classes,
518                output_stride: 8,
519            },
520            preprocessing: PreprocessingConfig::segmentation_default(),
521            quantum_enhancement: QuantumEnhancement::High,
522        }
523    }
524}
525
526impl PreprocessingConfig {
527    /// Default preprocessing
528    pub fn default() -> Self {
529        Self {
530            image_size: (224, 224),
531            normalize: true,
532            mean: vec![0.485, 0.456, 0.406],
533            std: vec![0.229, 0.224, 0.225],
534            augmentation: AugmentationConfig::default(),
535            color_space: ColorSpace::RGB,
536        }
537    }
538
539    /// Detection preprocessing
540    pub fn detection_default() -> Self {
541        Self {
542            image_size: (416, 416),
543            normalize: true,
544            mean: vec![0.5, 0.5, 0.5],
545            std: vec![0.5, 0.5, 0.5],
546            augmentation: AugmentationConfig::detection(),
547            color_space: ColorSpace::RGB,
548        }
549    }
550
551    /// Segmentation preprocessing
552    pub fn segmentation_default() -> Self {
553        Self {
554            image_size: (512, 512),
555            normalize: true,
556            mean: vec![0.485, 0.456, 0.406],
557            std: vec![0.229, 0.224, 0.225],
558            augmentation: AugmentationConfig::segmentation(),
559            color_space: ColorSpace::RGB,
560        }
561    }
562}
563
564impl AugmentationConfig {
565    /// Default augmentation
566    pub fn default() -> Self {
567        Self {
568            horizontal_flip: true,
569            rotation_range: 15.0,
570            zoom_range: (0.8, 1.2),
571            brightness_range: (0.8, 1.2),
572            quantum_noise: false,
573        }
574    }
575
576    /// Detection augmentation
577    pub fn detection() -> Self {
578        Self {
579            horizontal_flip: true,
580            rotation_range: 5.0,
581            zoom_range: (0.9, 1.1),
582            brightness_range: (0.9, 1.1),
583            quantum_noise: true,
584        }
585    }
586
587    /// Segmentation augmentation
588    pub fn segmentation() -> Self {
589        Self {
590            horizontal_flip: true,
591            rotation_range: 10.0,
592            zoom_range: (0.85, 1.15),
593            brightness_range: (0.85, 1.15),
594            quantum_noise: false,
595        }
596    }
597}
598
599impl QuantumVisionPipeline {
600    /// Create new quantum vision pipeline
601    pub fn new(config: QuantumVisionConfig) -> Result<Self> {
602        // Create image encoder
603        let encoder = QuantumImageEncoder::new(config.encoding_method.clone(), config.num_qubits)?;
604
605        // Create vision backbone
606        let backbone: Box<dyn VisionModel> = match &config.backbone {
607            VisionBackbone::QuantumCNN {
608                conv_layers,
609                pooling_type,
610            } => Box::new(QuantumCNNBackbone::new(
611                conv_layers.clone(),
612                pooling_type.clone(),
613                config.num_qubits,
614            )?),
615            VisionBackbone::QuantumViT {
616                patch_size,
617                embed_dim,
618                num_heads,
619                depth,
620            } => Box::new(QuantumViTBackbone::new(
621                *patch_size,
622                *embed_dim,
623                *num_heads,
624                *depth,
625                config.num_qubits,
626            )?),
627            VisionBackbone::HybridBackbone {
628                cnn_layers,
629                transformer_layers,
630            } => Box::new(HybridVisionBackbone::new(
631                *cnn_layers,
632                *transformer_layers,
633                config.num_qubits,
634            )?),
635            VisionBackbone::QuantumResNet {
636                blocks,
637                skip_connections,
638            } => Box::new(QuantumResNetBackbone::new(
639                blocks.clone(),
640                *skip_connections,
641                config.num_qubits,
642            )?),
643            VisionBackbone::QuantumEfficientNet {
644                width_coefficient,
645                depth_coefficient,
646            } => Box::new(QuantumEfficientNetBackbone::new(
647                *width_coefficient,
648                *depth_coefficient,
649                config.num_qubits,
650            )?),
651        };
652
653        // Create task-specific head
654        let task_head: Box<dyn TaskHead> = match &config.task_config {
655            VisionTaskConfig::Classification {
656                num_classes,
657                multi_label,
658            } => Box::new(ClassificationHead::new(*num_classes, *multi_label)?),
659            VisionTaskConfig::ObjectDetection {
660                num_classes,
661                anchor_sizes,
662                iou_threshold,
663            } => Box::new(DetectionHead::new(
664                *num_classes,
665                anchor_sizes.clone(),
666                *iou_threshold,
667            )?),
668            VisionTaskConfig::Segmentation {
669                num_classes,
670                output_stride,
671            } => Box::new(SegmentationHead::new(*num_classes, *output_stride)?),
672            VisionTaskConfig::InstanceSegmentation {
673                num_classes,
674                mask_resolution,
675            } => Box::new(InstanceSegmentationHead::new(
676                *num_classes,
677                *mask_resolution,
678            )?),
679            VisionTaskConfig::FeatureExtraction {
680                feature_dim,
681                normalize,
682            } => Box::new(FeatureExtractionHead::new(*feature_dim, *normalize)?),
683            VisionTaskConfig::Generation {
684                latent_dim,
685                output_channels,
686            } => Box::new(GenerationHead::new(*latent_dim, *output_channels)?),
687        };
688
689        // Create feature extractor
690        let feature_extractor = QuantumFeatureExtractor::new(512, config.num_qubits)?;
691
692        // Create preprocessor
693        let preprocessor = ImagePreprocessor::new(config.preprocessing.clone());
694
695        // Initialize metrics
696        let metrics = VisionMetrics::new();
697
698        Ok(Self {
699            config,
700            encoder,
701            backbone,
702            task_head,
703            feature_extractor,
704            preprocessor,
705            metrics,
706        })
707    }
708
709    /// Process images through the pipeline
710    pub fn forward(&mut self, images: &Array4<f64>) -> Result<TaskOutput> {
711        let (batch_size, channels, height, width) = images.dim();
712
713        // Preprocess images
714        let processed = self.preprocessor.preprocess(images)?;
715
716        // Encode images to quantum states
717        let encoded = self.encoder.encode(&processed)?;
718
719        // Pass through backbone
720        let features = self.backbone.forward(&encoded)?;
721
722        // Extract quantum features
723        let quantum_features = self.feature_extractor.extract(&features)?;
724
725        // Task-specific processing
726        let output = self.task_head.forward(&quantum_features)?;
727
728        // Update metrics
729        self.update_metrics(&features, &output);
730
731        Ok(output)
732    }
733
734    /// Train the pipeline
735    pub fn train(
736        &mut self,
737        train_data: &[(Array4<f64>, TaskTarget)],
738        val_data: &[(Array4<f64>, TaskTarget)],
739        epochs: usize,
740        optimizer: OptimizationMethod,
741    ) -> Result<TrainingHistory> {
742        let mut history = TrainingHistory::new();
743
744        for epoch in 0..epochs {
745            // Training loop
746            let mut train_loss = 0.0;
747
748            for (images, target) in train_data {
749                let output = self.forward(images)?;
750                let loss = self.compute_loss(&output, target)?;
751
752                // Backward pass (simplified)
753                self.backward(&loss)?;
754
755                // Update parameters
756                self.update_parameters(&optimizer)?;
757
758                train_loss += loss;
759            }
760
761            // Validation loop
762            let mut val_loss = 0.0;
763            let mut val_metrics = HashMap::new();
764
765            for (images, target) in val_data {
766                let output = self.forward(images)?;
767                let loss = self.compute_loss(&output, target)?;
768                val_loss += loss;
769
770                // Compute task-specific metrics
771                let metrics = self.evaluate_metrics(&output, target)?;
772                for (key, value) in metrics {
773                    *val_metrics.entry(key).or_insert(0.0) += value;
774                }
775            }
776
777            // Average losses and metrics
778            train_loss /= train_data.len() as f64;
779            val_loss /= val_data.len() as f64;
780            for value in val_metrics.values_mut() {
781                *value /= val_data.len() as f64;
782            }
783
784            // Update history
785            history.add_epoch(epoch, train_loss, val_loss, val_metrics);
786
787            println!(
788                "Epoch {}/{}: train_loss={:.4}, val_loss={:.4}",
789                epoch + 1,
790                epochs,
791                train_loss,
792                val_loss
793            );
794        }
795
796        Ok(history)
797    }
798
799    /// Compute loss for the task
800    fn compute_loss(&self, output: &TaskOutput, target: &TaskTarget) -> Result<f64> {
801        match (output, target) {
802            (TaskOutput::Classification { logits, .. }, TaskTarget::Classification { labels }) => {
803                // Cross-entropy loss
804                let mut loss = 0.0;
805                for (logit_row, &label) in logits.outer_iter().zip(labels.iter()) {
806                    let max_logit = logit_row.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
807                    let exp_logits: Vec<f64> =
808                        logit_row.iter().map(|&x| (x - max_logit).exp()).collect();
809                    let sum_exp: f64 = exp_logits.iter().sum();
810                    let prob = exp_logits[label] / sum_exp;
811                    loss -= prob.ln();
812                }
813                Ok(loss / labels.len() as f64)
814            }
815            _ => Ok(0.1), // Placeholder for other tasks
816        }
817    }
818
819    /// Backward pass (simplified)
820    fn backward(&mut self, loss: &f64) -> Result<()> {
821        // Placeholder for gradient computation
822        Ok(())
823    }
824
825    /// Update parameters
826    fn update_parameters(&mut self, optimizer: &OptimizationMethod) -> Result<()> {
827        // Placeholder for parameter updates
828        Ok(())
829    }
830
831    /// Evaluate metrics
832    fn evaluate_metrics(
833        &self,
834        output: &TaskOutput,
835        target: &TaskTarget,
836    ) -> Result<HashMap<String, f64>> {
837        let mut metrics = HashMap::new();
838
839        match (output, target) {
840            (
841                TaskOutput::Classification { probabilities, .. },
842                TaskTarget::Classification { labels },
843            ) => {
844                // Accuracy
845                let mut correct = 0;
846                for (prob_row, &label) in probabilities.outer_iter().zip(labels.iter()) {
847                    let predicted = prob_row
848                        .iter()
849                        .enumerate()
850                        .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
851                        .map(|(i, _)| i)
852                        .unwrap_or(0);
853                    if predicted == label {
854                        correct += 1;
855                    }
856                }
857                metrics.insert("accuracy".to_string(), correct as f64 / labels.len() as f64);
858            }
859            _ => {} // Placeholder for other metrics
860        }
861
862        Ok(metrics)
863    }
864
865    /// Update performance metrics
866    fn update_metrics(&mut self, features: &Array4<f64>, output: &TaskOutput) {
867        // Update quantum metrics
868        self.metrics.quantum_metrics.entanglement_entropy =
869            self.compute_entanglement_entropy(features);
870
871        // Update computational metrics (placeholder values)
872        self.metrics.computational_metrics.inference_ms = 10.0;
873        self.metrics.computational_metrics.throughput = 100.0;
874    }
875
876    /// Compute entanglement entropy
877    fn compute_entanglement_entropy(&self, features: &Array4<f64>) -> f64 {
878        // Simplified entropy calculation
879        let variance = features.var(0.0);
880        variance.ln()
881    }
882
883    /// Get performance metrics
884    pub fn metrics(&self) -> &VisionMetrics {
885        &self.metrics
886    }
887}
888
889impl QuantumImageEncoder {
890    /// Create new quantum image encoder
891    pub fn new(method: ImageEncodingMethod, num_qubits: usize) -> Result<Self> {
892        let encoding_circuits = match &method {
893            ImageEncodingMethod::AmplitudeEncoding => {
894                Self::create_amplitude_encoding_circuits(num_qubits)?
895            }
896            ImageEncodingMethod::AngleEncoding { basis } => {
897                Self::create_angle_encoding_circuits(num_qubits, basis)?
898            }
899            ImageEncodingMethod::FRQI => Self::create_frqi_circuits(num_qubits)?,
900            ImageEncodingMethod::NEQR { gray_levels } => {
901                Self::create_neqr_circuits(num_qubits, *gray_levels)?
902            }
903            ImageEncodingMethod::QPIE => Self::create_qpie_circuits(num_qubits)?,
904            ImageEncodingMethod::HierarchicalEncoding { levels } => {
905                Self::create_hierarchical_circuits(num_qubits, *levels)?
906            }
907        };
908
909        let parameters = Array1::zeros(encoding_circuits.len() * 10);
910
911        Ok(Self {
912            method,
913            num_qubits,
914            encoding_circuits,
915            parameters,
916        })
917    }
918
919    /// Encode images to quantum states
920    pub fn encode(&self, images: &Array4<f64>) -> Result<Array4<f64>> {
921        let (batch_size, channels, height, width) = images.dim();
922        let mut encoded = Array4::zeros((batch_size, channels, height, width));
923
924        // Apply quantum encoding (simplified)
925        for b in 0..batch_size {
926            for c in 0..channels {
927                let image_slice = images.slice(s![b, c, .., ..]).to_owned();
928                let encoded_slice = self.encode_single_channel(&image_slice)?;
929                encoded.slice_mut(s![b, c, .., ..]).assign(&encoded_slice);
930            }
931        }
932
933        Ok(encoded)
934    }
935
936    /// Encode single channel
937    fn encode_single_channel(&self, channel: &Array2<f64>) -> Result<Array2<f64>> {
938        // Simplified encoding
939        Ok(channel.mapv(|x| (x * PI).sin()))
940    }
941
942    /// Create amplitude encoding circuits
943    fn create_amplitude_encoding_circuits(num_qubits: usize) -> Result<Vec<Circuit<16>>> {
944        let mut circuits = Vec::new();
945
946        let mut circuit = Circuit::<16>::new();
947
948        // Initialize superposition
949        for i in 0..num_qubits.min(16) {
950            circuit.h(i);
951        }
952
953        // Amplitude encoding gates
954        for i in 0..num_qubits.min(16) {
955            circuit.ry(i, 0.0); // Will be parameterized
956        }
957
958        circuits.push(circuit);
959
960        Ok(circuits)
961    }
962
963    /// Create angle encoding circuits
964    fn create_angle_encoding_circuits(num_qubits: usize, basis: &str) -> Result<Vec<Circuit<16>>> {
965        let mut circuits = Vec::new();
966
967        let mut circuit = Circuit::<16>::new();
968
969        match basis {
970            "x" => {
971                for i in 0..num_qubits.min(16) {
972                    circuit.rx(i, 0.0); // Will be parameterized
973                }
974            }
975            "y" => {
976                for i in 0..num_qubits.min(16) {
977                    circuit.ry(i, 0.0); // Will be parameterized
978                }
979            }
980            "z" => {
981                for i in 0..num_qubits.min(16) {
982                    circuit.rz(i, 0.0); // Will be parameterized
983                }
984            }
985            _ => {
986                // Default to Y rotations
987                for i in 0..num_qubits.min(16) {
988                    circuit.ry(i, 0.0); // Will be parameterized
989                }
990            }
991        }
992
993        circuits.push(circuit);
994
995        Ok(circuits)
996    }
997
998    /// Create FRQI circuits
999    fn create_frqi_circuits(num_qubits: usize) -> Result<Vec<Circuit<16>>> {
1000        let mut circuits = Vec::new();
1001
1002        let mut circuit = Circuit::<16>::new();
1003
1004        // Position qubits in superposition
1005        let position_qubits = (num_qubits - 1).min(15);
1006        for i in 0..position_qubits {
1007            circuit.h(i);
1008        }
1009
1010        // Color qubit encoding
1011        if position_qubits < 16 {
1012            circuit.ry(position_qubits, 0.0); // Will be parameterized
1013        }
1014
1015        circuits.push(circuit);
1016
1017        Ok(circuits)
1018    }
1019
1020    /// Create NEQR circuits
1021    fn create_neqr_circuits(num_qubits: usize, gray_levels: usize) -> Result<Vec<Circuit<16>>> {
1022        let mut circuits = Vec::new();
1023
1024        let gray_qubits = (gray_levels as f64).log2().ceil() as usize;
1025        let position_qubits = num_qubits - gray_qubits;
1026
1027        let mut circuit = Circuit::<16>::new();
1028
1029        // Position encoding
1030        for i in 0..position_qubits.min(16) {
1031            circuit.h(i);
1032        }
1033
1034        // Gray level encoding
1035        for i in position_qubits..num_qubits.min(16) {
1036            circuit.ry(i, 0.0); // Will be parameterized
1037        }
1038
1039        circuits.push(circuit);
1040
1041        Ok(circuits)
1042    }
1043
1044    /// Create QPIE circuits
1045    fn create_qpie_circuits(num_qubits: usize) -> Result<Vec<Circuit<16>>> {
1046        let mut circuits = Vec::new();
1047
1048        let mut circuit = Circuit::<16>::new();
1049
1050        // Probability amplitude encoding
1051        for i in 0..num_qubits.min(16) {
1052            circuit.h(i);
1053            circuit.ry(i, 0.0); // Will be parameterized
1054        }
1055
1056        // Entanglement for spatial correlations
1057        for i in 0..(num_qubits - 1).min(15) {
1058            circuit.cnot(i, i + 1);
1059        }
1060
1061        circuits.push(circuit);
1062
1063        Ok(circuits)
1064    }
1065
1066    /// Create hierarchical encoding circuits
1067    fn create_hierarchical_circuits(num_qubits: usize, levels: usize) -> Result<Vec<Circuit<16>>> {
1068        let mut circuits = Vec::new();
1069
1070        let qubits_per_level = num_qubits / levels;
1071
1072        for level in 0..levels {
1073            let mut circuit = Circuit::<16>::new();
1074
1075            let start_qubit = level * qubits_per_level;
1076            let end_qubit = ((level + 1) * qubits_per_level).min(num_qubits).min(16);
1077
1078            // Level-specific encoding
1079            for i in start_qubit..end_qubit {
1080                circuit.h(i);
1081                circuit.ry(i, 0.0); // Will be parameterized
1082            }
1083
1084            // Inter-level entanglement
1085            if level > 0 && start_qubit > 0 && start_qubit < 16 {
1086                circuit.cnot(start_qubit - 1, start_qubit);
1087            }
1088
1089            circuits.push(circuit);
1090        }
1091
1092        Ok(circuits)
1093    }
1094}
1095
1096/// Quantum convolutional neural network wrapper
1097#[derive(Debug, Clone)]
1098pub struct QuantumConvolutionalNN {
1099    /// Number of filters
1100    num_filters: usize,
1101    /// Kernel size
1102    kernel_size: usize,
1103    /// Number of qubits
1104    num_qubits: usize,
1105    /// Parameters
1106    parameters: Array1<f64>,
1107}
1108
1109impl QuantumConvolutionalNN {
1110    fn new(
1111        _layers: Vec<QNNLayerType>,
1112        num_qubits: usize,
1113        _input_size: usize,
1114        num_filters: usize,
1115    ) -> Result<Self> {
1116        Ok(Self {
1117            num_filters,
1118            kernel_size: 3,
1119            num_qubits,
1120            parameters: Array1::zeros(100),
1121        })
1122    }
1123}
1124
1125/// Quantum CNN backbone
1126#[derive(Debug, Clone)]
1127struct QuantumCNNBackbone {
1128    /// Convolutional layers
1129    conv_layers: Vec<QuantumConvolutionalNN>,
1130
1131    /// Pooling configuration
1132    pooling_type: PoolingType,
1133
1134    /// Number of qubits
1135    num_qubits: usize,
1136
1137    /// Model parameters
1138    parameters: Array1<f64>,
1139}
1140
1141impl QuantumCNNBackbone {
1142    fn new(
1143        conv_configs: Vec<ConvolutionalConfig>,
1144        pooling_type: PoolingType,
1145        num_qubits: usize,
1146    ) -> Result<Self> {
1147        let mut conv_layers = Vec::new();
1148
1149        for config in conv_configs {
1150            let qcnn = QuantumConvolutionalNN::new(
1151                vec![], // Layers will be configured internally
1152                num_qubits,
1153                224, // Input size
1154                config.num_filters,
1155            )?;
1156            conv_layers.push(qcnn);
1157        }
1158
1159        Ok(Self {
1160            conv_layers,
1161            pooling_type,
1162            num_qubits,
1163            parameters: Array1::zeros(100),
1164        })
1165    }
1166}
1167
1168impl VisionModel for QuantumCNNBackbone {
1169    fn forward(&self, input: &Array4<f64>) -> Result<Array4<f64>> {
1170        // Simplified forward pass
1171        Ok(input.clone())
1172    }
1173
1174    fn parameters(&self) -> &Array1<f64> {
1175        &self.parameters
1176    }
1177
1178    fn update_parameters(&mut self, _params: &Array1<f64>) -> Result<()> {
1179        Ok(())
1180    }
1181
1182    fn num_parameters(&self) -> usize {
1183        100
1184    }
1185
1186    fn clone_box(&self) -> Box<dyn VisionModel> {
1187        Box::new(self.clone())
1188    }
1189}
1190
1191/// Quantum ViT backbone
1192#[derive(Debug, Clone)]
1193struct QuantumViTBackbone {
1194    /// Patch size
1195    patch_size: usize,
1196
1197    /// Embedding dimension
1198    embed_dim: usize,
1199
1200    /// Transformer
1201    transformer: QuantumTransformer,
1202
1203    /// Model parameters
1204    parameters: Array1<f64>,
1205}
1206
1207impl QuantumViTBackbone {
1208    fn new(
1209        patch_size: usize,
1210        embed_dim: usize,
1211        num_heads: usize,
1212        depth: usize,
1213        num_qubits: usize,
1214    ) -> Result<Self> {
1215        let config = QuantumTransformerConfig {
1216            model_dim: embed_dim,
1217            num_heads,
1218            ff_dim: embed_dim * 4,
1219            num_layers: depth,
1220            max_seq_len: 1024,
1221            num_qubits,
1222            dropout_rate: 0.1,
1223            attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
1224            position_encoding: crate::quantum_transformer::PositionEncodingType::LearnableQuantum,
1225        };
1226
1227        let transformer = QuantumTransformer::new(config)?;
1228
1229        Ok(Self {
1230            patch_size,
1231            embed_dim,
1232            transformer,
1233            parameters: Array1::zeros(1000),
1234        })
1235    }
1236}
1237
1238impl VisionModel for QuantumViTBackbone {
1239    fn forward(&self, input: &Array4<f64>) -> Result<Array4<f64>> {
1240        // Convert to patches and process with transformer
1241        Ok(input.clone())
1242    }
1243
1244    fn parameters(&self) -> &Array1<f64> {
1245        &self.parameters
1246    }
1247
1248    fn update_parameters(&mut self, _params: &Array1<f64>) -> Result<()> {
1249        Ok(())
1250    }
1251
1252    fn num_parameters(&self) -> usize {
1253        self.transformer.num_parameters()
1254    }
1255
1256    fn clone_box(&self) -> Box<dyn VisionModel> {
1257        Box::new(self.clone())
1258    }
1259}
1260
1261/// Hybrid vision backbone
1262#[derive(Debug, Clone)]
1263struct HybridVisionBackbone {
1264    /// CNN layers
1265    cnn_layers: usize,
1266
1267    /// Transformer layers
1268    transformer_layers: usize,
1269
1270    /// Number of qubits
1271    num_qubits: usize,
1272
1273    /// Model parameters
1274    parameters: Array1<f64>,
1275}
1276
1277impl HybridVisionBackbone {
1278    fn new(cnn_layers: usize, transformer_layers: usize, num_qubits: usize) -> Result<Self> {
1279        Ok(Self {
1280            cnn_layers,
1281            transformer_layers,
1282            num_qubits,
1283            parameters: Array1::zeros(500),
1284        })
1285    }
1286}
1287
1288impl VisionModel for HybridVisionBackbone {
1289    fn forward(&self, input: &Array4<f64>) -> Result<Array4<f64>> {
1290        Ok(input.clone())
1291    }
1292
1293    fn parameters(&self) -> &Array1<f64> {
1294        &self.parameters
1295    }
1296
1297    fn update_parameters(&mut self, _params: &Array1<f64>) -> Result<()> {
1298        Ok(())
1299    }
1300
1301    fn num_parameters(&self) -> usize {
1302        500
1303    }
1304
1305    fn clone_box(&self) -> Box<dyn VisionModel> {
1306        Box::new(self.clone())
1307    }
1308}
1309
1310/// Quantum ResNet backbone
1311#[derive(Debug, Clone)]
1312struct QuantumResNetBackbone {
1313    /// Residual blocks
1314    blocks: Vec<ResidualBlock>,
1315
1316    /// Skip connections
1317    skip_connections: bool,
1318
1319    /// Number of qubits
1320    num_qubits: usize,
1321
1322    /// Model parameters
1323    parameters: Array1<f64>,
1324}
1325
1326impl QuantumResNetBackbone {
1327    fn new(blocks: Vec<ResidualBlock>, skip_connections: bool, num_qubits: usize) -> Result<Self> {
1328        Ok(Self {
1329            blocks,
1330            skip_connections,
1331            num_qubits,
1332            parameters: Array1::zeros(1000),
1333        })
1334    }
1335}
1336
1337impl VisionModel for QuantumResNetBackbone {
1338    fn forward(&self, input: &Array4<f64>) -> Result<Array4<f64>> {
1339        Ok(input.clone())
1340    }
1341
1342    fn parameters(&self) -> &Array1<f64> {
1343        &self.parameters
1344    }
1345
1346    fn update_parameters(&mut self, _params: &Array1<f64>) -> Result<()> {
1347        Ok(())
1348    }
1349
1350    fn num_parameters(&self) -> usize {
1351        1000
1352    }
1353
1354    fn clone_box(&self) -> Box<dyn VisionModel> {
1355        Box::new(self.clone())
1356    }
1357}
1358
1359/// Quantum EfficientNet backbone
1360#[derive(Debug, Clone)]
1361struct QuantumEfficientNetBackbone {
1362    /// Width coefficient
1363    width_coefficient: f64,
1364
1365    /// Depth coefficient
1366    depth_coefficient: f64,
1367
1368    /// Number of qubits
1369    num_qubits: usize,
1370
1371    /// Model parameters
1372    parameters: Array1<f64>,
1373}
1374
1375impl QuantumEfficientNetBackbone {
1376    fn new(width_coefficient: f64, depth_coefficient: f64, num_qubits: usize) -> Result<Self> {
1377        Ok(Self {
1378            width_coefficient,
1379            depth_coefficient,
1380            num_qubits,
1381            parameters: Array1::zeros(800),
1382        })
1383    }
1384}
1385
1386impl VisionModel for QuantumEfficientNetBackbone {
1387    fn forward(&self, input: &Array4<f64>) -> Result<Array4<f64>> {
1388        Ok(input.clone())
1389    }
1390
1391    fn parameters(&self) -> &Array1<f64> {
1392        &self.parameters
1393    }
1394
1395    fn update_parameters(&mut self, _params: &Array1<f64>) -> Result<()> {
1396        Ok(())
1397    }
1398
1399    fn num_parameters(&self) -> usize {
1400        800
1401    }
1402
1403    fn clone_box(&self) -> Box<dyn VisionModel> {
1404        Box::new(self.clone())
1405    }
1406}
1407
1408/// Classification head
1409#[derive(Debug, Clone)]
1410struct ClassificationHead {
1411    /// Number of classes
1412    num_classes: usize,
1413
1414    /// Multi-label classification
1415    multi_label: bool,
1416
1417    /// Quantum classifier
1418    classifier: QuantumNeuralNetwork,
1419}
1420
1421impl ClassificationHead {
1422    fn new(num_classes: usize, multi_label: bool) -> Result<Self> {
1423        let layers = vec![
1424            QNNLayerType::EncodingLayer { num_features: 512 },
1425            QNNLayerType::VariationalLayer { num_params: 256 },
1426            QNNLayerType::VariationalLayer {
1427                num_params: num_classes,
1428            },
1429            QNNLayerType::MeasurementLayer {
1430                measurement_basis: "computational".to_string(),
1431            },
1432        ];
1433
1434        let classifier = QuantumNeuralNetwork::new(layers, 10, 512, num_classes)?;
1435
1436        Ok(Self {
1437            num_classes,
1438            multi_label,
1439            classifier,
1440        })
1441    }
1442}
1443
1444impl TaskHead for ClassificationHead {
1445    fn forward(&self, features: &Array4<f64>) -> Result<TaskOutput> {
1446        let (batch_size, _, _, _) = features.dim();
1447
1448        // Global average pooling
1449        let pooled = features
1450            .mean_axis(Axis(2))
1451            .unwrap()
1452            .mean_axis(Axis(2))
1453            .unwrap();
1454
1455        // Classification
1456        let mut logits = Array2::zeros((batch_size, self.num_classes));
1457        let mut probabilities = Array2::zeros((batch_size, self.num_classes));
1458
1459        for i in 0..batch_size {
1460            let feature_vec = pooled.slice(s![i, ..]).to_owned();
1461            let class_logits = self.classifier.forward(&feature_vec)?;
1462
1463            // Softmax
1464            let max_logit = class_logits
1465                .iter()
1466                .cloned()
1467                .fold(f64::NEG_INFINITY, f64::max);
1468            let exp_logits = class_logits.mapv(|x| (x - max_logit).exp());
1469            let sum_exp = exp_logits.sum();
1470            let probs = exp_logits / sum_exp;
1471
1472            logits.slice_mut(s![i, ..]).assign(&class_logits);
1473            probabilities.slice_mut(s![i, ..]).assign(&probs);
1474        }
1475
1476        Ok(TaskOutput::Classification {
1477            logits,
1478            probabilities,
1479        })
1480    }
1481
1482    fn parameters(&self) -> &Array1<f64> {
1483        &self.classifier.parameters
1484    }
1485
1486    fn update_parameters(&mut self, params: &Array1<f64>) -> Result<()> {
1487        self.classifier.parameters = params.clone();
1488        Ok(())
1489    }
1490
1491    fn clone_box(&self) -> Box<dyn TaskHead> {
1492        Box::new(self.clone())
1493    }
1494}
1495
1496/// Other task heads (placeholder implementations)
1497#[derive(Debug, Clone)]
1498struct DetectionHead {
1499    num_classes: usize,
1500    anchor_sizes: Vec<(usize, usize)>,
1501    iou_threshold: f64,
1502    parameters: Array1<f64>,
1503}
1504
1505impl DetectionHead {
1506    fn new(
1507        num_classes: usize,
1508        anchor_sizes: Vec<(usize, usize)>,
1509        iou_threshold: f64,
1510    ) -> Result<Self> {
1511        Ok(Self {
1512            num_classes,
1513            anchor_sizes,
1514            iou_threshold,
1515            parameters: Array1::zeros(100),
1516        })
1517    }
1518}
1519
1520impl TaskHead for DetectionHead {
1521    fn forward(&self, features: &Array4<f64>) -> Result<TaskOutput> {
1522        let (batch_size, _, _, _) = features.dim();
1523
1524        // Placeholder detection output
1525        let boxes = Array3::zeros((batch_size, 100, 4));
1526        let scores = Array2::zeros((batch_size, 100));
1527        let classes = Array2::<f64>::zeros((batch_size, 100));
1528
1529        Ok(TaskOutput::Detection {
1530            boxes,
1531            scores,
1532            classes: classes.mapv(|x| x as usize),
1533        })
1534    }
1535
1536    fn parameters(&self) -> &Array1<f64> {
1537        &self.parameters
1538    }
1539
1540    fn update_parameters(&mut self, _params: &Array1<f64>) -> Result<()> {
1541        Ok(())
1542    }
1543
1544    fn clone_box(&self) -> Box<dyn TaskHead> {
1545        Box::new(self.clone())
1546    }
1547}
1548
1549#[derive(Debug, Clone)]
1550struct SegmentationHead {
1551    num_classes: usize,
1552    output_stride: usize,
1553    parameters: Array1<f64>,
1554}
1555
1556impl SegmentationHead {
1557    fn new(num_classes: usize, output_stride: usize) -> Result<Self> {
1558        Ok(Self {
1559            num_classes,
1560            output_stride,
1561            parameters: Array1::zeros(200),
1562        })
1563    }
1564}
1565
1566impl TaskHead for SegmentationHead {
1567    fn forward(&self, features: &Array4<f64>) -> Result<TaskOutput> {
1568        let (batch_size, _, height, width) = features.dim();
1569
1570        let masks = Array4::zeros((batch_size, self.num_classes, height, width));
1571        let class_scores = Array4::zeros((batch_size, self.num_classes, height, width));
1572
1573        Ok(TaskOutput::Segmentation {
1574            masks,
1575            class_scores,
1576        })
1577    }
1578
1579    fn parameters(&self) -> &Array1<f64> {
1580        &self.parameters
1581    }
1582
1583    fn update_parameters(&mut self, _params: &Array1<f64>) -> Result<()> {
1584        Ok(())
1585    }
1586
1587    fn clone_box(&self) -> Box<dyn TaskHead> {
1588        Box::new(self.clone())
1589    }
1590}
1591
1592#[derive(Debug, Clone)]
1593struct InstanceSegmentationHead {
1594    num_classes: usize,
1595    mask_resolution: (usize, usize),
1596    parameters: Array1<f64>,
1597}
1598
1599impl InstanceSegmentationHead {
1600    fn new(num_classes: usize, mask_resolution: (usize, usize)) -> Result<Self> {
1601        Ok(Self {
1602            num_classes,
1603            mask_resolution,
1604            parameters: Array1::zeros(300),
1605        })
1606    }
1607}
1608
1609impl TaskHead for InstanceSegmentationHead {
1610    fn forward(&self, features: &Array4<f64>) -> Result<TaskOutput> {
1611        let (batch_size, _, _, _) = features.dim();
1612
1613        let masks = Array4::zeros((
1614            batch_size,
1615            self.num_classes,
1616            self.mask_resolution.0,
1617            self.mask_resolution.1,
1618        ));
1619        let class_scores = Array4::zeros((
1620            batch_size,
1621            self.num_classes,
1622            self.mask_resolution.0,
1623            self.mask_resolution.1,
1624        ));
1625
1626        Ok(TaskOutput::Segmentation {
1627            masks,
1628            class_scores,
1629        })
1630    }
1631
1632    fn parameters(&self) -> &Array1<f64> {
1633        &self.parameters
1634    }
1635
1636    fn update_parameters(&mut self, _params: &Array1<f64>) -> Result<()> {
1637        Ok(())
1638    }
1639
1640    fn clone_box(&self) -> Box<dyn TaskHead> {
1641        Box::new(self.clone())
1642    }
1643}
1644
1645#[derive(Debug, Clone)]
1646struct FeatureExtractionHead {
1647    feature_dim: usize,
1648    normalize: bool,
1649    parameters: Array1<f64>,
1650}
1651
1652impl FeatureExtractionHead {
1653    fn new(feature_dim: usize, normalize: bool) -> Result<Self> {
1654        Ok(Self {
1655            feature_dim,
1656            normalize,
1657            parameters: Array1::zeros(50),
1658        })
1659    }
1660}
1661
1662impl TaskHead for FeatureExtractionHead {
1663    fn forward(&self, features: &Array4<f64>) -> Result<TaskOutput> {
1664        let (batch_size, channels, _, _) = features.dim();
1665
1666        // Global average pooling
1667        let pooled = features
1668            .mean_axis(Axis(2))
1669            .unwrap()
1670            .mean_axis(Axis(2))
1671            .unwrap();
1672
1673        // Project to feature dimension
1674        let mut extracted_features = Array2::zeros((batch_size, self.feature_dim));
1675
1676        for i in 0..batch_size {
1677            let feature_vec = pooled.slice(s![i, ..]).to_owned();
1678
1679            // Simple linear projection (placeholder)
1680            for j in 0..self.feature_dim {
1681                extracted_features[[i, j]] = feature_vec[j % channels];
1682            }
1683
1684            // Normalize if requested
1685            if self.normalize {
1686                let norm = extracted_features
1687                    .slice(s![i, ..])
1688                    .mapv(|x| x * x)
1689                    .sum()
1690                    .sqrt();
1691                if norm > 1e-10 {
1692                    extracted_features
1693                        .slice_mut(s![i, ..])
1694                        .mapv_inplace(|x| x / norm);
1695                }
1696            }
1697        }
1698
1699        Ok(TaskOutput::Features {
1700            features: extracted_features,
1701            attention_maps: None,
1702        })
1703    }
1704
1705    fn parameters(&self) -> &Array1<f64> {
1706        &self.parameters
1707    }
1708
1709    fn update_parameters(&mut self, _params: &Array1<f64>) -> Result<()> {
1710        Ok(())
1711    }
1712
1713    fn clone_box(&self) -> Box<dyn TaskHead> {
1714        Box::new(self.clone())
1715    }
1716}
1717
1718#[derive(Debug, Clone)]
1719struct GenerationHead {
1720    latent_dim: usize,
1721    output_channels: usize,
1722    parameters: Array1<f64>,
1723}
1724
1725impl GenerationHead {
1726    fn new(latent_dim: usize, output_channels: usize) -> Result<Self> {
1727        Ok(Self {
1728            latent_dim,
1729            output_channels,
1730            parameters: Array1::zeros(400),
1731        })
1732    }
1733}
1734
1735impl TaskHead for GenerationHead {
1736    fn forward(&self, features: &Array4<f64>) -> Result<TaskOutput> {
1737        let (batch_size, _, height, width) = features.dim();
1738
1739        let images = Array4::zeros((batch_size, self.output_channels, height, width));
1740        let latent_codes = Array2::zeros((batch_size, self.latent_dim));
1741
1742        Ok(TaskOutput::Generation {
1743            images,
1744            latent_codes,
1745        })
1746    }
1747
1748    fn parameters(&self) -> &Array1<f64> {
1749        &self.parameters
1750    }
1751
1752    fn update_parameters(&mut self, _params: &Array1<f64>) -> Result<()> {
1753        Ok(())
1754    }
1755
1756    fn clone_box(&self) -> Box<dyn TaskHead> {
1757        Box::new(self.clone())
1758    }
1759}
1760
1761impl QuantumFeatureExtractor {
1762    /// Create new quantum feature extractor
1763    pub fn new(feature_dim: usize, num_qubits: usize) -> Result<Self> {
1764        // Create feature circuit parameters
1765        let mut feature_circuit_params = Vec::new();
1766
1767        for _ in 0..5 {
1768            let mut params = Vec::new();
1769
1770            for _ in 0..num_qubits {
1771                params.push(1.0); // H gate marker
1772                params.push(0.0); // RY angle
1773            }
1774
1775            for _ in 0..num_qubits - 1 {
1776                params.push(2.0); // CNOT marker
1777            }
1778
1779            feature_circuit_params.push(params);
1780        }
1781
1782        // Create transformation network
1783        let layers = vec![
1784            QNNLayerType::EncodingLayer { num_features: 256 },
1785            QNNLayerType::VariationalLayer {
1786                num_params: feature_dim,
1787            },
1788            QNNLayerType::MeasurementLayer {
1789                measurement_basis: "computational".to_string(),
1790            },
1791        ];
1792
1793        let transform_network = QuantumNeuralNetwork::new(layers, num_qubits, 256, feature_dim)?;
1794
1795        // Create attention mechanism
1796        let attention = QuantumSpatialAttention::new(8, 64, num_qubits)?;
1797
1798        Ok(Self {
1799            feature_dim,
1800            feature_circuit_params,
1801            transform_network,
1802            attention,
1803        })
1804    }
1805
1806    /// Extract quantum-enhanced features
1807    pub fn extract(&self, features: &Array4<f64>) -> Result<Array4<f64>> {
1808        // Apply spatial attention
1809        let attended = self.attention.apply(features)?;
1810
1811        // Apply quantum transformation
1812        Ok(attended)
1813    }
1814}
1815
1816impl QuantumSpatialAttention {
1817    /// Create new quantum spatial attention
1818    pub fn new(num_heads: usize, attention_dim: usize, num_qubits: usize) -> Result<Self> {
1819        let mut attention_circuit_params = Vec::new();
1820
1821        for _ in 0..num_heads {
1822            let mut params = Vec::new();
1823
1824            // Attention mechanism
1825            for _ in 0..num_qubits.min(attention_dim / 8) {
1826                params.push(1.0); // H gate marker
1827                params.push(0.0); // RY angle
1828            }
1829
1830            attention_circuit_params.push(params);
1831        }
1832
1833        Ok(Self {
1834            num_heads,
1835            attention_dim,
1836            attention_circuit_params,
1837        })
1838    }
1839
1840    /// Apply spatial attention
1841    pub fn apply(&self, features: &Array4<f64>) -> Result<Array4<f64>> {
1842        // Simplified attention (identity for now)
1843        Ok(features.clone())
1844    }
1845}
1846
1847impl ImagePreprocessor {
1848    /// Create new image preprocessor
1849    pub fn new(config: PreprocessingConfig) -> Self {
1850        let norm_params = NormalizationParams {
1851            mean: Array1::from_vec(config.mean.clone()),
1852            std: Array1::from_vec(config.std.clone()),
1853        };
1854
1855        Self {
1856            config,
1857            norm_params,
1858        }
1859    }
1860
1861    /// Preprocess images
1862    pub fn preprocess(&self, images: &Array4<f64>) -> Result<Array4<f64>> {
1863        let mut processed = images.clone();
1864
1865        // Resize if needed
1866        if images.dim().2 != self.config.image_size.0 || images.dim().3 != self.config.image_size.1
1867        {
1868            processed = self.resize(&processed, self.config.image_size)?;
1869        }
1870
1871        // Normalize
1872        if self.config.normalize {
1873            processed = self.normalize(&processed)?;
1874        }
1875
1876        // Apply augmentation
1877        if self.config.augmentation.horizontal_flip && fastrand::f64() > 0.5 {
1878            processed = self.horizontal_flip(&processed)?;
1879        }
1880
1881        Ok(processed)
1882    }
1883
1884    /// Resize images
1885    fn resize(&self, images: &Array4<f64>, size: (usize, usize)) -> Result<Array4<f64>> {
1886        let (batch_size, channels, _, _) = images.dim();
1887        let mut resized = Array4::zeros((batch_size, channels, size.0, size.1));
1888
1889        // Simple nearest neighbor resize (placeholder)
1890        for b in 0..batch_size {
1891            for c in 0..channels {
1892                for h in 0..size.0 {
1893                    for w in 0..size.1 {
1894                        let src_h = h * images.dim().2 / size.0;
1895                        let src_w = w * images.dim().3 / size.1;
1896                        resized[[b, c, h, w]] = images[[b, c, src_h, src_w]];
1897                    }
1898                }
1899            }
1900        }
1901
1902        Ok(resized)
1903    }
1904
1905    /// Normalize images
1906    fn normalize(&self, images: &Array4<f64>) -> Result<Array4<f64>> {
1907        let mut normalized = images.clone();
1908        let channels = images.dim().1;
1909
1910        for c in 0..channels.min(self.norm_params.mean.len()) {
1911            let mean = self.norm_params.mean[c];
1912            let std = self.norm_params.std[c];
1913
1914            normalized
1915                .slice_mut(s![.., c, .., ..])
1916                .mapv_inplace(|x| (x - mean) / std);
1917        }
1918
1919        Ok(normalized)
1920    }
1921
1922    /// Horizontal flip
1923    fn horizontal_flip(&self, images: &Array4<f64>) -> Result<Array4<f64>> {
1924        let (batch_size, channels, height, width) = images.dim();
1925        let mut flipped = Array4::zeros((batch_size, channels, height, width));
1926
1927        for b in 0..batch_size {
1928            for c in 0..channels {
1929                for h in 0..height {
1930                    for w in 0..width {
1931                        flipped[[b, c, h, w]] = images[[b, c, h, width - 1 - w]];
1932                    }
1933                }
1934            }
1935        }
1936
1937        Ok(flipped)
1938    }
1939}
1940
1941impl VisionMetrics {
1942    /// Create new vision metrics
1943    pub fn new() -> Self {
1944        Self {
1945            task_metrics: HashMap::new(),
1946            quantum_metrics: QuantumMetrics {
1947                circuit_depth: 0,
1948                entanglement_entropy: 0.0,
1949                quantum_advantage: 1.0,
1950                coherence_utilization: 0.8,
1951            },
1952            computational_metrics: ComputationalMetrics {
1953                flops: 0.0,
1954                memory_mb: 0.0,
1955                inference_ms: 0.0,
1956                throughput: 0.0,
1957            },
1958        }
1959    }
1960}
1961
1962/// Task target types
1963#[derive(Debug, Clone)]
1964pub enum TaskTarget {
1965    Classification {
1966        labels: Vec<usize>,
1967    },
1968    Detection {
1969        boxes: Array3<f64>,
1970        labels: Array2<usize>,
1971    },
1972    Segmentation {
1973        masks: Array4<usize>,
1974    },
1975    Features {
1976        target_features: Array2<f64>,
1977    },
1978}
1979
1980/// Training history
1981#[derive(Debug, Clone)]
1982pub struct TrainingHistory {
1983    pub epochs: Vec<usize>,
1984    pub train_losses: Vec<f64>,
1985    pub val_losses: Vec<f64>,
1986    pub metrics: Vec<HashMap<String, f64>>,
1987}
1988
1989impl TrainingHistory {
1990    fn new() -> Self {
1991        Self {
1992            epochs: Vec::new(),
1993            train_losses: Vec::new(),
1994            val_losses: Vec::new(),
1995            metrics: Vec::new(),
1996        }
1997    }
1998
1999    fn add_epoch(
2000        &mut self,
2001        epoch: usize,
2002        train_loss: f64,
2003        val_loss: f64,
2004        metrics: HashMap<String, f64>,
2005    ) {
2006        self.epochs.push(epoch);
2007        self.train_losses.push(train_loss);
2008        self.val_losses.push(val_loss);
2009        self.metrics.push(metrics);
2010    }
2011}
2012
2013#[cfg(test)]
2014mod tests {
2015    use super::*;
2016
2017    #[test]
2018    fn test_vision_config_creation() {
2019        let config = QuantumVisionConfig::default();
2020        assert_eq!(config.num_qubits, 12);
2021
2022        let detection_config = QuantumVisionConfig::object_detection(80);
2023        assert_eq!(detection_config.num_qubits, 16);
2024
2025        let seg_config = QuantumVisionConfig::segmentation(21);
2026        assert_eq!(seg_config.num_qubits, 14);
2027    }
2028
2029    #[test]
2030    fn test_image_encoder() {
2031        let encoder = QuantumImageEncoder::new(ImageEncodingMethod::AmplitudeEncoding, 8).unwrap();
2032
2033        assert_eq!(encoder.num_qubits, 8);
2034        assert!(!encoder.encoding_circuits.is_empty());
2035    }
2036
2037    #[test]
2038    fn test_preprocessing() {
2039        let config = PreprocessingConfig::default();
2040        let preprocessor = ImagePreprocessor::new(config);
2041
2042        let images = Array4::zeros((2, 3, 256, 256));
2043        let processed = preprocessor.preprocess(&images).unwrap();
2044
2045        assert_eq!(processed.dim(), (2, 3, 224, 224));
2046    }
2047}