quantrs2_ml/
classification.rs1use crate::error::{MLError, Result};
2use scirs2_core::ndarray::{Array1, Array2};
3
4#[derive(Debug, Clone)]
6pub struct ClassificationMetrics {
7 pub accuracy: f64,
9
10 pub precision: f64,
12
13 pub recall: f64,
15
16 pub f1_score: f64,
18
19 pub auc: f64,
21
22 pub confusion_matrix: Array2<f64>,
24
25 pub class_accuracies: Vec<f64>,
27
28 pub class_labels: Vec<String>,
30
31 pub average_loss: f64,
33}
34
35pub trait Classifier {
37 fn train(&mut self, x_train: &Array2<f64>, y_train: &Array1<f64>) -> Result<()>;
39
40 fn predict(&self, x: &Array1<f64>) -> Result<usize>;
42
43 fn predict_batch(&self, x: &Array2<f64>) -> Result<Array1<usize>> {
45 let mut predictions = Array1::zeros(x.nrows());
46
47 for i in 0..x.nrows() {
48 predictions[i] = self.predict(&x.row(i).to_owned())?;
49 }
50
51 Ok(predictions)
52 }
53
54 fn predict_proba(&self, x: &Array1<f64>) -> Result<Array1<f64>>;
56
57 fn evaluate(&self, x_test: &Array2<f64>, y_test: &Array1<f64>)
59 -> Result<ClassificationMetrics>;
60}