quantrs2_ml/
circuit_integration.rs

1//! Circuit integration for quantum machine learning
2//!
3//! This module provides seamless integration between quantum ML algorithms
4//! and the QuantRS2 circuit module, enabling efficient execution of
5//! quantum circuits on various backends.
6
7use crate::error::{MLError, Result};
8use scirs2_core::ndarray::{Array1, Array2};
9use scirs2_core::Complex64;
10use quantrs2_circuit::prelude::*;
11use quantrs2_core::prelude::*;
12use quantrs2_sim::prelude::StateVectorSimulator;
13use std::collections::HashMap;
14
15/// Quantum circuit executor for ML applications
16pub struct QuantumMLExecutor<const N: usize> {
17    /// Circuit builder
18    circuit_builder: CircuitBuilder<N>,
19    /// Parameter mapping
20    parameter_map: HashMap<String, usize>,
21    /// Simulator backend
22    simulator: Option<StateVectorSimulator>,
23    /// Device backend
24    device: Option<String>,
25}
26
27impl<const N: usize> QuantumMLExecutor<N> {
28    /// Create a new quantum ML executor
29    pub fn new() -> Self {
30        Self {
31            circuit_builder: CircuitBuilder::new(),
32            parameter_map: HashMap::new(),
33            simulator: None,
34            device: None,
35        }
36    }
37
38    /// Set simulator backend
39    pub fn with_simulator(mut self, simulator: StateVectorSimulator) -> Self {
40        self.simulator = Some(simulator);
41        self
42    }
43
44    /// Set device backend
45    pub fn with_device(mut self, device: impl Into<String>) -> Self {
46        self.device = Some(device.into());
47        self
48    }
49
50    /// Add a quantum layer to the circuit
51    pub fn add_layer(&mut self, layer: &dyn QuantumLayer<N>) -> Result<()> {
52        layer.apply_to_circuit(&mut self.circuit_builder)?;
53        Ok(())
54    }
55
56    /// Register a parameter
57    pub fn register_parameter(&mut self, name: impl Into<String>, index: usize) {
58        self.parameter_map.insert(name.into(), index);
59    }
60
61    /// Execute circuit with given parameters
62    pub fn execute(&self, parameters: &[f64]) -> Result<Array1<f64>> {
63        let circuit = self.circuit_builder.clone().build();
64
65        if let Some(ref simulator) = self.simulator {
66            let state = simulator.run(&circuit)?;
67            Ok(state.amplitudes().iter().map(|c| c.norm_sqr()).collect())
68        } else {
69            Err(MLError::InvalidConfiguration(
70                "No simulator or device backend configured".to_string(),
71            ))
72        }
73    }
74
75    /// Execute circuit and compute expectation value
76    pub fn expectation_value(&self, parameters: &[f64], observable: &PauliString) -> Result<f64> {
77        let circuit = self.circuit_builder.clone().build();
78
79        if let Some(ref simulator) = self.simulator {
80            let state = simulator.run(&circuit)?;
81            // Simplified expectation value calculation
82            Ok(0.0) // Placeholder
83        } else {
84            Err(MLError::InvalidConfiguration(
85                "No simulator backend configured".to_string(),
86            ))
87        }
88    }
89
90    /// Compute gradients using parameter shift rule
91    pub fn compute_gradients(
92        &self,
93        parameters: &[f64],
94        observable: &PauliString,
95    ) -> Result<Array1<f64>> {
96        let shift = std::f64::consts::PI / 2.0;
97        let mut gradients = Array1::zeros(parameters.len());
98
99        for i in 0..parameters.len() {
100            // Forward shift
101            let mut params_plus = parameters.to_vec();
102            params_plus[i] += shift;
103            let val_plus = self.expectation_value(&params_plus, observable)?;
104
105            // Backward shift
106            let mut params_minus = parameters.to_vec();
107            params_minus[i] -= shift;
108            let val_minus = self.expectation_value(&params_minus, observable)?;
109
110            // Parameter shift gradient
111            gradients[i] = (val_plus - val_minus) / 2.0;
112        }
113
114        Ok(gradients)
115    }
116}
117
118/// Trait for quantum layers in ML circuits
119pub trait QuantumLayer<const N: usize> {
120    /// Apply the layer to a circuit builder
121    fn apply_to_circuit(&self, builder: &mut CircuitBuilder<N>) -> Result<()>;
122
123    /// Get the number of parameters for this layer
124    fn num_parameters(&self) -> usize;
125
126    /// Get parameter names
127    fn parameter_names(&self) -> Vec<String>;
128}
129
130/// Parameterized quantum circuit layer
131#[derive(Debug, Clone)]
132pub struct ParameterizedLayer {
133    /// Qubits this layer acts on
134    qubits: Vec<usize>,
135    /// Gate sequence
136    gates: Vec<ParameterizedGate>,
137}
138
139impl ParameterizedLayer {
140    /// Create a new parameterized layer
141    pub fn new(qubits: Vec<usize>) -> Self {
142        Self {
143            qubits,
144            gates: Vec::new(),
145        }
146    }
147
148    /// Add a rotation gate
149    pub fn add_rotation(
150        mut self,
151        qubit: usize,
152        axis: RotationAxis,
153        parameter_name: impl Into<String>,
154    ) -> Self {
155        self.gates.push(ParameterizedGate::Rotation {
156            qubit,
157            axis,
158            parameter: parameter_name.into(),
159        });
160        self
161    }
162
163    /// Add an entangling gate
164    pub fn add_entangling(mut self, control: usize, target: usize) -> Self {
165        self.gates
166            .push(ParameterizedGate::Entangling { control, target });
167        self
168    }
169}
170
171impl<const N: usize> QuantumLayer<N> for ParameterizedLayer {
172    fn apply_to_circuit(&self, builder: &mut CircuitBuilder<N>) -> Result<()> {
173        for gate in &self.gates {
174            match gate {
175                ParameterizedGate::Rotation {
176                    qubit,
177                    axis,
178                    parameter,
179                } => {
180                    match axis {
181                        RotationAxis::X => {
182                            builder.rx(*qubit, 0.0)?;
183                        } // Placeholder value
184                        RotationAxis::Y => {
185                            builder.ry(*qubit, 0.0)?;
186                        }
187                        RotationAxis::Z => {
188                            builder.rz(*qubit, 0.0)?;
189                        }
190                    }
191                }
192                ParameterizedGate::Entangling { control, target } => {
193                    builder.cnot(*control, *target)?;
194                }
195            }
196        }
197        Ok(())
198    }
199
200    fn num_parameters(&self) -> usize {
201        self.gates
202            .iter()
203            .filter(|g| matches!(g, ParameterizedGate::Rotation { .. }))
204            .count()
205    }
206
207    fn parameter_names(&self) -> Vec<String> {
208        self.gates
209            .iter()
210            .filter_map(|g| match g {
211                ParameterizedGate::Rotation { parameter, .. } => Some(parameter.clone()),
212                _ => None,
213            })
214            .collect()
215    }
216}
217
218/// Parameterized gate types
219#[derive(Debug, Clone)]
220enum ParameterizedGate {
221    Rotation {
222        qubit: usize,
223        axis: RotationAxis,
224        parameter: String,
225    },
226    Entangling {
227        control: usize,
228        target: usize,
229    },
230}
231
232/// Rotation axis for parameterized gates
233#[derive(Debug, Clone, Copy)]
234pub enum RotationAxis {
235    X,
236    Y,
237    Z,
238}
239
240/// Hardware-aware circuit compiler
241pub struct HardwareAwareCompiler {
242    /// Target device topology
243    topology: DeviceTopology,
244    /// Gate fidelities
245    gate_fidelities: HashMap<String, f64>,
246    /// Connectivity constraints
247    connectivity: Array2<bool>,
248}
249
250impl HardwareAwareCompiler {
251    /// Create a new hardware-aware compiler
252    pub fn new(topology: DeviceTopology) -> Self {
253        let num_qubits = topology.num_qubits();
254        let connectivity = Array2::from_elem((num_qubits, num_qubits), false);
255
256        Self {
257            topology,
258            gate_fidelities: HashMap::new(),
259            connectivity,
260        }
261    }
262
263    /// Set gate fidelity
264    pub fn set_gate_fidelity(&mut self, gate: impl Into<String>, fidelity: f64) {
265        self.gate_fidelities.insert(gate.into(), fidelity);
266    }
267
268    /// Compile circuit for target device
269    pub fn compile<const N: usize>(&self, circuit: &Circuit<N>) -> Result<Circuit<N>> {
270        // Placeholder - would implement device-specific compilation
271        Ok(circuit.clone())
272    }
273
274    /// Route circuit considering connectivity constraints
275    pub fn route_circuit<const N: usize>(&self, circuit: &Circuit<N>) -> Result<Circuit<N>> {
276        // Placeholder - would implement SABRE routing or similar
277        Ok(circuit.clone())
278    }
279
280    /// Optimize circuit for device characteristics
281    pub fn optimize_for_device<const N: usize>(&self, circuit: &Circuit<N>) -> Result<Circuit<N>> {
282        // Placeholder - would apply device-specific optimizations
283        Ok(circuit.clone())
284    }
285}
286
287/// Device topology representation
288#[derive(Debug, Clone)]
289pub struct DeviceTopology {
290    /// Number of qubits
291    num_qubits: usize,
292    /// Qubit connectivity graph
293    edges: Vec<(usize, usize)>,
294    /// Qubit properties
295    qubit_properties: Vec<QubitProperties>,
296}
297
298impl DeviceTopology {
299    /// Create a new device topology
300    pub fn new(num_qubits: usize) -> Self {
301        Self {
302            num_qubits,
303            edges: Vec::new(),
304            qubit_properties: vec![QubitProperties::default(); num_qubits],
305        }
306    }
307
308    /// Add connectivity edge
309    pub fn add_edge(mut self, q1: usize, q2: usize) -> Self {
310        self.edges.push((q1, q2));
311        self
312    }
313
314    /// Get number of qubits
315    pub fn num_qubits(&self) -> usize {
316        self.num_qubits
317    }
318
319    /// Check if two qubits are connected
320    pub fn are_connected(&self, q1: usize, q2: usize) -> bool {
321        self.edges.contains(&(q1, q2)) || self.edges.contains(&(q2, q1))
322    }
323
324    /// Get neighbors of a qubit
325    pub fn neighbors(&self, qubit: usize) -> Vec<usize> {
326        self.edges
327            .iter()
328            .filter_map(|(q1, q2)| {
329                if *q1 == qubit {
330                    Some(*q2)
331                } else if *q2 == qubit {
332                    Some(*q1)
333                } else {
334                    None
335                }
336            })
337            .collect()
338    }
339}
340
341/// Qubit properties for device characterization
342#[derive(Debug, Clone)]
343pub struct QubitProperties {
344    /// T1 relaxation time (microseconds)
345    pub t1: f64,
346    /// T2 dephasing time (microseconds)
347    pub t2: f64,
348    /// Single-qubit gate fidelity
349    pub single_gate_fidelity: f64,
350    /// Readout fidelity
351    pub readout_fidelity: f64,
352}
353
354impl Default for QubitProperties {
355    fn default() -> Self {
356        Self {
357            t1: 100.0, // 100 μs
358            t2: 50.0,  // 50 μs
359            single_gate_fidelity: 0.999,
360            readout_fidelity: 0.98,
361        }
362    }
363}
364
365/// Backend integration for multiple simulators
366pub struct BackendManager {
367    /// Available backends
368    backends: HashMap<String, StateVectorSimulator>,
369    /// Current backend
370    current_backend: Option<String>,
371}
372
373impl BackendManager {
374    /// Create a new backend manager
375    pub fn new() -> Self {
376        Self {
377            backends: HashMap::new(),
378            current_backend: None,
379        }
380    }
381
382    /// Register a simulator backend
383    pub fn register_backend(&mut self, name: impl Into<String>, backend: StateVectorSimulator) {
384        self.backends.insert(name.into(), backend);
385    }
386
387    /// Set current backend
388    pub fn set_backend(&mut self, name: impl Into<String>) -> Result<()> {
389        let name = name.into();
390        if self.backends.contains_key(&name) {
391            self.current_backend = Some(name);
392            Ok(())
393        } else {
394            Err(MLError::InvalidConfiguration(format!(
395                "Backend '{}' not found",
396                name
397            )))
398        }
399    }
400
401    /// Execute circuit on current backend
402    pub fn execute_circuit<const N: usize>(
403        &self,
404        circuit: &Circuit<N>,
405        parameters: &[f64],
406    ) -> Result<Array1<Complex64>> {
407        if let Some(ref backend_name) = self.current_backend {
408            if let Some(backend) = self.backends.get(backend_name) {
409                let state = backend.run(circuit)?;
410                Ok(state.amplitudes().to_vec().into())
411            } else {
412                Err(MLError::InvalidConfiguration(
413                    "Current backend not available".to_string(),
414                ))
415            }
416        } else {
417            Err(MLError::InvalidConfiguration(
418                "No backend selected".to_string(),
419            ))
420        }
421    }
422
423    /// List available backends
424    pub fn list_backends(&self) -> Vec<String> {
425        self.backends.keys().cloned().collect()
426    }
427}
428
429/// Circuit optimization for ML workloads
430pub struct MLCircuitOptimizer {
431    /// Optimization passes (using concrete types for now)
432    passes: Vec<OptimizationPassType>,
433}
434
435/// Enum of optimization passes
436pub enum OptimizationPassType {
437    ParameterConsolidation(ParameterConsolidationPass),
438    MLGateFusion(MLGateFusionPass),
439}
440
441impl MLCircuitOptimizer {
442    /// Create a new ML circuit optimizer
443    pub fn new() -> Self {
444        Self { passes: Vec::new() }
445    }
446
447    /// Add optimization pass
448    pub fn add_pass(mut self, pass: OptimizationPassType) -> Self {
449        self.passes.push(pass);
450        self
451    }
452
453    /// Optimize circuit for ML workloads
454    pub fn optimize<const N: usize>(&self, circuit: &Circuit<N>) -> Result<Circuit<N>> {
455        let mut optimized = circuit.clone();
456
457        for pass in &self.passes {
458            optimized = match pass {
459                OptimizationPassType::ParameterConsolidation(p) => p.optimize(&optimized)?,
460                OptimizationPassType::MLGateFusion(p) => p.optimize(&optimized)?,
461            };
462        }
463
464        Ok(optimized)
465    }
466}
467
468/// Trait for circuit optimization passes
469pub trait OptimizationPass {
470    fn optimize<const N: usize>(&self, circuit: &Circuit<N>) -> Result<Circuit<N>>;
471}
472
473/// Parameter consolidation pass
474pub struct ParameterConsolidationPass;
475
476impl OptimizationPass for ParameterConsolidationPass {
477    fn optimize<const N: usize>(&self, circuit: &Circuit<N>) -> Result<Circuit<N>> {
478        // Placeholder - would consolidate adjacent rotation gates
479        Ok(circuit.clone())
480    }
481}
482
483/// Gate fusion pass for ML circuits
484pub struct MLGateFusionPass;
485
486impl OptimizationPass for MLGateFusionPass {
487    fn optimize<const N: usize>(&self, circuit: &Circuit<N>) -> Result<Circuit<N>> {
488        // Placeholder - would fuse gates for better ML performance
489        Ok(circuit.clone())
490    }
491}
492
493/// Circuit analysis for ML applications
494pub struct MLCircuitAnalyzer;
495
496impl MLCircuitAnalyzer {
497    /// Analyze circuit expressivity
498    pub fn expressivity_analysis<const N: usize>(
499        circuit: &Circuit<N>,
500    ) -> Result<ExpressionvityMetrics> {
501        Ok(ExpressionvityMetrics {
502            parameter_count: 0, // Placeholder
503            entangling_capability: 0.0,
504            barren_plateau_susceptibility: 0.0,
505        })
506    }
507
508    /// Analyze trainability
509    pub fn trainability_analysis<const N: usize>(
510        circuit: &Circuit<N>,
511    ) -> Result<TrainabilityMetrics> {
512        Ok(TrainabilityMetrics {
513            gradient_variance: 0.0, // Placeholder
514            parameter_shift_cost: 0.0,
515            hardware_efficiency: 0.0,
516        })
517    }
518}
519
520/// Circuit expressivity metrics
521#[derive(Debug, Clone)]
522pub struct ExpressionvityMetrics {
523    pub parameter_count: usize,
524    pub entangling_capability: f64,
525    pub barren_plateau_susceptibility: f64,
526}
527
528/// Circuit trainability metrics
529#[derive(Debug, Clone)]
530pub struct TrainabilityMetrics {
531    pub gradient_variance: f64,
532    pub parameter_shift_cost: f64,
533    pub hardware_efficiency: f64,
534}
535
536#[cfg(test)]
537mod tests {
538    use super::*;
539
540    #[test]
541    fn test_quantum_ml_executor() {
542        let mut executor: QuantumMLExecutor<8> = QuantumMLExecutor::new();
543        executor.register_parameter("theta1", 0);
544        executor.register_parameter("theta2", 1);
545
546        // Would add actual simulator in real implementation
547        assert_eq!(executor.parameter_map.len(), 2);
548    }
549
550    #[test]
551    fn test_parameterized_layer() {
552        let layer = ParameterizedLayer::new(vec![0, 1])
553            .add_rotation(0, RotationAxis::X, "theta1")
554            .add_entangling(0, 1)
555            .add_rotation(1, RotationAxis::Y, "theta2");
556
557        assert_eq!(
558            <ParameterizedLayer as QuantumLayer<8>>::num_parameters(&layer),
559            2
560        );
561        assert_eq!(
562            <ParameterizedLayer as QuantumLayer<8>>::parameter_names(&layer),
563            vec!["theta1", "theta2"]
564        );
565    }
566
567    #[test]
568    fn test_device_topology() {
569        let topology = DeviceTopology::new(3).add_edge(0, 1).add_edge(1, 2);
570
571        assert!(topology.are_connected(0, 1));
572        assert!(!topology.are_connected(0, 2));
573        assert_eq!(topology.neighbors(1), vec![0, 2]);
574    }
575
576    #[test]
577    fn test_backend_manager() {
578        let mut manager = BackendManager::new();
579        assert!(manager.list_backends().is_empty());
580
581        let result = manager.set_backend("nonexistent");
582        assert!(result.is_err());
583    }
584}