1use crate::automl::config::QuantumAutoMLConfig;
6use crate::automl::pipeline::constructor::{AlgorithmCandidate, PreprocessorConfig};
7use crate::automl::search::hyperparameter_optimizer::HyperparameterConfiguration;
8use crate::error::{MLError, Result};
9use scirs2_core::ndarray::{Array1, Array2};
10use std::collections::HashMap;
11
12#[derive(Debug, Clone)]
14pub struct QuantumMLPipeline {
15 stages: Vec<PipelineStage>,
17
18 config: PipelineConfiguration,
20
21 training_state: TrainingState,
23
24 performance_metrics: PerformanceMetrics,
26}
27
28#[derive(Debug, Clone)]
30pub enum PipelineStage {
31 Preprocessing(PreprocessingStage),
33
34 FeatureEngineering(FeatureEngineeringStage),
36
37 QuantumEncoding(QuantumEncodingStage),
39
40 ModelTraining(ModelTrainingStage),
42
43 PostProcessing(PostProcessingStage),
45}
46
47#[derive(Debug, Clone)]
49pub struct PreprocessingStage {
50 steps: Vec<PreprocessingStep>,
52
53 config: PreprocessorConfig,
55}
56
57#[derive(Debug, Clone)]
59pub enum PreprocessingStep {
60 Scaling {
61 method: String,
62 parameters: HashMap<String, f64>,
63 },
64 FeatureSelection {
65 method: String,
66 n_features: usize,
67 },
68 MissingValueHandling {
69 method: String,
70 },
71 OutlierDetection {
72 method: String,
73 threshold: f64,
74 },
75 DataAugmentation {
76 method: String,
77 factor: f64,
78 },
79}
80
81#[derive(Debug, Clone)]
83pub struct FeatureEngineeringStage {
84 transformations: Vec<FeatureTransformation>,
86
87 quantum_features: Vec<QuantumFeature>,
89}
90
91#[derive(Debug, Clone)]
93pub enum FeatureTransformation {
94 PolynomialFeatures { degree: usize },
95 InteractionFeatures,
96 QuantumFeatureMap { map_type: String },
97 DimensionalityReduction { method: String, target_dim: usize },
98}
99
100#[derive(Debug, Clone)]
102pub struct QuantumFeature {
103 name: String,
105
106 encoding_method: String,
108
109 qubits_required: usize,
111}
112
113#[derive(Debug, Clone)]
115pub struct QuantumEncodingStage {
116 encoding_method: QuantumEncodingMethod,
118
119 parameters: HashMap<String, f64>,
121
122 state_preparation: QuantumStatePreparation,
124}
125
126#[derive(Debug, Clone)]
128pub enum QuantumEncodingMethod {
129 AmplitudeEncoding {
130 normalization: bool,
131 },
132 AngleEncoding {
133 rotation_gates: Vec<String>,
134 },
135 BasisEncoding {
136 basis_states: Vec<String>,
137 },
138 QuantumFeatureMap {
139 feature_map: String,
140 repetitions: usize,
141 },
142 VariationalEncoding {
143 layers: usize,
144 gates: Vec<String>,
145 },
146}
147
148#[derive(Debug, Clone)]
150pub struct QuantumStatePreparation {
151 circuit: QuantumCircuit,
153
154 initialization: StateInitialization,
156}
157
158#[derive(Debug, Clone)]
160pub struct QuantumCircuit {
161 num_qubits: usize,
163
164 depth: usize,
166
167 gates: Vec<QuantumGate>,
169}
170
171#[derive(Debug, Clone)]
173pub struct QuantumGate {
174 gate_type: String,
176
177 targets: Vec<usize>,
179
180 controls: Vec<usize>,
182
183 parameters: Vec<f64>,
185}
186
187#[derive(Debug, Clone)]
189pub enum StateInitialization {
190 ZeroState,
191 RandomState,
192 VariationalState { parameters: Vec<f64> },
193 DataDependent,
194}
195
196#[derive(Debug, Clone)]
198pub struct ModelTrainingStage {
199 architecture: ModelArchitecture,
201
202 training_algorithm: TrainingAlgorithm,
204
205 optimization_method: OptimizationMethod,
207}
208
209#[derive(Debug, Clone)]
211pub enum ModelArchitecture {
212 QuantumNeuralNetwork {
213 layers: Vec<QuantumLayer>,
214 classical_layers: Vec<ClassicalLayer>,
215 },
216 QuantumSupportVectorMachine {
217 kernel: QuantumKernel,
218 regularization: f64,
219 },
220 QuantumVariational {
221 ansatz: VariationalAnsatz,
222 objective: ObjectiveFunction,
223 },
224 HybridModel {
225 quantum_component: Box<ModelArchitecture>,
226 classical_component: Box<ModelArchitecture>,
227 integration_method: String,
228 },
229}
230
231#[derive(Debug, Clone)]
233pub struct QuantumLayer {
234 layer_type: QuantumLayerType,
236
237 num_qubits: usize,
239
240 parameters: Vec<f64>,
242}
243
244#[derive(Debug, Clone)]
246pub enum QuantumLayerType {
247 Variational { gates: Vec<String> },
248 Entangling { pattern: String },
249 Measurement { basis: String },
250 Ansatz { ansatz_type: String },
251}
252
253#[derive(Debug, Clone)]
255pub struct ClassicalLayer {
256 size: usize,
258
259 activation: String,
261
262 weights: Option<Array2<f64>>,
264
265 biases: Option<Array1<f64>>,
267}
268
269#[derive(Debug, Clone)]
271pub struct QuantumKernel {
272 kernel_type: String,
274
275 feature_map: QuantumFeatureMap,
277
278 parameters: HashMap<String, f64>,
280}
281
282#[derive(Debug, Clone)]
284pub struct QuantumFeatureMap {
285 map_type: String,
287
288 num_features: usize,
290
291 repetitions: usize,
293}
294
295#[derive(Debug, Clone)]
297pub struct VariationalAnsatz {
298 ansatz_type: String,
300
301 circuit_structure: QuantumCircuit,
303
304 trainable_parameters: Vec<f64>,
306}
307
308#[derive(Debug, Clone)]
310pub enum ObjectiveFunction {
311 ExpectationValue { observable: String },
312 Fidelity { target_state: Vec<f64> },
313 Cost { cost_function: String },
314 Custom { function_name: String },
315}
316
317#[derive(Debug, Clone)]
319pub enum TrainingAlgorithm {
320 VariationalQuantumEigensolver,
321 QuantumApproximateOptimizationAlgorithm,
322 QuantumMachineLearning,
323 HybridClassicalQuantum,
324 ParameterShiftRule,
325 FiniteDifference,
326}
327
328#[derive(Debug, Clone)]
330pub enum OptimizationMethod {
331 GradientDescent {
332 learning_rate: f64,
333 },
334 Adam {
335 learning_rate: f64,
336 betas: (f64, f64),
337 },
338 SPSA {
339 learning_rate: f64,
340 perturbation: f64,
341 },
342 COBYLA {
343 maxiter: usize,
344 },
345 NelderMead {
346 maxiter: usize,
347 },
348 QuantumNaturalGradient,
349}
350
351#[derive(Debug, Clone)]
353pub struct PostProcessingStage {
354 output_transformation: OutputTransformation,
356
357 calibration: Option<CalibrationMethod>,
359
360 uncertainty_quantification: Option<UncertaintyQuantification>,
362}
363
364#[derive(Debug, Clone)]
366pub enum OutputTransformation {
367 SoftmaxNormalization,
368 ProbabilityCalibration,
369 Thresholding { threshold: f64 },
370 Scaling { min_val: f64, max_val: f64 },
371 Identity,
372}
373
374#[derive(Debug, Clone)]
376pub enum CalibrationMethod {
377 PlattScaling,
378 IsotonicRegression,
379 TemperatureScaling { temperature: f64 },
380 BayesianCalibration,
381}
382
383#[derive(Debug, Clone)]
385pub enum UncertaintyQuantification {
386 MCDropout { num_samples: usize },
387 EnsembleUncertainty,
388 QuantumUncertainty { measurement_basis: String },
389 BayesianUncertainty,
390}
391
392#[derive(Debug, Clone)]
394pub struct PipelineConfiguration {
395 algorithm: AlgorithmCandidate,
397
398 preprocessing: PreprocessorConfig,
400
401 automl_config: QuantumAutoMLConfig,
403
404 hyperparameters: Option<HyperparameterConfiguration>,
406}
407
408#[derive(Debug, Clone)]
410pub enum TrainingState {
411 NotTrained,
412 Training { epoch: usize, loss: f64 },
413 Trained { final_loss: f64, epochs: usize },
414 Failed { error: String },
415}
416
417#[derive(Debug, Clone)]
419pub struct PerformanceMetrics {
420 training_metrics: HashMap<String, f64>,
422
423 validation_metrics: HashMap<String, f64>,
425
426 quantum_metrics: QuantumMetrics,
428
429 resource_usage: ResourceUsageMetrics,
431}
432
433#[derive(Debug, Clone)]
435pub struct QuantumMetrics {
436 quantum_advantage: f64,
438
439 circuit_fidelity: f64,
441
442 entanglement_measure: f64,
444
445 coherence_utilization: f64,
447}
448
449#[derive(Debug, Clone)]
451pub struct ResourceUsageMetrics {
452 training_time: f64,
454
455 memory_usage: f64,
457
458 quantum_resources: QuantumResourceUsage,
460}
461
462#[derive(Debug, Clone)]
464pub struct QuantumResourceUsage {
465 qubits_used: usize,
467
468 circuit_depth: usize,
470
471 gate_count: usize,
473
474 shots_used: usize,
476}
477
478impl QuantumMLPipeline {
479 pub fn new(
481 algorithm: AlgorithmCandidate,
482 preprocessing: PreprocessorConfig,
483 automl_config: QuantumAutoMLConfig,
484 ) -> Result<Self> {
485 let config = PipelineConfiguration {
486 algorithm,
487 preprocessing,
488 automl_config,
489 hyperparameters: None,
490 };
491
492 let stages = Self::construct_stages(&config)?;
493
494 Ok(Self {
495 stages,
496 config,
497 training_state: TrainingState::NotTrained,
498 performance_metrics: PerformanceMetrics::new(),
499 })
500 }
501
502 pub fn fit(&mut self, X: &Array2<f64>, y: &Array1<f64>) -> Result<()> {
504 self.training_state = TrainingState::Training {
505 epoch: 0,
506 loss: f64::INFINITY,
507 };
508
509 let mut processed_X = X.clone();
511 let processed_y = y.clone();
512
513 let stages_len = self.stages.len();
515 for i in 0..stages_len {
516 match &self.stages[i] {
517 PipelineStage::Preprocessing(preproc) => {
518 processed_X = self.apply_preprocessing(&processed_X, preproc)?;
519 }
520 PipelineStage::QuantumEncoding(encoding) => {
521 processed_X = self.apply_quantum_encoding(&processed_X, encoding)?;
522 }
523 PipelineStage::ModelTraining(training) => {
524 let training_stage = training.clone();
526 self.train_model(&processed_X, &processed_y, &training_stage)?;
527 }
528 _ => {} }
530 }
531
532 self.training_state = TrainingState::Trained {
533 final_loss: 0.1,
534 epochs: 100,
535 };
536 Ok(())
537 }
538
539 pub fn predict(&self, X: &Array2<f64>) -> Result<Array1<f64>> {
541 match &self.training_state {
542 TrainingState::Trained { .. } => {
543 let mut processed_X = X.clone();
545
546 for stage in &self.stages {
548 match stage {
549 PipelineStage::Preprocessing(_) => {
550 }
552 PipelineStage::QuantumEncoding(_) => {
553 }
555 _ => {}
556 }
557 }
558
559 let predictions = Array1::zeros(X.nrows());
561 Ok(predictions)
562 }
563 _ => Err(MLError::ModelNotTrained(
564 "Pipeline has not been trained".to_string(),
565 )),
566 }
567 }
568
569 pub fn apply_hyperparameters(&mut self, config: &HyperparameterConfiguration) -> Result<()> {
571 self.config.hyperparameters = Some(config.clone());
572
573 let mut indices_to_update = Vec::new();
575 for (i, stage) in self.stages.iter().enumerate() {
576 if matches!(stage, PipelineStage::ModelTraining(_)) {
577 indices_to_update.push(i);
578 }
579 }
580
581 for i in indices_to_update {
582 let mut stage = std::mem::replace(
584 &mut self.stages[i],
585 PipelineStage::Preprocessing(PreprocessingStage {
586 steps: Vec::new(),
587 config: PreprocessorConfig {
588 parameters: std::collections::HashMap::new(),
589 enabled_features: Vec::new(),
590 },
591 }),
592 );
593 if let PipelineStage::ModelTraining(ref mut training) = stage {
594 self.update_training_hyperparameters(training, config)?;
595 }
596 self.stages[i] = stage;
597 }
598
599 Ok(())
600 }
601
602 pub fn performance_metrics(&self) -> &PerformanceMetrics {
604 &self.performance_metrics
605 }
606
607 pub fn training_state(&self) -> &TrainingState {
609 &self.training_state
610 }
611
612 fn construct_stages(config: &PipelineConfiguration) -> Result<Vec<PipelineStage>> {
615 let mut stages = Vec::new();
616
617 stages.push(PipelineStage::Preprocessing(PreprocessingStage {
619 steps: vec![PreprocessingStep::Scaling {
620 method: "standard".to_string(),
621 parameters: HashMap::new(),
622 }],
623 config: config.preprocessing.clone(),
624 }));
625
626 stages.push(PipelineStage::QuantumEncoding(QuantumEncodingStage {
628 encoding_method: QuantumEncodingMethod::AngleEncoding {
629 rotation_gates: vec!["RY".to_string()],
630 },
631 parameters: HashMap::new(),
632 state_preparation: QuantumStatePreparation {
633 circuit: QuantumCircuit {
634 num_qubits: 4,
635 depth: 3,
636 gates: Vec::new(),
637 },
638 initialization: StateInitialization::ZeroState,
639 },
640 }));
641
642 stages.push(PipelineStage::ModelTraining(ModelTrainingStage {
644 architecture: ModelArchitecture::QuantumNeuralNetwork {
645 layers: vec![QuantumLayer {
646 layer_type: QuantumLayerType::Variational {
647 gates: vec!["RY".to_string(), "CNOT".to_string()],
648 },
649 num_qubits: 4,
650 parameters: vec![0.1, 0.2, 0.3, 0.4],
651 }],
652 classical_layers: vec![ClassicalLayer {
653 size: 10,
654 activation: "relu".to_string(),
655 weights: None,
656 biases: None,
657 }],
658 },
659 training_algorithm: TrainingAlgorithm::QuantumMachineLearning,
660 optimization_method: OptimizationMethod::Adam {
661 learning_rate: 0.01,
662 betas: (0.9, 0.999),
663 },
664 }));
665
666 Ok(stages)
667 }
668
669 fn apply_preprocessing(
670 &self,
671 X: &Array2<f64>,
672 _stage: &PreprocessingStage,
673 ) -> Result<Array2<f64>> {
674 Ok(X.clone())
676 }
677
678 fn apply_quantum_encoding(
679 &self,
680 X: &Array2<f64>,
681 _stage: &QuantumEncodingStage,
682 ) -> Result<Array2<f64>> {
683 Ok(X.clone())
685 }
686
687 fn train_model(
688 &mut self,
689 X: &Array2<f64>,
690 y: &Array1<f64>,
691 _stage: &ModelTrainingStage,
692 ) -> Result<()> {
693 self.performance_metrics
695 .training_metrics
696 .insert("accuracy".to_string(), 0.85);
697 self.performance_metrics
698 .training_metrics
699 .insert("loss".to_string(), 0.15);
700 Ok(())
701 }
702
703 fn update_training_hyperparameters(
704 &self,
705 _stage: &mut ModelTrainingStage,
706 _config: &HyperparameterConfiguration,
707 ) -> Result<()> {
708 Ok(())
710 }
711}
712
713impl PerformanceMetrics {
714 pub fn training_metrics(&self) -> &HashMap<String, f64> {
716 &self.training_metrics
717 }
718
719 fn new() -> Self {
720 Self {
721 training_metrics: HashMap::new(),
722 validation_metrics: HashMap::new(),
723 quantum_metrics: QuantumMetrics {
724 quantum_advantage: 0.0,
725 circuit_fidelity: 0.99,
726 entanglement_measure: 0.5,
727 coherence_utilization: 0.8,
728 },
729 resource_usage: ResourceUsageMetrics {
730 training_time: 0.0,
731 memory_usage: 0.0,
732 quantum_resources: QuantumResourceUsage {
733 qubits_used: 0,
734 circuit_depth: 0,
735 gate_count: 0,
736 shots_used: 0,
737 },
738 },
739 }
740 }
741}