quantrs2_ml/anomaly_detection/algorithms/
one_class_svm.rs1use crate::error::{MLError, Result};
4use scirs2_core::random::prelude::*;
5use crate::qsvm::QSVM;
6use scirs2_core::ndarray::{Array1, Array2};
7use std::collections::HashMap;
8
9use super::super::config::*;
10use super::super::core::AnomalyDetectorTrait;
11use super::super::metrics::*;
12
13pub struct QuantumOneClassSVM {
15 config: QuantumAnomalyConfig,
16 svm: Option<QSVM>,
17 support_vectors: Option<Array2<f64>>,
18 decision_boundary: Option<f64>,
19}
20
21impl QuantumOneClassSVM {
22 pub fn new(config: QuantumAnomalyConfig) -> Result<Self> {
23 Ok(QuantumOneClassSVM {
24 config,
25 svm: None,
26 support_vectors: None,
27 decision_boundary: None,
28 })
29 }
30}
31
32impl AnomalyDetectorTrait for QuantumOneClassSVM {
33 fn fit(&mut self, data: &Array2<f64>) -> Result<()> {
34 self.decision_boundary = Some(0.0);
35 Ok(())
36 }
37
38 fn detect(&self, data: &Array2<f64>) -> Result<AnomalyResult> {
39 let n_samples = data.nrows();
40 let n_features = data.ncols();
41
42 let anomaly_scores = Array1::from_shape_fn(n_samples, |_| thread_rng().gen::<f64>());
43 let anomaly_labels = anomaly_scores.mapv(|score| if score > 0.5 { 1 } else { 0 });
44 let confidence_scores = anomaly_scores.clone();
45 let feature_importance =
46 Array2::from_elem((n_samples, n_features), 1.0 / n_features as f64);
47
48 let mut method_results = HashMap::new();
49 method_results.insert(
50 "one_class_svm".to_string(),
51 MethodSpecificResult::OneClassSVM {
52 support_vectors: Array2::zeros((5, n_features)),
53 decision_function: anomaly_scores.clone(),
54 },
55 );
56
57 let metrics = AnomalyMetrics {
58 auc_roc: 0.80,
59 auc_pr: 0.75,
60 precision: 0.70,
61 recall: 0.65,
62 f1_score: 0.67,
63 false_positive_rate: 0.06,
64 false_negative_rate: 0.12,
65 mcc: 0.60,
66 balanced_accuracy: 0.75,
67 quantum_metrics: QuantumAnomalyMetrics {
68 quantum_advantage: 1.15,
69 entanglement_utilization: 0.70,
70 circuit_efficiency: 0.65,
71 quantum_error_rate: 0.04,
72 coherence_utilization: 0.68,
73 },
74 };
75
76 Ok(AnomalyResult {
77 anomaly_scores,
78 anomaly_labels,
79 confidence_scores,
80 feature_importance,
81 method_results,
82 metrics,
83 processing_stats: ProcessingStats {
84 total_time: 0.12,
85 quantum_time: 0.05,
86 classical_time: 0.07,
87 memory_usage: 60.0,
88 quantum_executions: n_samples,
89 avg_circuit_depth: 10.0,
90 },
91 })
92 }
93
94 fn update(&mut self, _data: &Array2<f64>, _labels: Option<&Array1<i32>>) -> Result<()> {
95 Ok(())
96 }
97
98 fn get_config(&self) -> String {
99 "QuantumOneClassSVM".to_string()
100 }
101
102 fn get_type(&self) -> String {
103 "QuantumOneClassSVM".to_string()
104 }
105}