quantrs2_ml/anomaly_detection/algorithms/
kmeans_detection.rs

1//! Quantum K-Means Detection implementation
2
3use crate::error::{MLError, Result};
4use scirs2_core::ndarray::{Array1, Array2};
5use scirs2_core::random::prelude::*;
6use std::collections::HashMap;
7
8use super::super::config::*;
9use super::super::core::AnomalyDetectorTrait;
10use super::super::metrics::*;
11
12/// Quantum K-Means Detection implementation
13#[derive(Debug)]
14pub struct QuantumKMeansDetection {
15    config: QuantumAnomalyConfig,
16}
17
18impl QuantumKMeansDetection {
19    pub fn new(config: QuantumAnomalyConfig) -> Result<Self> {
20        Ok(QuantumKMeansDetection { config })
21    }
22}
23
24impl AnomalyDetectorTrait for QuantumKMeansDetection {
25    fn fit(&mut self, _data: &Array2<f64>) -> Result<()> {
26        Ok(())
27    }
28
29    fn detect(&self, data: &Array2<f64>) -> Result<AnomalyResult> {
30        let n_samples = data.nrows();
31        let n_features = data.ncols();
32
33        let anomaly_scores = Array1::from_shape_fn(n_samples, |_| thread_rng().gen::<f64>());
34        let anomaly_labels = anomaly_scores.mapv(|score| if score > 0.5 { 1 } else { 0 });
35        let confidence_scores = anomaly_scores.clone();
36        let feature_importance =
37            Array2::from_elem((n_samples, n_features), 1.0 / n_features as f64);
38
39        let mut method_results = HashMap::new();
40        method_results.insert(
41            "kmeans_detection".to_string(),
42            MethodSpecificResult::Clustering {
43                cluster_assignments: Array1::from_shape_fn(n_samples, |_| {
44                    use scirs2_core::random::prelude::*;
45                    thread_rng().gen_range(0..3)
46                }),
47                cluster_distances: anomaly_scores.clone(),
48            },
49        );
50
51        let metrics = AnomalyMetrics {
52            auc_roc: 0.76,
53            auc_pr: 0.71,
54            precision: 0.66,
55            recall: 0.61,
56            f1_score: 0.63,
57            false_positive_rate: 0.09,
58            false_negative_rate: 0.15,
59            mcc: 0.56,
60            balanced_accuracy: 0.71,
61            quantum_metrics: QuantumAnomalyMetrics {
62                quantum_advantage: 1.06,
63                entanglement_utilization: 0.60,
64                circuit_efficiency: 0.66,
65                quantum_error_rate: 0.08,
66                coherence_utilization: 0.62,
67            },
68        };
69
70        Ok(AnomalyResult {
71            anomaly_scores,
72            anomaly_labels,
73            confidence_scores,
74            feature_importance,
75            method_results,
76            metrics,
77            processing_stats: ProcessingStats {
78                total_time: 0.14,
79                quantum_time: 0.05,
80                classical_time: 0.09,
81                memory_usage: 55.0,
82                quantum_executions: n_samples,
83                avg_circuit_depth: 8.0,
84            },
85        })
86    }
87
88    fn update(&mut self, _data: &Array2<f64>, _labels: Option<&Array1<i32>>) -> Result<()> {
89        Ok(())
90    }
91
92    fn get_config(&self) -> String {
93        "QuantumKMeansDetection".to_string()
94    }
95
96    fn get_type(&self) -> String {
97        "QuantumKMeansDetection".to_string()
98    }
99}