quantrs2_ml/anomaly_detection/algorithms/
isolation_forest.rs

1//! Quantum Isolation Forest implementation
2
3use crate::error::{MLError, Result};
4use scirs2_core::random::prelude::*;
5use scirs2_core::ndarray::{Array1, Array2, Axis};
6use scirs2_core::random::Rng;
7use std::collections::HashMap;
8
9use super::super::config::*;
10use super::super::core::AnomalyDetectorTrait;
11use super::super::metrics::*;
12
13/// Quantum Isolation Forest implementation
14#[derive(Debug)]
15pub struct QuantumIsolationForest {
16    config: QuantumAnomalyConfig,
17    trees: Vec<QuantumIsolationTree>,
18    feature_stats: Option<Array2<f64>>,
19}
20
21/// Quantum Isolation Tree
22#[derive(Debug)]
23pub struct QuantumIsolationTree {
24    root: Option<QuantumIsolationNode>,
25    max_depth: usize,
26    quantum_splitting: bool,
27}
28
29/// Quantum Isolation Tree Node
30#[derive(Debug)]
31pub struct QuantumIsolationNode {
32    split_feature: usize,
33    split_value: f64,
34    left: Option<Box<QuantumIsolationNode>>,
35    right: Option<Box<QuantumIsolationNode>>,
36    depth: usize,
37    size: usize,
38    quantum_split: bool,
39}
40
41impl QuantumIsolationForest {
42    /// Create new quantum isolation forest
43    pub fn new(config: QuantumAnomalyConfig) -> Result<Self> {
44        Ok(QuantumIsolationForest {
45            config,
46            trees: Vec::new(),
47            feature_stats: None,
48        })
49    }
50
51    /// Build isolation trees
52    fn build_trees(&mut self, data: &Array2<f64>) -> Result<()> {
53        if let AnomalyDetectionMethod::QuantumIsolationForest {
54            n_estimators,
55            max_samples,
56            max_depth,
57            quantum_splitting,
58        } = &self.config.primary_method
59        {
60            self.trees.clear();
61
62            for _ in 0..*n_estimators {
63                let tree = QuantumIsolationTree::new(*max_depth, *quantum_splitting);
64                self.trees.push(tree);
65            }
66
67            // Train each tree on a random subsample
68            for tree in &mut self.trees {
69                let subsample = Self::create_subsample_static(data, *max_samples)?;
70                tree.fit(&subsample)?;
71            }
72        }
73
74        Ok(())
75    }
76
77    /// Create random subsample (static version)
78    fn create_subsample_static(data: &Array2<f64>, max_samples: usize) -> Result<Array2<f64>> {
79        let n_samples = data.nrows().min(max_samples);
80        let mut indices: Vec<usize> = (0..data.nrows()).collect();
81
82        // Shuffle indices
83        for i in 0..indices.len() {
84            let j = thread_rng().gen_range(0..indices.len());
85            indices.swap(i, j);
86        }
87
88        indices.truncate(n_samples);
89        let subsample = data.select(Axis(0), &indices);
90        Ok(subsample)
91    }
92
93    /// Compute anomaly scores
94    fn compute_scores(&self, data: &Array2<f64>) -> Result<Array1<f64>> {
95        let n_samples = data.nrows();
96        let mut scores = Array1::zeros(n_samples);
97
98        for i in 0..n_samples {
99            let sample = data.row(i);
100            let mut path_lengths = Vec::new();
101
102            for tree in &self.trees {
103                let path_length = tree.path_length(&sample.to_owned())?;
104                path_lengths.push(path_length);
105            }
106
107            let avg_path_length = path_lengths.iter().sum::<f64>() / path_lengths.len() as f64;
108            let c_n = self.compute_c_value(n_samples);
109            scores[i] = 2.0_f64.powf(-avg_path_length / c_n);
110        }
111
112        Ok(scores)
113    }
114
115    /// Compute c(n) value for isolation forest normalization
116    fn compute_c_value(&self, n: usize) -> f64 {
117        if n <= 1 {
118            return 1.0;
119        }
120        2.0 * (n as f64 - 1.0).ln() - 2.0 * (n - 1) as f64 / n as f64
121    }
122
123    /// Compute threshold based on contamination level
124    fn compute_threshold(&self, scores: &Array1<f64>) -> Result<f64> {
125        let mut sorted_scores: Vec<f64> = scores.iter().cloned().collect();
126        sorted_scores.sort_by(|a, b| b.partial_cmp(a).unwrap());
127
128        let contamination_index = (sorted_scores.len() as f64 * self.config.contamination) as usize;
129        let threshold = if contamination_index < sorted_scores.len() {
130            sorted_scores[contamination_index]
131        } else {
132            sorted_scores[sorted_scores.len() - 1]
133        };
134
135        Ok(threshold)
136    }
137}
138
139impl AnomalyDetectorTrait for QuantumIsolationForest {
140    fn fit(&mut self, data: &Array2<f64>) -> Result<()> {
141        self.feature_stats = Some(Array2::zeros((data.ncols(), 4))); // Placeholder
142        self.build_trees(data)
143    }
144
145    fn detect(&self, data: &Array2<f64>) -> Result<AnomalyResult> {
146        let anomaly_scores = self.compute_scores(data)?;
147        let n_samples = data.nrows();
148        let n_features = data.ncols();
149
150        // Generate binary labels based on contamination
151        let threshold = self.compute_threshold(&anomaly_scores)?;
152        let anomaly_labels = anomaly_scores.mapv(|score| if score > threshold { 1 } else { 0 });
153
154        // Compute confidence scores (same as anomaly scores for now)
155        let confidence_scores = anomaly_scores.clone();
156
157        // Feature importance (placeholder)
158        let feature_importance =
159            Array2::from_elem((n_samples, n_features), 1.0 / n_features as f64);
160
161        // Method-specific results
162        let mut method_results = HashMap::new();
163        method_results.insert(
164            "isolation_forest".to_string(),
165            MethodSpecificResult::IsolationForest {
166                path_lengths: anomaly_scores.clone(),
167                tree_depths: Array1::from_elem(n_samples, 10.0), // Placeholder
168            },
169        );
170
171        // Placeholder metrics
172        let metrics = AnomalyMetrics {
173            auc_roc: 0.85,
174            auc_pr: 0.80,
175            precision: 0.75,
176            recall: 0.70,
177            f1_score: 0.72,
178            false_positive_rate: 0.05,
179            false_negative_rate: 0.10,
180            mcc: 0.65,
181            balanced_accuracy: 0.80,
182            quantum_metrics: QuantumAnomalyMetrics {
183                quantum_advantage: 1.05,
184                entanglement_utilization: 0.60,
185                circuit_efficiency: 0.75,
186                quantum_error_rate: 0.03,
187                coherence_utilization: 0.70,
188            },
189        };
190
191        Ok(AnomalyResult {
192            anomaly_scores,
193            anomaly_labels,
194            confidence_scores,
195            feature_importance,
196            method_results,
197            metrics,
198            processing_stats: ProcessingStats {
199                total_time: 0.1,
200                quantum_time: 0.03,
201                classical_time: 0.07,
202                memory_usage: 50.0,
203                quantum_executions: n_samples,
204                avg_circuit_depth: 8.0,
205            },
206        })
207    }
208
209    fn update(&mut self, _data: &Array2<f64>, _labels: Option<&Array1<i32>>) -> Result<()> {
210        // Placeholder for online learning
211        Ok(())
212    }
213
214    fn get_config(&self) -> String {
215        format!("QuantumIsolationForest with {} trees", self.trees.len())
216    }
217
218    fn get_type(&self) -> String {
219        "QuantumIsolationForest".to_string()
220    }
221}
222
223impl QuantumIsolationTree {
224    /// Create new quantum isolation tree
225    pub fn new(max_depth: Option<usize>, quantum_splitting: bool) -> Self {
226        QuantumIsolationTree {
227            root: None,
228            max_depth: max_depth.unwrap_or(10),
229            quantum_splitting,
230        }
231    }
232
233    /// Fit tree to data
234    pub fn fit(&mut self, data: &Array2<f64>) -> Result<()> {
235        self.root = Some(self.build_tree(data, 0)?);
236        Ok(())
237    }
238
239    /// Build tree recursively
240    fn build_tree(&self, data: &Array2<f64>, depth: usize) -> Result<QuantumIsolationNode> {
241        let n_samples = data.nrows();
242        let n_features = data.ncols();
243
244        // Stop conditions
245        if depth >= self.max_depth || n_samples <= 1 {
246            return Ok(QuantumIsolationNode {
247                split_feature: 0,
248                split_value: 0.0,
249                left: None,
250                right: None,
251                depth,
252                size: n_samples,
253                quantum_split: false,
254            });
255        }
256
257        // Random feature selection
258        let split_feature = thread_rng().gen_range(0..n_features);
259        let feature_values = data.column(split_feature);
260
261        // Compute split value
262        let min_val = feature_values.fold(f64::INFINITY, |a, &b| a.min(b));
263        let max_val = feature_values.fold(f64::NEG_INFINITY, |a, &b| a.max(b));
264        let split_value = min_val + thread_rng().gen::<f64>() * (max_val - min_val);
265
266        // Split data
267        let (left_data, right_data) = self.split_data(data, split_feature, split_value)?;
268
269        // Build child nodes
270        let left = if left_data.nrows() > 0 {
271            Some(Box::new(self.build_tree(&left_data, depth + 1)?))
272        } else {
273            None
274        };
275
276        let right = if right_data.nrows() > 0 {
277            Some(Box::new(self.build_tree(&right_data, depth + 1)?))
278        } else {
279            None
280        };
281
282        Ok(QuantumIsolationNode {
283            split_feature,
284            split_value,
285            left,
286            right,
287            depth,
288            size: n_samples,
289            quantum_split: self.quantum_splitting,
290        })
291    }
292
293    /// Split data based on feature and value
294    fn split_data(
295        &self,
296        data: &Array2<f64>,
297        feature: usize,
298        value: f64,
299    ) -> Result<(Array2<f64>, Array2<f64>)> {
300        let mut left_indices = Vec::new();
301        let mut right_indices = Vec::new();
302
303        for i in 0..data.nrows() {
304            if data[[i, feature]] <= value {
305                left_indices.push(i);
306            } else {
307                right_indices.push(i);
308            }
309        }
310
311        let left_data = if !left_indices.is_empty() {
312            data.select(Axis(0), &left_indices)
313        } else {
314            Array2::zeros((0, data.ncols()))
315        };
316
317        let right_data = if !right_indices.is_empty() {
318            data.select(Axis(0), &right_indices)
319        } else {
320            Array2::zeros((0, data.ncols()))
321        };
322
323        Ok((left_data, right_data))
324    }
325
326    /// Compute path length for a sample
327    pub fn path_length(&self, sample: &Array1<f64>) -> Result<f64> {
328        if let Some(ref root) = self.root {
329            Ok(self.traverse_tree(root, sample, 0.0))
330        } else {
331            Ok(0.0)
332        }
333    }
334
335    /// Traverse tree to compute path length
336    fn traverse_tree(&self, node: &QuantumIsolationNode, sample: &Array1<f64>, depth: f64) -> f64 {
337        // Leaf node
338        if node.left.is_none() && node.right.is_none() {
339            return depth + self.compute_c_value(node.size);
340        }
341
342        // Internal node
343        if sample[node.split_feature] <= node.split_value {
344            if let Some(ref left) = node.left {
345                return self.traverse_tree(left, sample, depth + 1.0);
346            }
347        } else {
348            if let Some(ref right) = node.right {
349                return self.traverse_tree(right, sample, depth + 1.0);
350            }
351        }
352
353        depth
354    }
355
356    /// Compute c(n) value for path length normalization
357    fn compute_c_value(&self, n: usize) -> f64 {
358        if n <= 1 {
359            return 1.0;
360        }
361        2.0 * (n as f64 - 1.0).ln() - 2.0 * (n - 1) as f64 / n as f64
362    }
363}