Module quantum_neural_odes

Module quantum_neural_odes 

Source
Expand description

Quantum Neural Ordinary Differential Equations (QNODEs)

This module implements quantum neural ODEs, extending classical neural ODEs to the quantum domain. Quantum Neural ODEs use quantum circuits to parameterize the derivative function in continuous-depth neural networks.

Structs§

BenchmarkResults
Benchmark results comparing quantum and classical approaches
NoiseModel
Noise model for quantum devices
QNODEConfig
Configuration for Quantum Neural ODEs
QuantumCircuit
Quantum circuit for the neural ODE
QuantumGate
Individual quantum gates
QuantumNeuralODE
Quantum Neural ODE Model
SolverState
Solver state for continuous integration
TrainingMetrics
Training metrics for QNODEs

Enums§

AnsatzType
Quantum circuit ansatz types
GateType
Types of quantum gates
IntegrationMethod
Integration methods for ODEs
OptimizationStrategy
Optimization strategies for QNODE training

Functions§

benchmark_qnode_vs_classical
Benchmark Quantum Neural ODE against classical Neural ODE
create_hardware_efficient_ansatz
Helper functions for quantum operations Create hardware-efficient ansatz
create_real_amplitudes_ansatz
Create real amplitudes ansatz