Expand description
Quantum Neural Ordinary Differential Equations (QNODEs)
This module implements quantum neural ODEs, extending classical neural ODEs to the quantum domain. Quantum Neural ODEs use quantum circuits to parameterize the derivative function in continuous-depth neural networks.
Structs§
- Benchmark
Results - Benchmark results comparing quantum and classical approaches
- Noise
Model - Noise model for quantum devices
- QNODE
Config - Configuration for Quantum Neural ODEs
- Quantum
Circuit - Quantum circuit for the neural ODE
- Quantum
Gate - Individual quantum gates
- Quantum
NeuralODE - Quantum Neural ODE Model
- Solver
State - Solver state for continuous integration
- Training
Metrics - Training metrics for QNODEs
Enums§
- Ansatz
Type - Quantum circuit ansatz types
- Gate
Type - Types of quantum gates
- Integration
Method - Integration methods for ODEs
- Optimization
Strategy - Optimization strategies for QNODE training
Functions§
- benchmark_
qnode_ vs_ classical - Benchmark Quantum Neural ODE against classical Neural ODE
- create_
hardware_ efficient_ ansatz - Helper functions for quantum operations Create hardware-efficient ansatz
- create_
real_ amplitudes_ ansatz - Create real amplitudes ansatz