generate_task_sequence

Function generate_task_sequence 

Source
pub fn generate_task_sequence(
    num_tasks: usize,
    samples_per_task: usize,
    feature_dim: usize,
) -> Vec<ContinualTask>
Expand description

Helper function to generate synthetic task sequence

Examples found in repository?
examples/quantum_continual_learning.rs (line 78)
49fn ewc_demo() -> Result<()> {
50    // Create quantum model
51    let layers = vec![
52        QNNLayerType::EncodingLayer { num_features: 4 },
53        QNNLayerType::VariationalLayer { num_params: 12 },
54        QNNLayerType::EntanglementLayer {
55            connectivity: "circular".to_string(),
56        },
57        QNNLayerType::VariationalLayer { num_params: 8 },
58        QNNLayerType::MeasurementLayer {
59            measurement_basis: "computational".to_string(),
60        },
61    ];
62
63    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
64
65    // Create EWC strategy
66    let strategy = ContinualLearningStrategy::ElasticWeightConsolidation {
67        importance_weight: 1000.0,
68        fisher_samples: 200,
69    };
70
71    let mut learner = QuantumContinualLearner::new(model, strategy);
72
73    println!("   Created EWC continual learner:");
74    println!("   - Importance weight: 1000.0");
75    println!("   - Fisher samples: 200");
76
77    // Generate task sequence
78    let tasks = generate_task_sequence(3, 100, 4);
79
80    println!("\n   Learning sequence of {} tasks...", tasks.len());
81
82    let mut optimizer = Adam::new(0.001);
83    let mut task_accuracies = Vec::new();
84
85    for (i, task) in tasks.iter().enumerate() {
86        println!("   \n   Training on {}...", task.task_id);
87
88        let metrics = learner.learn_task(task.clone(), &mut optimizer, 30)?;
89        task_accuracies.push(metrics.current_accuracy);
90
91        println!("   - Current accuracy: {:.3}", metrics.current_accuracy);
92
93        // Evaluate forgetting on previous tasks
94        if i > 0 {
95            let all_accuracies = learner.evaluate_all_tasks()?;
96            let avg_prev_accuracy = all_accuracies
97                .iter()
98                .take(i)
99                .map(|(_, &acc)| acc)
100                .sum::<f64>()
101                / i as f64;
102
103            println!(
104                "   - Average accuracy on previous tasks: {:.3}",
105                avg_prev_accuracy
106            );
107        }
108    }
109
110    // Final evaluation
111    let forgetting_metrics = learner.get_forgetting_metrics();
112    println!("\n   EWC Results:");
113    println!(
114        "   - Average accuracy: {:.3}",
115        forgetting_metrics.average_accuracy
116    );
117    println!(
118        "   - Forgetting measure: {:.3}",
119        forgetting_metrics.forgetting_measure
120    );
121    println!(
122        "   - Continual learning score: {:.3}",
123        forgetting_metrics.continual_learning_score
124    );
125
126    Ok(())
127}
128
129/// Demonstrate Experience Replay
130fn experience_replay_demo() -> Result<()> {
131    let layers = vec![
132        QNNLayerType::EncodingLayer { num_features: 4 },
133        QNNLayerType::VariationalLayer { num_params: 8 },
134        QNNLayerType::MeasurementLayer {
135            measurement_basis: "computational".to_string(),
136        },
137    ];
138
139    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
140
141    let strategy = ContinualLearningStrategy::ExperienceReplay {
142        buffer_size: 500,
143        replay_ratio: 0.3,
144        memory_selection: MemorySelectionStrategy::Random,
145    };
146
147    let mut learner = QuantumContinualLearner::new(model, strategy);
148
149    println!("   Created Experience Replay learner:");
150    println!("   - Buffer size: 500");
151    println!("   - Replay ratio: 30%");
152    println!("   - Selection: Random");
153
154    // Generate diverse tasks
155    let tasks = generate_diverse_tasks(4, 80, 4);
156
157    println!("\n   Learning {} diverse tasks...", tasks.len());
158
159    let mut optimizer = Adam::new(0.002);
160
161    for (i, task) in tasks.iter().enumerate() {
162        println!("   \n   Learning {}...", task.task_id);
163
164        let metrics = learner.learn_task(task.clone(), &mut optimizer, 25)?;
165
166        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
167
168        // Show memory buffer status
169        println!("   - Memory buffer usage: replay experiences stored");
170
171        if i > 0 {
172            let all_accuracies = learner.evaluate_all_tasks()?;
173            let retention_rate = all_accuracies.values().sum::<f64>() / all_accuracies.len() as f64;
174            println!("   - Average retention: {:.3}", retention_rate);
175        }
176    }
177
178    let final_metrics = learner.get_forgetting_metrics();
179    println!("\n   Experience Replay Results:");
180    println!(
181        "   - Final average accuracy: {:.3}",
182        final_metrics.average_accuracy
183    );
184    println!(
185        "   - Forgetting reduction: {:.3}",
186        1.0 - final_metrics.forgetting_measure
187    );
188
189    Ok(())
190}
191
192/// Demonstrate Progressive Networks
193fn progressive_networks_demo() -> Result<()> {
194    let layers = vec![
195        QNNLayerType::EncodingLayer { num_features: 4 },
196        QNNLayerType::VariationalLayer { num_params: 6 },
197        QNNLayerType::MeasurementLayer {
198            measurement_basis: "computational".to_string(),
199        },
200    ];
201
202    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
203
204    let strategy = ContinualLearningStrategy::ProgressiveNetworks {
205        lateral_connections: true,
206        adaptation_layers: 2,
207    };
208
209    let mut learner = QuantumContinualLearner::new(model, strategy);
210
211    println!("   Created Progressive Networks learner:");
212    println!("   - Lateral connections: enabled");
213    println!("   - Adaptation layers: 2");
214
215    // Generate related tasks for transfer learning
216    let tasks = generate_related_tasks(3, 60, 4);
217
218    println!("\n   Learning {} related tasks...", tasks.len());
219
220    let mut optimizer = Adam::new(0.001);
221    let mut learning_speeds = Vec::new();
222
223    for (i, task) in tasks.iter().enumerate() {
224        println!("   \n   Adding column for {}...", task.task_id);
225
226        let start_time = std::time::Instant::now();
227        let metrics = learner.learn_task(task.clone(), &mut optimizer, 20)?;
228        let learning_time = start_time.elapsed();
229
230        learning_speeds.push(learning_time);
231
232        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
233        println!("   - Learning time: {:.2?}", learning_time);
234
235        if i > 0 {
236            let speedup = learning_speeds[0].as_secs_f64() / learning_time.as_secs_f64();
237            println!("   - Learning speedup: {:.2}x", speedup);
238        }
239    }
240
241    println!("\n   Progressive Networks Results:");
242    println!("   - No catastrophic forgetting (by design)");
243    println!("   - Lateral connections enable knowledge transfer");
244    println!("   - Model capacity grows with new tasks");
245
246    Ok(())
247}
248
249/// Demonstrate Learning without Forgetting
250fn lwf_demo() -> Result<()> {
251    let layers = vec![
252        QNNLayerType::EncodingLayer { num_features: 4 },
253        QNNLayerType::VariationalLayer { num_params: 10 },
254        QNNLayerType::EntanglementLayer {
255            connectivity: "circular".to_string(),
256        },
257        QNNLayerType::MeasurementLayer {
258            measurement_basis: "computational".to_string(),
259        },
260    ];
261
262    let model = QuantumNeuralNetwork::new(layers, 4, 4, 2)?;
263
264    let strategy = ContinualLearningStrategy::LearningWithoutForgetting {
265        distillation_weight: 0.5,
266        temperature: 3.0,
267    };
268
269    let mut learner = QuantumContinualLearner::new(model, strategy);
270
271    println!("   Created Learning without Forgetting learner:");
272    println!("   - Distillation weight: 0.5");
273    println!("   - Temperature: 3.0");
274
275    // Generate task sequence
276    let tasks = generate_task_sequence(4, 70, 4);
277
278    println!("\n   Learning with knowledge distillation...");
279
280    let mut optimizer = Adam::new(0.001);
281    let mut distillation_losses = Vec::new();
282
283    for (i, task) in tasks.iter().enumerate() {
284        println!("   \n   Learning {}...", task.task_id);
285
286        let metrics = learner.learn_task(task.clone(), &mut optimizer, 25)?;
287
288        println!("   - Task accuracy: {:.3}", metrics.current_accuracy);
289
290        if i > 0 {
291            // Simulate distillation loss tracking
292            let distillation_loss = 0.1 + 0.3 * fastrand::f64();
293            distillation_losses.push(distillation_loss);
294            println!("   - Distillation loss: {:.3}", distillation_loss);
295
296            let all_accuracies = learner.evaluate_all_tasks()?;
297            let stability = all_accuracies
298                .values()
299                .map(|&acc| if acc > 0.6 { 1.0 } else { 0.0 })
300                .sum::<f64>()
301                / all_accuracies.len() as f64;
302
303            println!("   - Knowledge retention: {:.1}%", stability * 100.0);
304        }
305    }
306
307    println!("\n   LwF Results:");
308    println!("   - Knowledge distillation preserves previous task performance");
309    println!("   - Temperature scaling provides soft targets");
310    println!("   - Balances plasticity and stability");
311
312    Ok(())
313}