create_default_automl_config

Function create_default_automl_config 

Source
pub fn create_default_automl_config() -> QuantumAutoMLConfig
Expand description

Create a default AutoML configuration

Examples found in repository?
examples/quantum_automl_demo.rs (line 15)
10fn main() -> Result<()> {
11    println!("šŸš€ Quantum AutoML Framework Demo");
12
13    // Create default AutoML configuration
14    println!("\nšŸ“‹ Creating AutoML configuration...");
15    let config = create_default_automl_config();
16    let algorithm_count = [
17        config.search_space.algorithms.quantum_neural_networks,
18        config.search_space.algorithms.quantum_svm,
19        config.search_space.algorithms.quantum_clustering,
20        config.search_space.algorithms.quantum_dim_reduction,
21        config.search_space.algorithms.quantum_time_series,
22        config.search_space.algorithms.quantum_anomaly_detection,
23        config.search_space.algorithms.classical_algorithms,
24    ]
25    .iter()
26    .filter(|&&enabled| enabled)
27    .count();
28    println!(
29        "Configuration created with {} enabled algorithms in search space",
30        algorithm_count
31    );
32
33    // Initialize Quantum AutoML
34    println!("\nšŸ”§ Initializing Quantum AutoML...");
35    let mut automl = QuantumAutoML::new(config);
36    println!("AutoML initialized successfully");
37
38    // Generate synthetic dataset
39    println!("\nšŸ“Š Generating synthetic dataset...");
40    let n_samples = 100;
41    let n_features = 4;
42
43    // Create sample data (classification task)
44    let mut data = Array2::zeros((n_samples, n_features));
45    let mut targets = Array1::zeros(n_samples);
46
47    // Simple pattern for demo: sum of features determines class
48    for i in 0..n_samples {
49        for j in 0..n_features {
50            data[[i, j]] = (i as f64 + j as f64) / 100.0;
51        }
52        let sum: f64 = data.row(i).sum();
53        targets[i] = if sum > n_features as f64 / 2.0 {
54            1.0
55        } else {
56            0.0
57        };
58    }
59
60    println!("Dataset shape: {:?}", data.dim());
61    println!(
62        "Target distribution: {:.2}% positive class",
63        targets.sum() / targets.len() as f64 * 100.0
64    );
65
66    // Run automated ML pipeline
67    println!("\n🧠 Running automated ML pipeline...");
68    println!("This will perform:");
69    println!("  • Automated task detection");
70    println!("  • Data preprocessing and feature engineering");
71    println!("  • Model selection and architecture search");
72    println!("  • Hyperparameter optimization");
73    println!("  • Ensemble construction");
74    println!("  • Quantum advantage analysis");
75
76    match automl.fit(&data, &targets) {
77        Ok(()) => {
78            println!("\nāœ… AutoML pipeline completed successfully!");
79
80            // Get results from the automl instance
81            let results = automl.get_results();
82
83            // Display results
84            println!("\nšŸ“ˆ Results Summary:");
85            println!("━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━");
86
87            println!("šŸŽÆ Best Pipeline found");
88            println!("šŸ“Š Search completed successfully");
89            println!(
90                "ā±ļø  Search History: {} trials",
91                automl.get_search_history().trials().len()
92            );
93            println!("šŸ”¢ Performance tracker active");
94
95            // Mock quantum advantage analysis results
96            println!("\nšŸ”¬ Quantum Advantage Analysis:");
97            println!("  Advantage Detected: Yes");
98            println!("  Advantage Magnitude: 1.25x");
99            println!("  Statistical Significance: 95.2%");
100
101            // Mock resource efficiency
102            println!("  Performance per Qubit: 0.342");
103            println!("  Quantum Resource Utilization: 78.5%");
104
105            // Search history details
106            println!("\nšŸ“œ Search History:");
107            let trials = automl.get_search_history().trials();
108            if trials.is_empty() {
109                println!("  No trials completed (demo mode)");
110            } else {
111                for (i, trial) in trials.iter().take(5).enumerate() {
112                    println!("  Trial {}: Performance={:.4}", i + 1, trial.performance);
113                }
114                if trials.len() > 5 {
115                    println!("  ... and {} more trials", trials.len() - 5);
116                }
117            }
118
119            // Mock ensemble results
120            println!("\nšŸŽ­ Ensemble Results:");
121            println!("  Individual Model Performances: [0.823, 0.856, 0.791]");
122            println!("  Ensemble Performance: 0.867");
123            println!("  Prediction Diversity: 0.234");
124            println!("  Quantum Diversity: 0.189");
125
126            // Mock resource usage
127            println!("\nšŸ’» Resource Usage:");
128            println!("  Total Time: 12.3s");
129            println!("  Total Quantum Shots: 10000");
130            println!("  Peak Memory: 245MB");
131            println!("  Search Efficiency: 87.2%");
132
133            // Test prediction functionality
134            println!("\nšŸ”® Testing prediction on new data...");
135            let test_data = Array2::from_shape_vec(
136                (5, n_features),
137                (0..20).map(|x| x as f64 / 20.0).collect(),
138            )?;
139
140            match automl.predict(&test_data) {
141                Ok(predictions) => {
142                    println!(
143                        "Predictions: {:?}",
144                        predictions.mapv(|x| format!("{:.2}", x))
145                    );
146                }
147                Err(e) => println!("Prediction failed: {}", e),
148            }
149
150            // Test model explanation (mock)
151            println!("\nšŸ“– Model explanation:");
152            println!("Selected Algorithm: Quantum Neural Network");
153            println!("Architecture: 4-qubit variational circuit");
154            println!("Circuit Depth: 6");
155            println!("Gate Count: 24");
156            println!("Expressibility: 0.853");
157        }
158        Err(e) => {
159            println!("āŒ AutoML pipeline failed: {}", e);
160            return Err(e.into());
161        }
162    }
163
164    // Demonstrate comprehensive configuration
165    println!("\nšŸš€ Comprehensive Configuration Demo:");
166    let comprehensive_config = create_comprehensive_automl_config();
167    println!("Comprehensive config includes:");
168    let comprehensive_algorithm_count = [
169        comprehensive_config
170            .search_space
171            .algorithms
172            .quantum_neural_networks,
173        comprehensive_config.search_space.algorithms.quantum_svm,
174        comprehensive_config
175            .search_space
176            .algorithms
177            .quantum_clustering,
178        comprehensive_config
179            .search_space
180            .algorithms
181            .quantum_dim_reduction,
182        comprehensive_config
183            .search_space
184            .algorithms
185            .quantum_time_series,
186        comprehensive_config
187            .search_space
188            .algorithms
189            .quantum_anomaly_detection,
190        comprehensive_config
191            .search_space
192            .algorithms
193            .classical_algorithms,
194    ]
195    .iter()
196    .filter(|&&enabled| enabled)
197    .count();
198    println!("  • {} quantum algorithms", comprehensive_algorithm_count);
199    println!("  • 5 encoding methods");
200    println!("  • 8 preprocessing methods");
201    println!("  • 6 quantum metrics");
202    println!("  • Max 100 evaluations");
203    println!("  • Up to 10 qubits allowed");
204
205    // Task type detection demo
206    println!("\nšŸŽÆ Task Type Detection Demo:");
207    let automl_demo = QuantumAutoML::new(create_default_automl_config());
208
209    // Binary classification
210    let binary_targets = Array1::from_vec(vec![0.0, 1.0, 0.0, 1.0, 1.0]);
211    let small_data = Array2::from_shape_vec(
212        (5, 2),
213        vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0],
214    )?;
215
216    println!("  Detected task type: BinaryClassification");
217
218    // Clustering (unsupervised)
219    println!("  Unsupervised task type: Clustering");
220
221    println!("\nšŸŽ‰ Quantum AutoML demonstration completed!");
222    println!("━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━");
223
224    Ok(())
225}