quantum_nas/
quantum_nas.rs

1#![allow(
2    clippy::pedantic,
3    clippy::unnecessary_wraps,
4    clippy::needless_range_loop,
5    clippy::useless_vec,
6    clippy::needless_collect,
7    clippy::too_many_arguments
8)]
9//! Quantum Neural Architecture Search Example
10//!
11//! This example demonstrates various quantum neural architecture search algorithms
12//! including evolutionary search, reinforcement learning, random search,
13//! Bayesian optimization, and DARTS.
14
15use quantrs2_ml::prelude::*;
16use quantrs2_ml::qnn::QNNLayerType;
17use scirs2_core::ndarray::{Array1, Array2};
18use scirs2_core::random::prelude::*;
19
20fn main() -> Result<()> {
21    println!("=== Quantum Neural Architecture Search Demo ===\n");
22
23    // Step 1: Evolutionary algorithm search
24    println!("1. Evolutionary Algorithm Search...");
25    evolutionary_search_demo()?;
26
27    // Step 2: Random search baseline
28    println!("\n2. Random Search Baseline...");
29    random_search_demo()?;
30
31    // Step 3: Reinforcement learning search
32    println!("\n3. Reinforcement Learning Search...");
33    rl_search_demo()?;
34
35    // Step 4: Bayesian optimization
36    println!("\n4. Bayesian Optimization Search...");
37    bayesian_search_demo()?;
38
39    // Step 5: DARTS (Differentiable Architecture Search)
40    println!("\n5. DARTS (Differentiable Architecture Search)...");
41    darts_demo()?;
42
43    // Step 6: Multi-objective optimization
44    println!("\n6. Multi-Objective Optimization...");
45    multi_objective_demo()?;
46
47    // Step 7: Architecture analysis
48    println!("\n7. Architecture Analysis...");
49    architecture_analysis_demo()?;
50
51    println!("\n=== Quantum NAS Demo Complete ===");
52
53    Ok(())
54}
55
56/// Evolutionary algorithm search demonstration
57fn evolutionary_search_demo() -> Result<()> {
58    // Create search space
59    let search_space = create_default_search_space();
60
61    // Configure evolutionary strategy
62    let strategy = SearchStrategy::Evolutionary {
63        population_size: 20,
64        mutation_rate: 0.2,
65        crossover_rate: 0.7,
66        elitism_ratio: 0.1,
67    };
68
69    let mut nas = QuantumNAS::new(strategy, search_space);
70
71    println!("   Created evolutionary NAS:");
72    println!("   - Population size: 20");
73    println!("   - Mutation rate: 0.2");
74    println!("   - Crossover rate: 0.7");
75    println!("   - Elitism ratio: 0.1");
76
77    // Set evaluation data (synthetic for demo)
78    let eval_data = Array2::from_shape_fn((100, 4), |(i, j)| (i as f64 + j as f64) / 50.0);
79    let eval_labels = Array1::from_shape_fn(100, |i| i % 2);
80    nas.set_evaluation_data(eval_data, eval_labels);
81
82    // Run search
83    println!("\n   Running evolutionary search for 10 generations...");
84    let best_architectures = nas.search(10)?;
85
86    println!("   Search complete!");
87    println!(
88        "   - Best architectures found: {}",
89        best_architectures.len()
90    );
91
92    if let Some(best) = best_architectures.first() {
93        println!("   - Best architecture: {best}");
94        println!("   - Circuit depth: {}", best.metrics.circuit_depth);
95        println!("   - Parameter count: {}", best.metrics.parameter_count);
96
97        if let Some(expressivity) = best.properties.expressivity {
98            println!("   - Expressivity: {expressivity:.3}");
99        }
100    }
101
102    // Show search summary
103    let summary = nas.get_search_summary();
104    println!(
105        "   - Total architectures evaluated: {}",
106        summary.total_architectures_evaluated
107    );
108    println!("   - Pareto front size: {}", summary.pareto_front_size);
109
110    Ok(())
111}
112
113/// Random search baseline demonstration
114fn random_search_demo() -> Result<()> {
115    let search_space = create_default_search_space();
116    let strategy = SearchStrategy::Random { num_samples: 50 };
117
118    let mut nas = QuantumNAS::new(strategy, search_space);
119
120    println!("   Created random search NAS:");
121    println!("   - Number of samples: 50");
122
123    // Generate synthetic evaluation data
124    let eval_data = Array2::from_shape_fn((80, 4), |(i, j)| {
125        0.5f64.mul_add((i as f64).sin(), 0.3 * (j as f64).cos())
126    });
127    let eval_labels = Array1::from_shape_fn(80, |i| usize::from(i % 3 != 0));
128    nas.set_evaluation_data(eval_data, eval_labels);
129
130    println!("\n   Running random search...");
131    let best_architectures = nas.search(50)?;
132
133    println!("   Random search complete!");
134    if let Some(best) = best_architectures.first() {
135        println!("   - Best random architecture: {best}");
136        if let Some(accuracy) = best.metrics.accuracy {
137            println!("   - Accuracy: {accuracy:.3}");
138        }
139    }
140
141    Ok(())
142}
143
144/// Reinforcement learning search demonstration
145fn rl_search_demo() -> Result<()> {
146    let search_space = create_custom_search_space();
147
148    let strategy = SearchStrategy::ReinforcementLearning {
149        agent_type: RLAgentType::PolicyGradient,
150        exploration_rate: 0.3,
151        learning_rate: 0.01,
152    };
153
154    let mut nas = QuantumNAS::new(strategy, search_space);
155
156    println!("   Created RL-based NAS:");
157    println!("   - Agent type: Policy Gradient");
158    println!("   - Exploration rate: 0.3");
159    println!("   - Learning rate: 0.01");
160
161    println!("\n   Running RL search for 100 episodes...");
162    let best_architectures = nas.search(100)?;
163
164    println!("   RL search complete!");
165    println!("   - Architectures found: {}", best_architectures.len());
166
167    if let Some(best) = best_architectures.first() {
168        println!("   - Best RL architecture: {best}");
169        if let Some(entanglement) = best.properties.entanglement_capability {
170            println!("   - Entanglement capability: {entanglement:.3}");
171        }
172    }
173
174    Ok(())
175}
176
177/// Bayesian optimization search demonstration
178fn bayesian_search_demo() -> Result<()> {
179    let search_space = create_default_search_space();
180
181    let strategy = SearchStrategy::BayesianOptimization {
182        acquisition_function: AcquisitionFunction::ExpectedImprovement,
183        num_initial_points: 10,
184    };
185
186    let mut nas = QuantumNAS::new(strategy, search_space);
187
188    println!("   Created Bayesian optimization NAS:");
189    println!("   - Acquisition function: Expected Improvement");
190    println!("   - Initial random points: 10");
191
192    // Set up evaluation data
193    let eval_data = generate_quantum_data(60, 4);
194    let eval_labels = Array1::from_shape_fn(60, |i| i % 3);
195    nas.set_evaluation_data(eval_data, eval_labels);
196
197    println!("\n   Running Bayesian optimization for 30 iterations...");
198    let best_architectures = nas.search(30)?;
199
200    println!("   Bayesian optimization complete!");
201    if let Some(best) = best_architectures.first() {
202        println!("   - Best Bayesian architecture: {best}");
203        if let Some(hardware_eff) = best.metrics.hardware_efficiency {
204            println!("   - Hardware efficiency: {hardware_eff:.3}");
205        }
206    }
207
208    Ok(())
209}
210
211/// DARTS demonstration
212fn darts_demo() -> Result<()> {
213    let search_space = create_darts_search_space();
214
215    let strategy = SearchStrategy::DARTS {
216        learning_rate: 0.01,
217        weight_decay: 1e-4,
218    };
219
220    let mut nas = QuantumNAS::new(strategy, search_space);
221
222    println!("   Created DARTS NAS:");
223    println!("   - Learning rate: 0.01");
224    println!("   - Weight decay: 1e-4");
225    println!("   - Differentiable architecture search");
226
227    println!("\n   Running DARTS for 200 epochs...");
228    let best_architectures = nas.search(200)?;
229
230    println!("   DARTS search complete!");
231    if let Some(best) = best_architectures.first() {
232        println!("   - DARTS architecture: {best}");
233        println!("   - Learned through gradient-based optimization");
234
235        if let Some(gradient_var) = best.properties.gradient_variance {
236            println!("   - Gradient variance: {gradient_var:.3}");
237        }
238    }
239
240    Ok(())
241}
242
243/// Multi-objective optimization demonstration
244fn multi_objective_demo() -> Result<()> {
245    let search_space = create_default_search_space();
246
247    let strategy = SearchStrategy::Evolutionary {
248        population_size: 30,
249        mutation_rate: 0.15,
250        crossover_rate: 0.8,
251        elitism_ratio: 0.2,
252    };
253
254    let mut nas = QuantumNAS::new(strategy, search_space);
255
256    println!("   Multi-objective optimization:");
257    println!("   - Optimizing accuracy vs. complexity");
258    println!("   - Finding Pareto-optimal architectures");
259
260    // Run search
261    nas.search(15)?;
262
263    // Analyze Pareto front
264    let pareto_front = nas.get_pareto_front();
265    println!("   Pareto front analysis:");
266    println!("   - Pareto-optimal architectures: {}", pareto_front.len());
267
268    for (i, arch) in pareto_front.iter().take(3).enumerate() {
269        println!(
270            "   Architecture {}: {} params, {:.3} accuracy",
271            i + 1,
272            arch.metrics.parameter_count,
273            arch.metrics.accuracy.unwrap_or(0.0)
274        );
275    }
276
277    Ok(())
278}
279
280/// Architecture analysis demonstration
281fn architecture_analysis_demo() -> Result<()> {
282    println!("   Analyzing quantum circuit architectures...");
283
284    // Create sample architectures with different properties
285    let architectures = create_sample_architectures();
286
287    println!("\n   Architecture comparison:");
288    for (i, arch) in architectures.iter().enumerate() {
289        println!("   Architecture {}:", i + 1);
290        println!("     - Layers: {}", arch.layers.len());
291        println!("     - Qubits: {}", arch.num_qubits);
292        println!("     - Circuit depth: {}", arch.metrics.circuit_depth);
293
294        if let Some(expressivity) = arch.properties.expressivity {
295            println!("     - Expressivity: {expressivity:.3}");
296        }
297
298        if let Some(entanglement) = arch.properties.entanglement_capability {
299            println!("     - Entanglement: {entanglement:.3}");
300        }
301
302        if let Some(barren_plateau) = arch.properties.barren_plateau_score {
303            println!("     - Barren plateau risk: {barren_plateau:.3}");
304        }
305
306        println!();
307    }
308
309    // Performance trade-offs analysis
310    println!("   Performance trade-offs:");
311    println!("   - Deeper circuits: higher expressivity, more barren plateaus");
312    println!("   - More entanglement: better feature mixing, higher noise sensitivity");
313    println!("   - More parameters: greater capacity, overfitting risk");
314
315    Ok(())
316}
317
318/// Generate quantum-inspired synthetic data
319fn generate_quantum_data(samples: usize, features: usize) -> Array2<f64> {
320    Array2::from_shape_fn((samples, features), |(i, j)| {
321        let phase = (i as f64).mul_add(0.1, j as f64 * 0.2).sin();
322        let amplitude = (i as f64 / samples as f64).exp() * 0.5;
323        amplitude * phase + 0.1 * fastrand::f64()
324    })
325}
326
327/// Create custom search space for RL demo
328fn create_custom_search_space() -> SearchSpace {
329    SearchSpace {
330        layer_types: vec![
331            QNNLayerType::VariationalLayer { num_params: 4 },
332            QNNLayerType::VariationalLayer { num_params: 8 },
333            QNNLayerType::EntanglementLayer {
334                connectivity: "circular".to_string(),
335            },
336            QNNLayerType::EntanglementLayer {
337                connectivity: "linear".to_string(),
338            },
339        ],
340        depth_range: (1, 5),
341        qubit_constraints: QubitConstraints {
342            min_qubits: 3,
343            max_qubits: 6,
344            topology: Some(QuantumTopology::Ring),
345        },
346        param_ranges: vec![("variational_params".to_string(), (3, 12))]
347            .into_iter()
348            .collect(),
349        connectivity_patterns: vec!["linear".to_string(), "circular".to_string()],
350        measurement_bases: vec!["computational".to_string(), "Pauli-Z".to_string()],
351    }
352}
353
354/// Create search space optimized for DARTS
355fn create_darts_search_space() -> SearchSpace {
356    SearchSpace {
357        layer_types: vec![
358            QNNLayerType::VariationalLayer { num_params: 6 },
359            QNNLayerType::VariationalLayer { num_params: 9 },
360            QNNLayerType::EntanglementLayer {
361                connectivity: "full".to_string(),
362            },
363        ],
364        depth_range: (3, 6),
365        qubit_constraints: QubitConstraints {
366            min_qubits: 4,
367            max_qubits: 4, // Fixed for DARTS
368            topology: Some(QuantumTopology::Complete),
369        },
370        param_ranges: vec![("variational_params".to_string(), (6, 9))]
371            .into_iter()
372            .collect(),
373        connectivity_patterns: vec!["full".to_string()],
374        measurement_bases: vec!["computational".to_string()],
375    }
376}
377
378/// Create sample architectures for analysis
379fn create_sample_architectures() -> Vec<ArchitectureCandidate> {
380    vec![
381        // Simple architecture
382        ArchitectureCandidate {
383            id: "simple".to_string(),
384            layers: vec![
385                QNNLayerType::EncodingLayer { num_features: 4 },
386                QNNLayerType::VariationalLayer { num_params: 6 },
387                QNNLayerType::MeasurementLayer {
388                    measurement_basis: "computational".to_string(),
389                },
390            ],
391            num_qubits: 3,
392            metrics: ArchitectureMetrics {
393                accuracy: Some(0.65),
394                loss: Some(0.4),
395                circuit_depth: 3,
396                parameter_count: 6,
397                training_time: Some(10.0),
398                memory_usage: Some(512),
399                hardware_efficiency: Some(0.8),
400            },
401            properties: ArchitectureProperties {
402                expressivity: Some(0.3),
403                entanglement_capability: Some(0.2),
404                gradient_variance: Some(0.1),
405                barren_plateau_score: Some(0.2),
406                noise_resilience: Some(0.7),
407            },
408        },
409        // Complex architecture
410        ArchitectureCandidate {
411            id: "complex".to_string(),
412            layers: vec![
413                QNNLayerType::EncodingLayer { num_features: 6 },
414                QNNLayerType::VariationalLayer { num_params: 12 },
415                QNNLayerType::EntanglementLayer {
416                    connectivity: "full".to_string(),
417                },
418                QNNLayerType::VariationalLayer { num_params: 12 },
419                QNNLayerType::EntanglementLayer {
420                    connectivity: "circular".to_string(),
421                },
422                QNNLayerType::MeasurementLayer {
423                    measurement_basis: "Pauli-Z".to_string(),
424                },
425            ],
426            num_qubits: 6,
427            metrics: ArchitectureMetrics {
428                accuracy: Some(0.85),
429                loss: Some(0.2),
430                circuit_depth: 8,
431                parameter_count: 24,
432                training_time: Some(45.0),
433                memory_usage: Some(2048),
434                hardware_efficiency: Some(0.4),
435            },
436            properties: ArchitectureProperties {
437                expressivity: Some(0.8),
438                entanglement_capability: Some(0.9),
439                gradient_variance: Some(0.3),
440                barren_plateau_score: Some(0.7),
441                noise_resilience: Some(0.3),
442            },
443        },
444        // Balanced architecture
445        ArchitectureCandidate {
446            id: "balanced".to_string(),
447            layers: vec![
448                QNNLayerType::EncodingLayer { num_features: 4 },
449                QNNLayerType::VariationalLayer { num_params: 8 },
450                QNNLayerType::EntanglementLayer {
451                    connectivity: "circular".to_string(),
452                },
453                QNNLayerType::VariationalLayer { num_params: 8 },
454                QNNLayerType::MeasurementLayer {
455                    measurement_basis: "computational".to_string(),
456                },
457            ],
458            num_qubits: 4,
459            metrics: ArchitectureMetrics {
460                accuracy: Some(0.78),
461                loss: Some(0.28),
462                circuit_depth: 5,
463                parameter_count: 16,
464                training_time: Some(25.0),
465                memory_usage: Some(1024),
466                hardware_efficiency: Some(0.65),
467            },
468            properties: ArchitectureProperties {
469                expressivity: Some(0.6),
470                entanglement_capability: Some(0.5),
471                gradient_variance: Some(0.15),
472                barren_plateau_score: Some(0.4),
473                noise_resilience: Some(0.6),
474            },
475        },
476    ]
477}