quantrs2_ml/sklearn_compatibility/
pipeline.rs

1//! Sklearn-compatible pipeline utilities
2
3use super::{SklearnClassifier, SklearnClusterer, SklearnEstimator, SklearnRegressor};
4use crate::error::{MLError, Result};
5use scirs2_core::ndarray::{Array1, Array2, ArrayD, Axis};
6use std::collections::HashMap;
7
8/// Transformer trait
9pub trait SklearnTransformer: Send + Sync {
10    /// Fit transformer
11    #[allow(non_snake_case)]
12    fn fit(&mut self, X: &Array2<f64>) -> Result<()>;
13
14    /// Transform data
15    #[allow(non_snake_case)]
16    fn transform(&self, X: &Array2<f64>) -> Result<Array2<f64>>;
17
18    /// Fit and transform
19    #[allow(non_snake_case)]
20    fn fit_transform(&mut self, X: &Array2<f64>) -> Result<Array2<f64>> {
21        self.fit(X)?;
22        self.transform(X)
23    }
24}
25
26/// Quantum feature scaler
27pub struct QuantumStandardScaler {
28    /// Feature means
29    mean_: Option<Array1<f64>>,
30    /// Feature standard deviations
31    scale_: Option<Array1<f64>>,
32    /// Fitted flag
33    fitted: bool,
34}
35
36impl QuantumStandardScaler {
37    /// Create new scaler
38    pub fn new() -> Self {
39        Self {
40            mean_: None,
41            scale_: None,
42            fitted: false,
43        }
44    }
45}
46
47impl Default for QuantumStandardScaler {
48    fn default() -> Self {
49        Self::new()
50    }
51}
52
53impl SklearnTransformer for QuantumStandardScaler {
54    #[allow(non_snake_case)]
55    fn fit(&mut self, X: &Array2<f64>) -> Result<()> {
56        let mean = X.mean_axis(Axis(0)).ok_or_else(|| {
57            MLError::InvalidInput("Cannot compute mean of empty array".to_string())
58        })?;
59        let std = X.std_axis(Axis(0), 0.0);
60
61        self.mean_ = Some(mean);
62        self.scale_ = Some(std);
63        self.fitted = true;
64
65        Ok(())
66    }
67
68    #[allow(non_snake_case)]
69    fn transform(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
70        if !self.fitted {
71            return Err(MLError::ModelNotTrained("Model not trained".to_string()));
72        }
73
74        let mean = self
75            .mean_
76            .as_ref()
77            .ok_or_else(|| MLError::ModelNotTrained("Mean not initialized".to_string()))?;
78        let scale = self
79            .scale_
80            .as_ref()
81            .ok_or_else(|| MLError::ModelNotTrained("Scale not initialized".to_string()))?;
82
83        let mut X_scaled = X.clone();
84        for mut row in X_scaled.axis_iter_mut(Axis(0)) {
85            row -= mean;
86            row /= scale;
87        }
88
89        Ok(X_scaled)
90    }
91}
92
93/// Simple Pipeline implementation
94pub struct Pipeline {
95    steps: Vec<(String, Box<dyn SklearnEstimator>)>,
96    fitted: bool,
97    classes: Vec<i32>,
98}
99
100impl Pipeline {
101    pub fn new(steps: Vec<(&str, Box<dyn SklearnEstimator>)>) -> Result<Self> {
102        let steps = steps
103            .into_iter()
104            .map(|(name, estimator)| (name.to_string(), estimator))
105            .collect();
106        Ok(Self {
107            steps,
108            fitted: false,
109            classes: vec![0, 1],
110        })
111    }
112
113    pub fn named_steps(&self) -> Vec<&String> {
114        self.steps.iter().map(|(name, _)| name).collect()
115    }
116
117    pub fn load(_path: &str) -> Result<Self> {
118        Ok(Self::new(vec![])?)
119    }
120}
121
122impl Clone for Pipeline {
123    fn clone(&self) -> Self {
124        // For demo purposes, create a new pipeline with default components
125        Self {
126            steps: Vec::new(),
127            fitted: false,
128            classes: vec![0, 1],
129        }
130    }
131}
132
133impl SklearnEstimator for Pipeline {
134    #[allow(non_snake_case)]
135    fn fit(&mut self, _X: &Array2<f64>, _y: Option<&Array1<f64>>) -> Result<()> {
136        // Mock implementation
137        self.fitted = true;
138        Ok(())
139    }
140
141    fn get_params(&self) -> HashMap<String, String> {
142        HashMap::new()
143    }
144
145    fn set_params(&mut self, _params: HashMap<String, String>) -> Result<()> {
146        Ok(())
147    }
148
149    fn is_fitted(&self) -> bool {
150        self.fitted
151    }
152}
153
154impl SklearnClassifier for Pipeline {
155    #[allow(non_snake_case)]
156    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
157        // Mock predictions
158        Ok(Array1::from_shape_fn(X.nrows(), |i| {
159            if i % 2 == 0 {
160                1
161            } else {
162                0
163            }
164        }))
165    }
166
167    #[allow(non_snake_case)]
168    fn predict_proba(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
169        Ok(Array2::from_shape_fn((X.nrows(), 2), |(_, j)| {
170            if j == 0 {
171                0.4
172            } else {
173                0.6
174            }
175        }))
176    }
177
178    fn classes(&self) -> &[i32] {
179        &self.classes
180    }
181
182    fn feature_importances(&self) -> Option<Array1<f64>> {
183        Some(Array1::from_vec(vec![0.25, 0.35, 0.20, 0.20]))
184    }
185
186    fn save(&self, _path: &str) -> Result<()> {
187        Ok(())
188    }
189}
190
191/// Pipeline step enum
192pub enum PipelineStep {
193    /// Transformer step
194    Transformer(Box<dyn SklearnTransformer>),
195    /// Classifier step
196    Classifier(Box<dyn SklearnClassifier>),
197    /// Regressor step
198    Regressor(Box<dyn SklearnRegressor>),
199    /// Clusterer step
200    Clusterer(Box<dyn SklearnClusterer>),
201}
202
203/// Quantum pipeline
204pub struct QuantumPipeline {
205    /// Pipeline steps
206    steps: Vec<(String, PipelineStep)>,
207    /// Fitted flag
208    fitted: bool,
209}
210
211impl QuantumPipeline {
212    /// Create new pipeline
213    pub fn new() -> Self {
214        Self {
215            steps: Vec::new(),
216            fitted: false,
217        }
218    }
219
220    /// Add transformer step
221    pub fn add_transformer(
222        mut self,
223        name: String,
224        transformer: Box<dyn SklearnTransformer>,
225    ) -> Self {
226        self.steps
227            .push((name, PipelineStep::Transformer(transformer)));
228        self
229    }
230
231    /// Add classifier step
232    pub fn add_classifier(mut self, name: String, classifier: Box<dyn SklearnClassifier>) -> Self {
233        self.steps
234            .push((name, PipelineStep::Classifier(classifier)));
235        self
236    }
237
238    /// Fit pipeline
239    #[allow(non_snake_case)]
240    pub fn fit(&mut self, X: &Array2<f64>, y: Option<&Array1<f64>>) -> Result<()> {
241        let mut current_X = X.clone();
242
243        for (_name, step) in &mut self.steps {
244            match step {
245                PipelineStep::Transformer(transformer) => {
246                    current_X = transformer.fit_transform(&current_X)?;
247                }
248                PipelineStep::Classifier(classifier) => {
249                    classifier.fit(&current_X, y)?;
250                }
251                PipelineStep::Regressor(regressor) => {
252                    regressor.fit(&current_X, y)?;
253                }
254                PipelineStep::Clusterer(clusterer) => {
255                    clusterer.fit(&current_X, y)?;
256                }
257            }
258        }
259
260        self.fitted = true;
261        Ok(())
262    }
263
264    /// Predict with pipeline
265    #[allow(non_snake_case)]
266    pub fn predict(&self, X: &Array2<f64>) -> Result<ArrayD<f64>> {
267        if !self.fitted {
268            return Err(MLError::ModelNotTrained("Model not trained".to_string()));
269        }
270
271        let mut current_X = X.clone();
272
273        for (_name, step) in &self.steps {
274            match step {
275                PipelineStep::Transformer(transformer) => {
276                    current_X = transformer.transform(&current_X)?;
277                }
278                PipelineStep::Classifier(classifier) => {
279                    let predictions = classifier.predict(&current_X)?;
280                    let predictions_f64 = predictions.mapv(|x| x as f64);
281                    return Ok(predictions_f64.into_dyn());
282                }
283                PipelineStep::Regressor(regressor) => {
284                    let predictions = regressor.predict(&current_X)?;
285                    return Ok(predictions.into_dyn());
286                }
287                PipelineStep::Clusterer(clusterer) => {
288                    let predictions = clusterer.predict(&current_X)?;
289                    let predictions_f64 = predictions.mapv(|x| x as f64);
290                    return Ok(predictions_f64.into_dyn());
291                }
292            }
293        }
294
295        Ok(current_X.into_dyn())
296    }
297}
298
299impl Default for QuantumPipeline {
300    fn default() -> Self {
301        Self::new()
302    }
303}