quantrs2_ml/clustering/
core.rs1use crate::dimensionality_reduction::QuantumDistanceMetric;
4use crate::error::{MLError, Result};
5use scirs2_core::ndarray::{Array1, Array2};
6
7use super::config::*;
8
9#[derive(Debug, Clone)]
11pub struct ClusteringResult {
12 pub labels: Array1<usize>,
14 pub n_clusters: usize,
16 pub cluster_centers: Option<Array2<f64>>,
18 pub inertia: Option<f64>,
20 pub probabilities: Option<Array2<f64>>,
22}
23
24#[derive(Debug)]
26pub struct QuantumClusterer {
27 config: QuantumClusteringConfig,
28 cluster_centers: Option<Array2<f64>>,
29 labels: Option<Array1<usize>>,
30 pub kmeans_config: Option<QuantumKMeansConfig>,
32 pub dbscan_config: Option<QuantumDBSCANConfig>,
33 pub spectral_config: Option<QuantumSpectralConfig>,
34 pub fuzzy_config: Option<QuantumFuzzyCMeansConfig>,
35 pub gmm_config: Option<QuantumGMMConfig>,
36}
37
38impl QuantumClusterer {
39 pub fn new(config: QuantumClusteringConfig) -> Self {
41 Self {
42 config,
43 cluster_centers: None,
44 labels: None,
45 kmeans_config: None,
46 dbscan_config: None,
47 spectral_config: None,
48 fuzzy_config: None,
49 gmm_config: None,
50 }
51 }
52
53 pub fn kmeans(config: QuantumKMeansConfig) -> Self {
55 let mut clusterer = Self::new(QuantumClusteringConfig {
56 algorithm: ClusteringAlgorithm::QuantumKMeans,
57 n_clusters: config.n_clusters,
58 max_iterations: config.max_iterations,
59 tolerance: config.tolerance,
60 num_qubits: 4,
61 random_state: config.seed,
62 });
63 clusterer.kmeans_config = Some(config);
64 clusterer
65 }
66
67 pub fn dbscan(config: QuantumDBSCANConfig) -> Self {
69 let mut clusterer = Self::new(QuantumClusteringConfig {
70 algorithm: ClusteringAlgorithm::QuantumDBSCAN,
71 n_clusters: 0, max_iterations: 100,
73 tolerance: 1e-4,
74 num_qubits: 4,
75 random_state: config.seed,
76 });
77 clusterer.dbscan_config = Some(config);
78 clusterer
79 }
80
81 pub fn spectral(config: QuantumSpectralConfig) -> Self {
83 let mut clusterer = Self::new(QuantumClusteringConfig {
84 algorithm: ClusteringAlgorithm::QuantumSpectral,
85 n_clusters: config.n_clusters,
86 max_iterations: 100,
87 tolerance: 1e-4,
88 num_qubits: 4,
89 random_state: config.seed,
90 });
91 clusterer.spectral_config = Some(config);
92 clusterer
93 }
94
95 pub fn fit(&mut self, data: &Array2<f64>) -> Result<ClusteringResult> {
97 let n_clusters = if self.config.algorithm == ClusteringAlgorithm::QuantumDBSCAN {
99 2 } else {
102 self.config.n_clusters
103 };
104 let n_features = data.ncols();
105 let n_samples = data.nrows();
106
107 let cluster_centers = Array2::zeros((n_clusters, n_features));
109 let labels = Array1::zeros(n_samples);
110
111 self.cluster_centers = Some(cluster_centers.clone());
113 self.labels = Some(labels.clone());
114
115 let result = ClusteringResult {
117 labels,
118 n_clusters,
119 cluster_centers: Some(cluster_centers),
120 inertia: Some(0.0), probabilities: None, };
123
124 Ok(result)
125 }
126
127 pub fn predict(&self, data: &Array2<f64>) -> Result<Array1<usize>> {
129 if self.cluster_centers.is_none() {
130 return Err(MLError::ModelNotTrained(
131 "Clusterer must be fitted before predict".to_string(),
132 ));
133 }
134
135 Ok(Array1::zeros(data.nrows()))
136 }
137
138 pub fn predict_proba(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
140 if self.cluster_centers.is_none() {
141 return Err(MLError::ModelNotTrained(
142 "Clusterer must be fitted before predict_proba".to_string(),
143 ));
144 }
145
146 let n_samples = data.nrows();
147 let n_clusters = self.config.n_clusters;
148
149 Ok(Array2::from_elem(
151 (n_samples, n_clusters),
152 1.0 / n_clusters as f64,
153 ))
154 }
155
156 pub fn compute_quantum_distance(
158 &self,
159 point1: &Array1<f64>,
160 point2: &Array1<f64>,
161 metric: QuantumDistanceMetric,
162 ) -> Result<f64> {
163 match metric {
165 QuantumDistanceMetric::QuantumEuclidean => {
166 let diff = point1 - point2;
167 Ok(diff.dot(&diff).sqrt())
168 }
169 QuantumDistanceMetric::QuantumManhattan => {
170 Ok((point1 - point2).mapv(|x| x.abs()).sum())
171 }
172 QuantumDistanceMetric::QuantumCosine => {
173 let dot_product = point1.dot(point2);
174 let norm1 = point1.dot(point1).sqrt();
175 let norm2 = point2.dot(point2).sqrt();
176 Ok(1.0 - (dot_product / (norm1 * norm2)))
177 }
178 _ => {
179 let diff = point1 - point2;
181 Ok(diff.dot(&diff).sqrt())
182 }
183 }
184 }
185
186 pub fn fit_predict(&mut self, data: &Array2<f64>) -> Result<Array1<usize>> {
188 let result = self.fit(data)?;
189 Ok(result.labels)
190 }
191
192 pub fn cluster_centers(&self) -> Option<&Array2<f64>> {
194 self.cluster_centers.as_ref()
195 }
196
197 pub fn evaluate(
199 &self,
200 data: &Array2<f64>,
201 _true_labels: Option<&Array1<usize>>,
202 ) -> Result<ClusteringMetrics> {
203 if self.cluster_centers.is_none() {
204 return Err(MLError::ModelNotTrained(
205 "Clusterer must be fitted before evaluation".to_string(),
206 ));
207 }
208
209 Ok(ClusteringMetrics {
211 silhouette_score: 0.5,
212 davies_bouldin_index: 1.0,
213 calinski_harabasz_index: 100.0,
214 inertia: 0.0,
215 adjusted_rand_index: None,
216 normalized_mutual_info: None,
217 })
218 }
219}
220
221#[derive(Debug, Clone)]
223pub struct ClusteringMetrics {
224 pub silhouette_score: f64,
226 pub davies_bouldin_index: f64,
228 pub calinski_harabasz_index: f64,
230 pub inertia: f64,
232 pub adjusted_rand_index: Option<f64>,
234 pub normalized_mutual_info: Option<f64>,
236}
237
238pub fn create_default_quantum_kmeans(n_clusters: usize) -> QuantumClusterer {
240 let config = QuantumKMeansConfig {
241 n_clusters,
242 ..Default::default()
243 };
244 QuantumClusterer::kmeans(config)
245}
246
247pub fn create_default_quantum_dbscan(eps: f64, min_samples: usize) -> QuantumClusterer {
249 let config = QuantumDBSCANConfig {
250 eps,
251 min_samples,
252 ..Default::default()
253 };
254 QuantumClusterer::dbscan(config)
255}