quantrs2_ml/clustering/
core.rs

1//! Core quantum clustering functionality
2
3use crate::dimensionality_reduction::QuantumDistanceMetric;
4use crate::error::{MLError, Result};
5use scirs2_core::ndarray::{Array1, Array2};
6
7use super::config::*;
8
9/// Clustering result containing labels and metadata
10#[derive(Debug, Clone)]
11pub struct ClusteringResult {
12    /// Cluster labels for each data point
13    pub labels: Array1<usize>,
14    /// Number of clusters found
15    pub n_clusters: usize,
16    /// Cluster centers (if available)
17    pub cluster_centers: Option<Array2<f64>>,
18    /// Inertia/within-cluster sum of squares (if available)
19    pub inertia: Option<f64>,
20    /// Cluster probabilities (for soft clustering)
21    pub probabilities: Option<Array2<f64>>,
22}
23
24/// Main quantum clusterer
25#[derive(Debug)]
26pub struct QuantumClusterer {
27    config: QuantumClusteringConfig,
28    cluster_centers: Option<Array2<f64>>,
29    labels: Option<Array1<usize>>,
30    // Algorithm-specific configurations
31    pub kmeans_config: Option<QuantumKMeansConfig>,
32    pub dbscan_config: Option<QuantumDBSCANConfig>,
33    pub spectral_config: Option<QuantumSpectralConfig>,
34    pub fuzzy_config: Option<QuantumFuzzyCMeansConfig>,
35    pub gmm_config: Option<QuantumGMMConfig>,
36}
37
38impl QuantumClusterer {
39    /// Create new quantum clusterer
40    pub fn new(config: QuantumClusteringConfig) -> Self {
41        Self {
42            config,
43            cluster_centers: None,
44            labels: None,
45            kmeans_config: None,
46            dbscan_config: None,
47            spectral_config: None,
48            fuzzy_config: None,
49            gmm_config: None,
50        }
51    }
52
53    /// Create quantum K-means clusterer
54    pub fn kmeans(config: QuantumKMeansConfig) -> Self {
55        let mut clusterer = Self::new(QuantumClusteringConfig {
56            algorithm: ClusteringAlgorithm::QuantumKMeans,
57            n_clusters: config.n_clusters,
58            max_iterations: config.max_iterations,
59            tolerance: config.tolerance,
60            num_qubits: 4,
61            random_state: config.seed,
62        });
63        clusterer.kmeans_config = Some(config);
64        clusterer
65    }
66
67    /// Create quantum DBSCAN clusterer
68    pub fn dbscan(config: QuantumDBSCANConfig) -> Self {
69        let mut clusterer = Self::new(QuantumClusteringConfig {
70            algorithm: ClusteringAlgorithm::QuantumDBSCAN,
71            n_clusters: 0, // DBSCAN determines clusters automatically
72            max_iterations: 100,
73            tolerance: 1e-4,
74            num_qubits: 4,
75            random_state: config.seed,
76        });
77        clusterer.dbscan_config = Some(config);
78        clusterer
79    }
80
81    /// Create quantum spectral clusterer
82    pub fn spectral(config: QuantumSpectralConfig) -> Self {
83        let mut clusterer = Self::new(QuantumClusteringConfig {
84            algorithm: ClusteringAlgorithm::QuantumSpectral,
85            n_clusters: config.n_clusters,
86            max_iterations: 100,
87            tolerance: 1e-4,
88            num_qubits: 4,
89            random_state: config.seed,
90        });
91        clusterer.spectral_config = Some(config);
92        clusterer
93    }
94
95    /// Fit the clustering model
96    pub fn fit(&mut self, data: &Array2<f64>) -> Result<ClusteringResult> {
97        // Placeholder implementation
98        let n_clusters = if self.config.algorithm == ClusteringAlgorithm::QuantumDBSCAN {
99            // DBSCAN determines clusters automatically
100            2 // placeholder
101        } else {
102            self.config.n_clusters
103        };
104        let n_features = data.ncols();
105        let n_samples = data.nrows();
106
107        // Create placeholder cluster centers
108        let cluster_centers = Array2::zeros((n_clusters, n_features));
109        let labels = Array1::zeros(n_samples);
110
111        // Store for later use
112        self.cluster_centers = Some(cluster_centers.clone());
113        self.labels = Some(labels.clone());
114
115        // Create result
116        let result = ClusteringResult {
117            labels,
118            n_clusters,
119            cluster_centers: Some(cluster_centers),
120            inertia: Some(0.0),  // placeholder
121            probabilities: None, // Will be set for fuzzy clustering
122        };
123
124        Ok(result)
125    }
126
127    /// Predict cluster labels
128    pub fn predict(&self, data: &Array2<f64>) -> Result<Array1<usize>> {
129        if self.cluster_centers.is_none() {
130            return Err(MLError::ModelNotTrained(
131                "Clusterer must be fitted before predict".to_string(),
132            ));
133        }
134
135        Ok(Array1::zeros(data.nrows()))
136    }
137
138    /// Predict cluster probabilities (for soft clustering)
139    pub fn predict_proba(&self, data: &Array2<f64>) -> Result<Array2<f64>> {
140        if self.cluster_centers.is_none() {
141            return Err(MLError::ModelNotTrained(
142                "Clusterer must be fitted before predict_proba".to_string(),
143            ));
144        }
145
146        let n_samples = data.nrows();
147        let n_clusters = self.config.n_clusters;
148
149        // Return uniform probabilities as placeholder
150        Ok(Array2::from_elem(
151            (n_samples, n_clusters),
152            1.0 / n_clusters as f64,
153        ))
154    }
155
156    /// Compute quantum distance between two points
157    pub fn compute_quantum_distance(
158        &self,
159        point1: &Array1<f64>,
160        point2: &Array1<f64>,
161        metric: QuantumDistanceMetric,
162    ) -> Result<f64> {
163        // Placeholder implementation for quantum distance computation
164        match metric {
165            QuantumDistanceMetric::QuantumEuclidean => {
166                let diff = point1 - point2;
167                Ok(diff.dot(&diff).sqrt())
168            }
169            QuantumDistanceMetric::QuantumManhattan => {
170                Ok((point1 - point2).mapv(|x| x.abs()).sum())
171            }
172            QuantumDistanceMetric::QuantumCosine => {
173                let dot_product = point1.dot(point2);
174                let norm1 = point1.dot(point1).sqrt();
175                let norm2 = point2.dot(point2).sqrt();
176                Ok(1.0 - (dot_product / (norm1 * norm2)))
177            }
178            _ => {
179                // For other quantum metrics, return Euclidean as fallback
180                let diff = point1 - point2;
181                Ok(diff.dot(&diff).sqrt())
182            }
183        }
184    }
185
186    /// Fit and predict in one step
187    pub fn fit_predict(&mut self, data: &Array2<f64>) -> Result<Array1<usize>> {
188        let result = self.fit(data)?;
189        Ok(result.labels)
190    }
191
192    /// Get cluster centers
193    pub fn cluster_centers(&self) -> Option<&Array2<f64>> {
194        self.cluster_centers.as_ref()
195    }
196
197    /// Evaluate clustering performance
198    pub fn evaluate(
199        &self,
200        data: &Array2<f64>,
201        _true_labels: Option<&Array1<usize>>,
202    ) -> Result<ClusteringMetrics> {
203        if self.cluster_centers.is_none() {
204            return Err(MLError::ModelNotTrained(
205                "Clusterer must be fitted before evaluation".to_string(),
206            ));
207        }
208
209        // Placeholder evaluation metrics
210        Ok(ClusteringMetrics {
211            silhouette_score: 0.5,
212            davies_bouldin_index: 1.0,
213            calinski_harabasz_index: 100.0,
214            inertia: 0.0,
215            adjusted_rand_index: None,
216            normalized_mutual_info: None,
217        })
218    }
219}
220
221/// Clustering evaluation metrics
222#[derive(Debug, Clone)]
223pub struct ClusteringMetrics {
224    /// Silhouette score
225    pub silhouette_score: f64,
226    /// Davies-Bouldin index
227    pub davies_bouldin_index: f64,
228    /// Calinski-Harabasz index
229    pub calinski_harabasz_index: f64,
230    /// Within-cluster sum of squares
231    pub inertia: f64,
232    /// Adjusted Rand Index (if true labels provided)
233    pub adjusted_rand_index: Option<f64>,
234    /// Normalized Mutual Information (if true labels provided)
235    pub normalized_mutual_info: Option<f64>,
236}
237
238/// Helper function to create default quantum K-means clusterer
239pub fn create_default_quantum_kmeans(n_clusters: usize) -> QuantumClusterer {
240    let config = QuantumKMeansConfig {
241        n_clusters,
242        ..Default::default()
243    };
244    QuantumClusterer::kmeans(config)
245}
246
247/// Helper function to create default quantum DBSCAN clusterer
248pub fn create_default_quantum_dbscan(eps: f64, min_samples: usize) -> QuantumClusterer {
249    let config = QuantumDBSCANConfig {
250        eps,
251        min_samples,
252        ..Default::default()
253    };
254    QuantumClusterer::dbscan(config)
255}