few_shot_learning/
few_shot_learning.rs

1#![allow(
2    clippy::pedantic,
3    clippy::unnecessary_wraps,
4    clippy::needless_range_loop,
5    clippy::useless_vec,
6    clippy::needless_collect,
7    clippy::too_many_arguments
8)]
9//! Quantum Few-Shot Learning Example
10//!
11//! This example demonstrates how to use quantum few-shot learning algorithms
12//! to learn from very limited training examples.
13
14use quantrs2_ml::autodiff::optimizers::Adam;
15use quantrs2_ml::prelude::*;
16use quantrs2_ml::qnn::QNNLayerType;
17use scirs2_core::ndarray::{Array1, Array2};
18use scirs2_core::random::prelude::*;
19
20fn main() -> Result<()> {
21    println!("=== Quantum Few-Shot Learning Demo ===\n");
22
23    // Step 1: Generate synthetic dataset
24    println!("1. Generating synthetic dataset for 5-way classification...");
25    let num_samples_per_class = 20;
26    let num_classes = 5;
27    let num_features = 4;
28    let total_samples = num_samples_per_class * num_classes;
29
30    // Generate data with different patterns for each class
31    let mut data = Array2::zeros((total_samples, num_features));
32    let mut labels = Array1::zeros(total_samples);
33
34    for class_id in 0..num_classes {
35        for sample_idx in 0..num_samples_per_class {
36            let idx = class_id * num_samples_per_class + sample_idx;
37
38            // Create class-specific patterns
39            for feat in 0..num_features {
40                data[[idx, feat]] = 0.1f64.mul_add(
41                    2.0f64.mul_add(thread_rng().gen::<f64>(), -1.0),
42                    (sample_idx as f64)
43                        .mul_add(0.1, (class_id as f64).mul_add(0.5, feat as f64 * 0.3))
44                        .sin(),
45                );
46            }
47            labels[idx] = class_id;
48        }
49    }
50
51    println!(
52        "   Dataset created: {total_samples} samples, {num_features} features, {num_classes} classes"
53    );
54
55    // Step 2: Create quantum model for few-shot learning
56    println!("\n2. Creating quantum neural network...");
57    let layers = vec![
58        QNNLayerType::EncodingLayer { num_features },
59        QNNLayerType::VariationalLayer { num_params: 8 },
60        QNNLayerType::EntanglementLayer {
61            connectivity: "circular".to_string(),
62        },
63        QNNLayerType::VariationalLayer { num_params: 8 },
64        QNNLayerType::MeasurementLayer {
65            measurement_basis: "computational".to_string(),
66        },
67    ];
68
69    let qnn = QuantumNeuralNetwork::new(layers, 4, num_features, num_classes)?;
70    println!("   Quantum model created with {} qubits", qnn.num_qubits);
71
72    // Step 3: Test different few-shot learning methods
73    println!("\n3. Testing few-shot learning methods:");
74
75    // Method 1: Prototypical Networks
76    println!("\n   a) Prototypical Networks (5-way 3-shot):");
77    test_prototypical_networks(&data, &labels, qnn.clone())?;
78
79    // Method 2: MAML
80    println!("\n   b) Model-Agnostic Meta-Learning (MAML):");
81    test_maml(&data, &labels, qnn.clone())?;
82
83    // Step 4: Compare performance across different shot values
84    println!("\n4. Performance comparison across different K-shot values:");
85    compare_shot_performance(&data, &labels, qnn)?;
86
87    println!("\n=== Few-Shot Learning Demo Complete ===");
88
89    Ok(())
90}
91
92/// Test prototypical networks
93fn test_prototypical_networks(
94    data: &Array2<f64>,
95    labels: &Array1<usize>,
96    qnn: QuantumNeuralNetwork,
97) -> Result<()> {
98    let mut learner = FewShotLearner::new(FewShotMethod::PrototypicalNetworks, qnn);
99
100    // Generate episodes for training
101    let num_episodes = 10;
102    let mut episodes = Vec::new();
103
104    for _ in 0..num_episodes {
105        let episode = FewShotLearner::generate_episode(
106            data, labels, 5, // 5-way
107            3, // 3-shot
108            5, // 5 query examples per class
109        )?;
110        episodes.push(episode);
111    }
112
113    // Train
114    let mut optimizer = Adam::new(0.01);
115    let accuracies = learner.train(&episodes, &mut optimizer, 20)?;
116
117    // Print results
118    println!("   Training completed:");
119    println!("   - Initial accuracy: {:.2}%", accuracies[0] * 100.0);
120    println!(
121        "   - Final accuracy: {:.2}%",
122        accuracies.last().unwrap() * 100.0
123    );
124    println!(
125        "   - Improvement: {:.2}%",
126        (accuracies.last().unwrap() - accuracies[0]) * 100.0
127    );
128
129    Ok(())
130}
131
132/// Test MAML
133fn test_maml(data: &Array2<f64>, labels: &Array1<usize>, qnn: QuantumNeuralNetwork) -> Result<()> {
134    let mut learner = FewShotLearner::new(
135        FewShotMethod::MAML {
136            inner_steps: 5,
137            inner_lr: 0.01,
138        },
139        qnn,
140    );
141
142    // Generate meta-training tasks
143    let num_tasks = 20;
144    let mut tasks = Vec::new();
145
146    for _ in 0..num_tasks {
147        let task = FewShotLearner::generate_episode(
148            data, labels, 3, // 3-way (fewer classes for MAML)
149            5, // 5-shot
150            5, // 5 query examples
151        )?;
152        tasks.push(task);
153    }
154
155    // Meta-train
156    let mut meta_optimizer = Adam::new(0.001);
157    let losses = learner.train(&tasks, &mut meta_optimizer, 10)?;
158
159    println!("   Meta-training completed:");
160    println!("   - Initial loss: {:.4}", losses[0]);
161    println!("   - Final loss: {:.4}", losses.last().unwrap());
162    println!(
163        "   - Convergence rate: {:.2}%",
164        (1.0 - losses.last().unwrap() / losses[0]) * 100.0
165    );
166
167    Ok(())
168}
169
170/// Compare performance across different K-shot values
171fn compare_shot_performance(
172    data: &Array2<f64>,
173    labels: &Array1<usize>,
174    qnn: QuantumNeuralNetwork,
175) -> Result<()> {
176    let k_values = vec![1, 3, 5, 10];
177
178    for k in k_values {
179        println!("\n   Testing {k}-shot learning:");
180
181        let mut learner = FewShotLearner::new(FewShotMethod::PrototypicalNetworks, qnn.clone());
182
183        // Generate episodes
184        let mut episodes = Vec::new();
185        for _ in 0..5 {
186            let episode = FewShotLearner::generate_episode(
187                data, labels, 3, // 3-way
188                k, // k-shot
189                5, // 5 query
190            )?;
191            episodes.push(episode);
192        }
193
194        // Quick training
195        let mut optimizer = Adam::new(0.01);
196        let accuracies = learner.train(&episodes, &mut optimizer, 10)?;
197
198        println!(
199            "     Final accuracy: {:.2}%",
200            accuracies.last().unwrap() * 100.0
201        );
202    }
203
204    Ok(())
205}
206
207/// Demonstrate episode structure
208fn demonstrate_episode_structure() -> Result<()> {
209    println!("\n5. Episode Structure Demonstration:");
210
211    // Create a simple episode manually
212    let support_set = vec![
213        // Class 0
214        (Array1::from_vec(vec![0.1, 0.2, 0.3, 0.4]), 0),
215        (Array1::from_vec(vec![0.15, 0.25, 0.35, 0.45]), 0),
216        // Class 1
217        (Array1::from_vec(vec![0.8, 0.7, 0.6, 0.5]), 1),
218        (Array1::from_vec(vec![0.85, 0.75, 0.65, 0.55]), 1),
219    ];
220
221    let query_set = vec![
222        (Array1::from_vec(vec![0.12, 0.22, 0.32, 0.42]), 0),
223        (Array1::from_vec(vec![0.82, 0.72, 0.62, 0.52]), 1),
224    ];
225
226    let episode = Episode {
227        support_set,
228        query_set,
229        num_classes: 2,
230        k_shot: 2,
231    };
232
233    println!("   2-way 2-shot episode created");
234    println!("   - Support set size: {}", episode.support_set.len());
235    println!("   - Query set size: {}", episode.query_set.len());
236
237    Ok(())
238}