tensorflow_quantum_demo/
tensorflow_quantum_demo.rs

1#![allow(
2    clippy::pedantic,
3    clippy::unnecessary_wraps,
4    clippy::needless_range_loop,
5    clippy::useless_vec,
6    clippy::needless_collect,
7    clippy::too_many_arguments,
8    clippy::let_and_return,
9    clippy::needless_pass_by_ref_mut,
10    clippy::manual_clamp,
11    clippy::upper_case_acronyms
12)]
13//! TensorFlow Quantum Compatibility Example
14//!
15//! This example demonstrates the TensorFlow Quantum (TFQ) compatibility layer,
16//! showing how to use TFQ-style APIs, PQC layers, and quantum datasets.
17
18use quantrs2_circuit::prelude::{Circuit, CircuitBuilder};
19use quantrs2_ml::prelude::*;
20use quantrs2_ml::simulator_backends::DynamicCircuit;
21use scirs2_core::ndarray::{Array1, Array2, Array3, Axis};
22use scirs2_core::random::prelude::*;
23use std::collections::HashMap;
24use std::sync::Arc;
25
26fn main() -> Result<()> {
27    println!("=== TensorFlow Quantum Compatibility Demo ===\n");
28
29    // Step 1: Create TFQ-style quantum circuits
30    println!("1. Creating TensorFlow Quantum style circuits...");
31
32    let (circuits, circuit_symbols) = create_tfq_circuits()?;
33    println!(
34        "   - Created {} parameterized quantum circuits",
35        circuits.len()
36    );
37    println!("   - Circuit symbols: {circuit_symbols:?}");
38
39    // Step 2: Build TFQ-style model with PQC layers
40    println!("\n2. Building TFQ-compatible model...");
41
42    let mut model = TFQModel::new(vec![4, 1]); // input_shape: [batch_size, features]
43
44    // Add quantum circuit layer (equivalent to tfq.layers.PQC)
45    // Note: QuantumCircuitLayer does not implement TFQLayer in current API
46    // model.add_layer(Box::new(QuantumCircuitLayer::new(
47    //     circuits[0].clone(),
48    //     circuit_symbols.clone(),
49    //     Observable::PauliZ(vec![0]),
50    //     Arc::new(StatevectorBackend::new(8))
51    // )));
52    println!("   - Quantum circuit layer placeholder added");
53
54    // Add classical preprocessing layer
55    // Note: TFQDenseLayer not implemented in current API
56    // model.add_layer(Box::new(TFQDenseLayer::new(
57    //     4, 8,
58    //     ActivationFunction::ReLU,
59    //     ParameterInitStrategy::XavierUniform
60    // )?));
61
62    // Add PQC layer with different observable
63    // Note: PQCLayer not implemented in current API
64    // model.add_layer(Box::new(PQCLayer::new(
65    //     circuits[1].clone(),
66    //     Observable::PauliZ(vec![1]),
67    //     RegularizationType::L2(0.01)
68    // )?));
69
70    // Add quantum convolutional layer
71    // Note: QuantumConvolutionalLayer not implemented in current API
72    // model.add_layer(Box::new(QuantumConvolutionalLayer::new(
73    //     circuits[2].clone(),
74    //     (2, 2), // kernel_size
75    //     PaddingType::Valid,
76    //     2       // stride
77    // )?));
78
79    // Final output layer
80    // Note: TFQDenseLayer not implemented in current API
81    // model.add_layer(Box::new(TFQDenseLayer::new(
82    //     8, 2,
83    //     ActivationFunction::Softmax,
84    //     ParameterInitStrategy::HeNormal
85    // )?));
86
87    println!("   Model architecture:");
88    // model.summary(); // Not implemented in current API
89
90    // Step 3: Create TFQ-style quantum dataset
91    println!("\n3. Creating TensorFlow Quantum dataset...");
92
93    let quantum_dataset = create_tfq_quantum_dataset()?;
94    // println!("   - Dataset size: {}", quantum_dataset.size());
95    // println!("   - Data encoding: {:?}", quantum_dataset.encoding_type());
96    // println!("   - Batch size: {}", quantum_dataset.batch_size());
97    println!("   - Quantum dataset created successfully");
98
99    // Step 4: Configure TFQ-style training
100    println!("\n4. Configuring TFQ training setup...");
101
102    let optimizer = TFQOptimizer::Adam {
103        learning_rate: 0.001,
104        beta1: 0.9,
105        beta2: 0.999,
106        epsilon: 1e-7,
107    };
108
109    let loss_function = TFQLossFunction::CategoricalCrossentropy;
110
111    model.compile()?;
112
113    println!("   - Optimizer: Adam");
114    println!("   - Loss: Sparse Categorical Crossentropy");
115    println!("   - Metrics: Accuracy, Precision, Recall");
116
117    // Step 5: Train with TFQ-style fit method
118    println!("\n5. Training with TensorFlow Quantum style...");
119
120    // Note: fit method not fully implemented in current API
121    // let history = model.fit(
122    //     &quantum_dataset,
123    //     15,    // epochs
124    //     0.2,   // validation_split
125    //     1,     // verbose
126    //     vec![
127    //         Box::new(EarlyStoppingCallback::new(3, "val_loss")),      // patience, monitor
128    //         Box::new(ReduceLROnPlateauCallback::new(0.5, 2)),         // factor, patience
129    //     ]
130    // )?;
131    println!("   Training setup configured (fit method placeholder)");
132
133    // println!("   Training completed!");
134    // println!("   - Final training accuracy: {:.3}", history.final_metric("accuracy"));
135    // println!("   - Final validation accuracy: {:.3}", history.final_metric("val_accuracy"));
136    // println!("   - Best epoch: {}", history.best_epoch());
137    println!("   Training placeholder completed");
138
139    // Step 6: Evaluate model performance
140    println!("\n6. Model evaluation...");
141
142    let test_dataset = create_tfq_test_dataset()?;
143    // let evaluation_results = model.evaluate(&test_dataset, 1)?;  // verbose
144    //
145    // println!("   Test Results:");
146    // for (metric, value) in evaluation_results.iter() {
147    //     println!("   - {}: {:.4}", metric, value);
148    // }
149    println!("   Test dataset created successfully");
150
151    // Step 7: Quantum circuit analysis
152    println!("\n7. Quantum circuit analysis...");
153
154    // let circuit_analysis = model.analyze_quantum_circuits()?;
155    // println!("   Circuit Properties:");
156    // println!("   - Total quantum parameters: {}", circuit_analysis.total_quantum_params);
157    // println!("   - Circuit depth: {}", circuit_analysis.max_circuit_depth);
158    // println!("   - Gate types used: {:?}", circuit_analysis.gate_types);
159    // println!("   - Entangling gates: {}", circuit_analysis.entangling_gate_count);
160    println!("   Circuit analysis placeholder completed");
161
162    // Step 8: Parameter shift gradients (TFQ-style)
163    println!("\n8. Computing parameter shift gradients...");
164
165    // let sample_input = quantum_dataset.get_batch(0)?;
166    // let gradients = model.compute_parameter_shift_gradients(&sample_input)?;
167    println!("   Parameter shift gradients placeholder");
168
169    // println!("   Gradient Analysis:");
170    // println!("   - Quantum gradients computed: {}", gradients.quantum_gradients.len());
171    // println!("   - Classical gradients computed: {}", gradients.classical_gradients.len());
172    // println!("   - Max quantum gradient: {:.6}",
173    //     gradients.quantum_gradients.iter().fold(0.0f64, |a, &b| a.max(b.abs())));
174    // println!("   - Gradient variance: {:.6}",
175    //     compute_gradient_variance(&gradients.quantum_gradients));
176    println!("   Gradient analysis placeholder completed");
177
178    // Step 9: Quantum expectation values
179    println!("\n9. Computing quantum expectation values...");
180
181    let observables = [Observable::PauliZ(vec![0]), Observable::PauliZ(vec![1])];
182
183    // let expectation_values = model.compute_expectation_values(&sample_input, &observables)?;
184    // println!("   Expectation Values:");
185    // for (i, (obs, val)) in observables.iter().zip(expectation_values.iter()).enumerate() {
186    //     println!("   - Observable {}: {:.4}", i, val);
187    // }
188    println!("   Expectation values placeholder completed");
189
190    // Step 10: TFQ utils demonstrations
191    println!("\n10. TensorFlow Quantum utilities...");
192
193    // Circuit conversion
194    let dynamic_circuit = DynamicCircuit::from_circuit(circuits[0].clone())?;
195    let tfq_format_circuit = tfq_utils::circuit_to_tfq_format(&dynamic_circuit)?;
196    println!("    - Converted circuit to TFQ format (placeholder)");
197
198    // Batch circuit execution
199    // let batch_circuits = vec![circuits[0].clone(), circuits[1].clone()];
200    // let batch_params = Array2::from_shape_fn((2, 4), |(i, j)| (i + j) as f64 * 0.1);
201    // let batch_results = tfq_utils::batch_execute_circuits(&batch_circuits, &batch_params, &observables, &backend)?;
202    // println!("    - Batch execution results shape: {:?}", batch_results.dim());
203    println!("    - Batch execution placeholder completed");
204
205    // Data encoding utilities
206    let classical_data = Array2::from_shape_fn((10, 4), |(i, j)| (i + j) as f64 * 0.2);
207    // let encoded_circuits = tfq_utils::encode_data_to_circuits(
208    //     &classical_data,
209    //     DataEncodingType::Angle
210    // )?;
211    let encoded_circuits = [tfq_utils::create_data_encoding_circuit(
212        4,
213        DataEncodingType::Angle,
214    )?];
215    println!(
216        "    - Encoded {} data points to quantum circuits",
217        encoded_circuits.len()
218    );
219
220    // Step 11: Compare with TensorFlow classical model
221    println!("\n11. Comparing with TensorFlow classical equivalent...");
222
223    create_tensorflow_classical_model()?;
224    // let classical_accuracy = train_classical_tensorflow_model(classical_model, &quantum_dataset)?;
225    //
226    // let quantum_accuracy = evaluation_results.get("accuracy").unwrap_or(&0.0);
227    // println!("    - Quantum TFQ model accuracy: {:.3}", quantum_accuracy);
228    // println!("    - Classical TF model accuracy: {:.3}", classical_accuracy);
229    // println!("    - Quantum advantage: {:.3}", quantum_accuracy - classical_accuracy);
230    println!("    - Classical comparison placeholder completed");
231
232    // Step 12: Model export (TFQ format)
233    println!("\n12. Exporting model in TFQ format...");
234
235    // model.save_tfq_format("quantum_model_tfq.pb")?;
236    // println!("    - Model exported to: quantum_model_tfq.pb");
237    //
238    // // Export to TensorFlow SavedModel format
239    // model.export_savedmodel("quantum_model_savedmodel/")?;
240    // println!("    - SavedModel exported to: quantum_model_savedmodel/");
241    println!("    - Model export placeholder completed");
242
243    // Step 13: Advanced TFQ features
244    println!("\n13. Advanced TensorFlow Quantum features...");
245
246    // Quantum data augmentation
247    // let augmented_dataset = quantum_dataset.augment_with_noise(0.05)?;
248    // println!("    - Created augmented dataset with noise level 0.05");
249    //
250    // // Circuit optimization for hardware
251    // let optimized_circuits = tfq_utils::optimize_circuits_for_hardware(
252    //     &circuits,
253    //     HardwareType::IonQ
254    // )?;
255    // println!("    - Optimized {} circuits for IonQ hardware", optimized_circuits.len());
256    //
257    // // Barren plateau analysis
258    // let plateau_analysis = analyze_barren_plateaus(&model, &quantum_dataset)?;
259    // println!("    - Barren plateau risk: {:.3}", plateau_analysis.risk_score);
260    // println!("    - Recommended mitigation: {}", plateau_analysis.mitigation_strategy);
261    println!("    - Advanced features placeholder completed");
262
263    println!("\n=== TensorFlow Quantum Demo Complete ===");
264
265    Ok(())
266}
267
268fn create_tfq_circuits() -> Result<(Vec<Circuit<8>>, Vec<String>)> {
269    let mut circuits = Vec::new();
270    let mut symbols = Vec::new();
271
272    // Circuit 1: Basic parameterized circuit
273    let mut circuit1 = CircuitBuilder::new();
274    circuit1.ry(0, 0.0)?;
275    circuit1.ry(1, 0.0)?;
276    circuit1.cnot(0, 1)?;
277    circuit1.ry(2, 0.0)?;
278    circuit1.cnot(1, 2)?;
279    circuits.push(circuit1.build());
280    symbols.extend(vec![
281        "theta_0".to_string(),
282        "theta_1".to_string(),
283        "theta_2".to_string(),
284    ]);
285
286    // Circuit 2: Entangling circuit
287    let mut circuit2 = CircuitBuilder::new();
288    circuit2.h(0)?;
289    circuit2.cnot(0, 1)?;
290    circuit2.cnot(1, 2)?;
291    circuit2.cnot(2, 3)?;
292    circuit2.ry(0, 0.0)?;
293    circuit2.ry(1, 0.0)?;
294    circuits.push(circuit2.build());
295    symbols.extend(vec!["phi_0".to_string(), "phi_1".to_string()]);
296
297    // Circuit 3: Convolutional-style circuit
298    let mut circuit3 = CircuitBuilder::new();
299    circuit3.ry(0, 0.0)?;
300    circuit3.ry(1, 0.0)?;
301    circuit3.cnot(0, 1)?;
302    circuits.push(circuit3.build());
303    symbols.extend(vec!["alpha_0".to_string(), "alpha_1".to_string()]);
304
305    Ok((circuits, symbols))
306}
307
308fn create_tfq_quantum_dataset() -> Result<QuantumDataset> {
309    let num_samples = 1000;
310    let num_features = 4;
311
312    // Create classical data
313    let classical_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
314        let noise = fastrand::f64() * 0.1;
315        (i as f64).mul_add(0.01, j as f64 * 0.1).sin() + noise
316    });
317
318    // Create labels (binary classification)
319    let labels = Array1::from_shape_fn(num_samples, |i| {
320        let sum = (0..num_features)
321            .map(|j| classical_data[[i, j]])
322            .sum::<f64>();
323        if sum > 0.0 {
324            1.0
325        } else {
326            0.0
327        }
328    });
329
330    // Create quantum circuits for the dataset
331    let circuits =
332        vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
333            .into_iter()
334            .map(|dc| match dc {
335                DynamicCircuit::Circuit8(c) => c,
336                _ => panic!("Expected Circuit8"),
337            })
338            .collect();
339
340    // Create quantum dataset with angle encoding
341    QuantumDataset::new(
342        circuits,
343        classical_data,
344        labels,
345        32, // batch_size
346    )
347}
348
349fn create_tfq_test_dataset() -> Result<QuantumDataset> {
350    let num_samples = 200;
351    let num_features = 4;
352
353    let test_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
354        let noise = fastrand::f64() * 0.1;
355        (i as f64).mul_add(0.015, j as f64 * 0.12).sin() + noise
356    });
357
358    let test_labels = Array1::from_shape_fn(num_samples, |i| {
359        let sum = (0..num_features).map(|j| test_data[[i, j]]).sum::<f64>();
360        if sum > 0.0 {
361            1.0
362        } else {
363            0.0
364        }
365    });
366
367    // Create quantum circuits for the test dataset
368    let test_circuits =
369        vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
370            .into_iter()
371            .map(|dc| match dc {
372                DynamicCircuit::Circuit8(c) => c,
373                _ => panic!("Expected Circuit8"),
374            })
375            .collect();
376
377    QuantumDataset::new(test_circuits, test_data, test_labels, 32)
378}
379
380fn compute_gradient_variance(gradients: &[f64]) -> f64 {
381    let mean = gradients.iter().sum::<f64>() / gradients.len() as f64;
382    let variance =
383        gradients.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / gradients.len() as f64;
384    variance
385}
386
387const fn create_tensorflow_classical_model() -> Result<()> {
388    // Placeholder for classical TensorFlow model creation
389    Ok(())
390}
391
392// Placeholder function for remaining code
393const fn placeholder_function() -> Result<()> {
394    // Ok(TensorFlowClassicalModel::new(vec![
395    //     TFLayer::Dense { units: 8, activation: "relu" },
396    //     TFLayer::Dense { units: 4, activation: "relu" },
397    //     TFLayer::Dense { units: 2, activation: "softmax" },
398    // ]))
399    Ok(())
400}
401
402// fn train_classical_tensorflow_model(
403//     mut model: TensorFlowClassicalModel,
404//     dataset: &QuantumDataset
405// ) -> Result<f64> {
406//     // Simplified classical training for comparison
407//     model.compile("adam", "sparse_categorical_crossentropy", vec!["accuracy"])?;
408//     let history = model.fit(dataset, 10, 0.2)?;
409//     Ok(history.final_metric("val_accuracy"))
410// }
411
412fn analyze_barren_plateaus(
413    model: &TFQModel,
414    dataset: &QuantumDataset,
415) -> Result<BarrenPlateauAnalysis> {
416    // Analyze gradient variance across training
417    // let sample_batch = dataset.get_batch(0)?;
418    // let gradients = model.compute_parameter_shift_gradients(&sample_batch)?;
419    println!("   Sample batch and gradients placeholder");
420
421    // let variance = compute_gradient_variance(&gradients.quantum_gradients);
422    let variance = 0.001; // placeholder
423    let risk_score = if variance < 1e-6 {
424        0.9
425    } else if variance < 1e-3 {
426        0.5
427    } else {
428        0.1
429    };
430
431    let mitigation_strategy = if risk_score > 0.7 {
432        "Consider parameter initialization strategies or circuit pre-training".to_string()
433    } else if risk_score > 0.3 {
434        "Monitor gradient variance during training".to_string()
435    } else {
436        "Low barren plateau risk detected".to_string()
437    };
438
439    Ok(BarrenPlateauAnalysis {
440        risk_score,
441        gradient_variance: variance,
442        mitigation_strategy,
443    })
444}
445
446// Supporting structs and implementations (simplified for demo)
447struct BarrenPlateauAnalysis {
448    risk_score: f64,
449    gradient_variance: f64,
450    mitigation_strategy: String,
451}
452
453struct TensorFlowClassicalModel {
454    layers: Vec<TFLayer>,
455}
456
457impl TensorFlowClassicalModel {
458    const fn new(layers: Vec<TFLayer>) -> Self {
459        Self { layers }
460    }
461
462    fn compile(&mut self, _optimizer: &str, _loss: &str, _metrics: Vec<&str>) -> Result<()> {
463        Ok(())
464    }
465
466    fn fit(
467        &mut self,
468        _dataset: &QuantumDataset,
469        _epochs: usize,
470        _validation_split: f64,
471    ) -> Result<TrainingHistory> {
472        Ok(TrainingHistory::new())
473    }
474}
475
476enum TFLayer {
477    Dense {
478        units: usize,
479        activation: &'static str,
480    },
481}
482
483struct TrainingHistory {
484    metrics: HashMap<String, f64>,
485}
486
487impl TrainingHistory {
488    fn new() -> Self {
489        let mut metrics = HashMap::new();
490        metrics.insert("val_accuracy".to_string(), 0.75); // Mock value
491        Self { metrics }
492    }
493
494    fn final_metric(&self, metric: &str) -> f64 {
495        *self.metrics.get(metric).unwrap_or(&0.0)
496    }
497}
498
499enum HardwareType {
500    IonQ,
501    IBM,
502    Google,
503}
504
505enum ReductionType {
506    Mean,
507    Sum,
508    None,
509}