sklearn_pipeline_demo/
sklearn_pipeline_demo.rs

1#![allow(
2    clippy::pedantic,
3    clippy::unnecessary_wraps,
4    clippy::needless_range_loop,
5    clippy::useless_vec,
6    clippy::needless_collect,
7    clippy::too_many_arguments,
8    clippy::upper_case_acronyms
9)]
10//! Scikit-learn Compatible Quantum ML Pipeline Example
11//!
12//! This example demonstrates the scikit-learn compatibility layer, showing how to use
13//! quantum models with familiar sklearn APIs including pipelines, cross-validation, and grid search.
14
15use quantrs2_ml::prelude::*;
16use quantrs2_ml::sklearn_compatibility::{
17    metrics, model_selection, Pipeline, QuantumFeatureEncoder, SelectKBest, SklearnFit,
18    StandardScaler,
19};
20use scirs2_core::ndarray::{s, Array1, Array2, Axis};
21use scirs2_core::random::prelude::*;
22use std::collections::HashMap;
23
24#[allow(non_snake_case)]
25fn main() -> Result<()> {
26    println!("=== Scikit-learn Compatible Quantum ML Demo ===\n");
27
28    // Step 1: Create sklearn-style dataset
29    println!("1. Creating scikit-learn style dataset...");
30
31    let (X, y) = create_sklearn_dataset()?;
32    println!("   - Dataset shape: {:?}", X.dim());
33    println!(
34        "   - Labels: {} classes",
35        y.iter()
36            .map(|&x| x as i32)
37            .collect::<std::collections::HashSet<_>>()
38            .len()
39    );
40    println!(
41        "   - Feature range: [{:.3}, {:.3}]",
42        X.iter().fold(f64::INFINITY, |a, &b| a.min(b)),
43        X.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b))
44    );
45
46    // Step 2: Create sklearn-compatible quantum estimators
47    println!("\n2. Creating sklearn-compatible quantum estimators...");
48
49    // Quantum Support Vector Classifier
50    let qsvc = QuantumSVC::new();
51
52    // Quantum Multi-Layer Perceptron Classifier
53    let qmlp = QuantumMLPClassifier::new();
54
55    // Quantum K-Means Clustering
56    let mut qkmeans = QuantumKMeans::new(2); // n_clusters
57
58    println!("   - QuantumSVC: quantum kernel");
59    println!("   - QuantumMLP: multi-layer perceptron");
60    println!("   - QuantumKMeans: 2 clusters");
61
62    // Step 3: Create sklearn-style preprocessing pipeline
63    println!("\n3. Building sklearn-compatible preprocessing pipeline...");
64
65    let preprocessing_pipeline = Pipeline::new(vec![
66        ("scaler", Box::new(StandardScaler::new())),
67        (
68            "feature_selection",
69            Box::new(SelectKBest::new(
70                "quantum_mutual_info", // score_func
71                3,                     // k
72            )),
73        ),
74        (
75            "quantum_encoder",
76            Box::new(QuantumFeatureEncoder::new(
77                "angle", // encoding_type
78                "l2",    // normalization
79            )),
80        ),
81    ])?;
82
83    // Step 4: Create complete quantum ML pipeline
84    println!("\n4. Creating complete quantum ML pipeline...");
85
86    let quantum_pipeline = Pipeline::new(vec![
87        ("preprocessing", Box::new(preprocessing_pipeline)),
88        ("classifier", Box::new(qsvc)),
89    ])?;
90
91    println!("   Pipeline steps:");
92    for (i, step_name) in quantum_pipeline.named_steps().iter().enumerate() {
93        println!("   {}. {}", i + 1, step_name);
94    }
95
96    // Step 5: Train-test split (sklearn style)
97    println!("\n5. Performing train-test split...");
98
99    let (X_train, X_test, y_train, y_test) = model_selection::train_test_split(
100        &X,
101        &y,
102        0.3,      // test_size
103        Some(42), // random_state
104    )?;
105
106    println!("   - Training set: {:?}", X_train.dim());
107    println!("   - Test set: {:?}", X_test.dim());
108
109    // Step 6: Cross-validation with quantum models
110    println!("\n6. Performing cross-validation...");
111
112    let mut pipeline_clone = quantum_pipeline.clone();
113    let cv_scores = model_selection::cross_val_score(
114        &mut pipeline_clone,
115        &X_train,
116        &y_train,
117        5, // cv
118    )?;
119
120    println!("   Cross-validation scores: {cv_scores:?}");
121    println!(
122        "   Mean CV accuracy: {:.3} (+/- {:.3})",
123        cv_scores.mean().unwrap(),
124        cv_scores.std(0.0) * 2.0
125    );
126
127    // Step 7: Hyperparameter grid search
128    println!("\n7. Hyperparameter optimization with GridSearchCV...");
129
130    let param_grid = HashMap::from([
131        (
132            "classifier__C".to_string(),
133            vec!["0.1".to_string(), "1.0".to_string(), "10.0".to_string()],
134        ),
135        (
136            "classifier__feature_map_depth".to_string(),
137            vec!["1".to_string(), "2".to_string(), "3".to_string()],
138        ),
139        (
140            "preprocessing__feature_selection__k".to_string(),
141            vec!["2".to_string(), "3".to_string(), "4".to_string()],
142        ),
143    ]);
144
145    let mut grid_search = model_selection::GridSearchCV::new(
146        quantum_pipeline, // estimator
147        param_grid,
148        3, // cv
149    );
150
151    grid_search.fit(&X_train, &y_train)?;
152
153    println!("   Best parameters: {:?}", grid_search.best_params_);
154    println!(
155        "   Best cross-validation score: {:.3}",
156        grid_search.best_score_
157    );
158
159    // Step 8: Train best model and evaluate
160    println!("\n8. Training best model and evaluation...");
161
162    let best_model = grid_search.best_estimator_;
163    let y_pred = best_model.predict(&X_test)?;
164
165    // Calculate metrics using sklearn-style functions
166    let y_test_int = y_test.mapv(|x| x.round() as i32);
167    let accuracy = metrics::accuracy_score(&y_test_int, &y_pred);
168    let precision = metrics::precision_score(&y_test_int, &y_pred, "weighted"); // average
169    let recall = metrics::recall_score(&y_test_int, &y_pred, "weighted"); // average
170    let f1 = metrics::f1_score(&y_test_int, &y_pred, "weighted"); // average
171
172    println!("   Test Results:");
173    println!("   - Accuracy: {accuracy:.3}");
174    println!("   - Precision: {precision:.3}");
175    println!("   - Recall: {recall:.3}");
176    println!("   - F1-score: {f1:.3}");
177
178    // Step 9: Classification report
179    println!("\n9. Detailed classification report...");
180
181    let classification_report = metrics::classification_report(
182        &y_test_int,
183        &y_pred,
184        vec!["Class 0", "Class 1"], // target_names
185        3,                          // digits
186    );
187    println!("{classification_report}");
188
189    // Step 10: Feature importance analysis
190    println!("\n10. Feature importance analysis...");
191
192    if let Some(feature_importances) = best_model.feature_importances() {
193        println!("    Quantum Feature Importances:");
194        for (i, importance) in feature_importances.iter().enumerate() {
195            println!("    - Feature {i}: {importance:.4}");
196        }
197    }
198
199    // Step 11: Model comparison with classical sklearn models
200    println!("\n11. Comparing with classical sklearn models...");
201
202    let classical_models = vec![
203        (
204            "Logistic Regression",
205            Box::new(LogisticRegression::new()) as Box<dyn SklearnClassifier>,
206        ),
207        (
208            "Random Forest",
209            Box::new(RandomForestClassifier::new()) as Box<dyn SklearnClassifier>,
210        ),
211        ("SVM", Box::new(SVC::new()) as Box<dyn SklearnClassifier>),
212    ];
213
214    let mut comparison_results = Vec::new();
215
216    for (name, mut model) in classical_models {
217        model.fit(&X_train, Some(&y_train))?;
218        let y_pred_classical = model.predict(&X_test)?;
219        let classical_accuracy = metrics::accuracy_score(&y_test_int, &y_pred_classical);
220        comparison_results.push((name, classical_accuracy));
221    }
222
223    println!("    Model Comparison:");
224    println!("    - Quantum Pipeline: {accuracy:.3}");
225    for (name, classical_accuracy) in comparison_results {
226        println!("    - {name}: {classical_accuracy:.3}");
227    }
228
229    // Step 12: Clustering with quantum K-means
230    println!("\n12. Quantum clustering analysis...");
231
232    let cluster_labels = qkmeans.fit_predict(&X)?;
233    let silhouette_score = metrics::silhouette_score(&X, &cluster_labels, "euclidean"); // metric
234    let calinski_score = metrics::calinski_harabasz_score(&X, &cluster_labels);
235
236    println!("    Clustering Results:");
237    println!("    - Silhouette Score: {silhouette_score:.3}");
238    println!("    - Calinski-Harabasz Score: {calinski_score:.3}");
239    println!(
240        "    - Unique clusters found: {}",
241        cluster_labels
242            .iter()
243            .collect::<std::collections::HashSet<_>>()
244            .len()
245    );
246
247    // Step 13: Model persistence (sklearn style)
248    println!("\n13. Model persistence (sklearn joblib style)...");
249
250    // Save model
251    best_model.save("quantum_sklearn_model.joblib")?;
252    println!("    - Model saved to: quantum_sklearn_model.joblib");
253
254    // Load model
255    let loaded_model = QuantumSVC::load("quantum_sklearn_model.joblib")?;
256    let test_subset = X_test.slice(s![..5, ..]).to_owned();
257    let y_pred_loaded = loaded_model.predict(&test_subset)?;
258    println!("    - Model loaded and tested on 5 samples");
259
260    // Step 14: Advanced sklearn utilities
261    println!("\n14. Advanced sklearn utilities...");
262
263    // Learning curves (commented out - function not available)
264    // let (train_sizes, train_scores, val_scores) = model_selection::learning_curve(...)?;
265    println!("    Learning Curve Analysis: (Mock results)");
266    let train_sizes = [0.1, 0.33, 0.55, 0.78, 1.0];
267    let train_scores = [0.65, 0.72, 0.78, 0.82, 0.85];
268    let val_scores = [0.62, 0.70, 0.76, 0.79, 0.81];
269
270    for (i, &size) in train_sizes.iter().enumerate() {
271        println!(
272            "    - {:.0}% data: train={:.3}, val={:.3}",
273            size * 100.0,
274            train_scores[i],
275            val_scores[i]
276        );
277    }
278
279    // Validation curves (commented out - function not available)
280    // let (train_scores_val, test_scores_val) = model_selection::validation_curve(...)?;
281    println!("    Validation Curve (C parameter): (Mock results)");
282    let param_range = [0.1, 0.5, 1.0, 2.0, 5.0];
283    let train_scores_val = [0.70, 0.75, 0.80, 0.78, 0.75];
284    let test_scores_val = [0.68, 0.73, 0.78, 0.76, 0.72];
285
286    for (i, &param_value) in param_range.iter().enumerate() {
287        println!(
288            "    - C={}: train={:.3}, test={:.3}",
289            param_value, train_scores_val[i], test_scores_val[i]
290        );
291    }
292
293    // Step 15: Quantum-specific sklearn extensions
294    println!("\n15. Quantum-specific sklearn extensions...");
295
296    // Quantum feature analysis
297    let quantum_feature_analysis = analyze_quantum_features(&best_model, &X_test)?;
298    println!("    Quantum Feature Analysis:");
299    println!(
300        "    - Quantum advantage score: {:.3}",
301        quantum_feature_analysis.advantage_score
302    );
303    println!(
304        "    - Feature entanglement: {:.3}",
305        quantum_feature_analysis.entanglement_measure
306    );
307    println!(
308        "    - Circuit depth efficiency: {:.3}",
309        quantum_feature_analysis.circuit_efficiency
310    );
311
312    // Quantum model interpretation
313    let sample_row = X_test.row(0).to_owned();
314    let quantum_interpretation = interpret_quantum_model(&best_model, &sample_row)?;
315    println!("    Quantum Model Interpretation (sample 0):");
316    println!(
317        "    - Quantum state fidelity: {:.3}",
318        quantum_interpretation.state_fidelity
319    );
320    println!(
321        "    - Feature contributions: {:?}",
322        quantum_interpretation.feature_contributions
323    );
324
325    println!("\n=== Scikit-learn Integration Demo Complete ===");
326
327    Ok(())
328}
329
330#[allow(non_snake_case)]
331fn create_sklearn_dataset() -> Result<(Array2<f64>, Array1<f64>)> {
332    let num_samples = 300;
333    let num_features = 4;
334
335    // Create a dataset similar to sklearn's make_classification
336    let X = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
337        let base = (i as f64).mul_add(0.02, j as f64 * 0.5);
338        let noise = fastrand::f64().mul_add(0.3, -0.15);
339        base.sin() + noise
340    });
341
342    // Create separable classes
343    let y = Array1::from_shape_fn(num_samples, |i| {
344        let feature_sum = (0..num_features).map(|j| X[[i, j]]).sum::<f64>();
345        if feature_sum > 0.0 {
346            1.0
347        } else {
348            0.0
349        }
350    });
351
352    Ok((X, y))
353}
354
355#[allow(non_snake_case)] // X is standard ML convention for feature matrix
356fn analyze_quantum_features(
357    model: &dyn SklearnClassifier,
358    X: &Array2<f64>,
359) -> Result<QuantumFeatureAnalysis> {
360    // Analyze quantum-specific properties
361    let predictions_quantum = model.predict(X)?;
362
363    // Create classical baseline for comparison
364    let mut classical_model = LogisticRegression::new();
365    SklearnFit::fit(
366        &mut classical_model,
367        X,
368        &predictions_quantum.mapv(f64::from),
369    )?; // Use quantum predictions as targets
370    let predictions_classical = classical_model.predict(X)?;
371
372    // Calculate quantum advantage score
373    let advantage_score = predictions_quantum
374        .iter()
375        .zip(predictions_classical.iter())
376        .map(|(&q, &c)| (f64::from(q) - f64::from(c)).abs())
377        .sum::<f64>()
378        / predictions_quantum.len() as f64;
379
380    Ok(QuantumFeatureAnalysis {
381        advantage_score,
382        entanglement_measure: 0.75, // Mock value
383        circuit_efficiency: 0.85,   // Mock value
384    })
385}
386
387fn interpret_quantum_model(
388    model: &dyn SklearnClassifier,
389    sample: &Array1<f64>,
390) -> Result<QuantumInterpretation> {
391    // Quantum model interpretation
392    let prediction = model.predict(&sample.clone().insert_axis(Axis(0)))?;
393
394    Ok(QuantumInterpretation {
395        state_fidelity: 0.92,                            // Mock value
396        feature_contributions: vec![0.3, 0.2, 0.4, 0.1], // Mock values
397        prediction: f64::from(prediction[0]),
398    })
399}
400
401// Supporting structures and trait implementations
402
403struct QuantumFeatureAnalysis {
404    advantage_score: f64,
405    entanglement_measure: f64,
406    circuit_efficiency: f64,
407}
408
409struct QuantumInterpretation {
410    state_fidelity: f64,
411    feature_contributions: Vec<f64>,
412    prediction: f64,
413}
414
415// Mock implementations for classical sklearn models
416struct LogisticRegression {
417    fitted: bool,
418}
419
420impl LogisticRegression {
421    const fn new() -> Self {
422        Self { fitted: false }
423    }
424}
425
426#[allow(non_snake_case)]
427impl SklearnEstimator for LogisticRegression {
428    fn fit(&mut self, _X: &Array2<f64>, _y: Option<&Array1<f64>>) -> Result<()> {
429        self.fitted = true;
430        Ok(())
431    }
432
433    fn get_params(&self) -> HashMap<String, String> {
434        HashMap::new()
435    }
436
437    fn set_params(&mut self, _params: HashMap<String, String>) -> Result<()> {
438        Ok(())
439    }
440
441    fn is_fitted(&self) -> bool {
442        self.fitted
443    }
444}
445
446#[allow(non_snake_case)]
447impl SklearnClassifier for LogisticRegression {
448    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
449        if !self.fitted {
450            return Err(MLError::InvalidConfiguration(
451                "Model not fitted".to_string(),
452            ));
453        }
454        // Mock predictions
455        Ok(Array1::from_shape_fn(X.nrows(), |i| i32::from(i % 2 == 0)))
456    }
457
458    fn predict_proba(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
459        Ok(Array2::from_shape_fn((X.nrows(), 2), |(i, j)| {
460            if j == 0 {
461                0.3
462            } else {
463                0.7
464            }
465        }))
466    }
467
468    fn classes(&self) -> &[i32] {
469        &[0, 1]
470    }
471}
472
473#[allow(non_snake_case)]
474impl SklearnFit for LogisticRegression {
475    fn fit(&mut self, _X: &Array2<f64>, _y: &Array1<f64>) -> Result<()> {
476        self.fitted = true;
477        Ok(())
478    }
479}
480
481struct RandomForestClassifier {
482    fitted: bool,
483}
484
485impl RandomForestClassifier {
486    const fn new() -> Self {
487        Self { fitted: false }
488    }
489}
490
491#[allow(non_snake_case)]
492impl SklearnEstimator for RandomForestClassifier {
493    fn fit(&mut self, _X: &Array2<f64>, _y: Option<&Array1<f64>>) -> Result<()> {
494        self.fitted = true;
495        Ok(())
496    }
497
498    fn get_params(&self) -> HashMap<String, String> {
499        HashMap::new()
500    }
501
502    fn set_params(&mut self, _params: HashMap<String, String>) -> Result<()> {
503        Ok(())
504    }
505
506    fn is_fitted(&self) -> bool {
507        self.fitted
508    }
509}
510
511#[allow(non_snake_case)]
512impl SklearnClassifier for RandomForestClassifier {
513    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
514        if !self.fitted {
515            return Err(MLError::InvalidConfiguration(
516                "Model not fitted".to_string(),
517            ));
518        }
519        // Mock predictions with higher accuracy
520        Ok(Array1::from_shape_fn(X.nrows(), |i| {
521            i32::from((i * 3) % 4 != 0)
522        }))
523    }
524
525    fn predict_proba(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
526        Ok(Array2::from_shape_fn((X.nrows(), 2), |(i, j)| {
527            if j == 0 {
528                0.4
529            } else {
530                0.6
531            }
532        }))
533    }
534
535    fn classes(&self) -> &[i32] {
536        &[0, 1]
537    }
538}
539
540#[allow(non_snake_case)]
541impl SklearnFit for RandomForestClassifier {
542    fn fit(&mut self, _X: &Array2<f64>, _y: &Array1<f64>) -> Result<()> {
543        self.fitted = true;
544        Ok(())
545    }
546}
547
548struct SVC {
549    fitted: bool,
550}
551
552impl SVC {
553    const fn new() -> Self {
554        Self { fitted: false }
555    }
556}
557
558#[allow(non_snake_case)]
559impl SklearnEstimator for SVC {
560    fn fit(&mut self, _X: &Array2<f64>, _y: Option<&Array1<f64>>) -> Result<()> {
561        self.fitted = true;
562        Ok(())
563    }
564
565    fn get_params(&self) -> HashMap<String, String> {
566        HashMap::new()
567    }
568
569    fn set_params(&mut self, _params: HashMap<String, String>) -> Result<()> {
570        Ok(())
571    }
572
573    fn is_fitted(&self) -> bool {
574        self.fitted
575    }
576}
577
578#[allow(non_snake_case)]
579impl SklearnClassifier for SVC {
580    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
581        if !self.fitted {
582            return Err(MLError::InvalidConfiguration(
583                "Model not fitted".to_string(),
584            ));
585        }
586        // Mock predictions
587        Ok(Array1::from_shape_fn(X.nrows(), |i| i32::from(i % 3 != 0)))
588    }
589
590    fn predict_proba(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
591        Ok(Array2::from_shape_fn((X.nrows(), 2), |(i, j)| {
592            if j == 0 {
593                0.35
594            } else {
595                0.65
596            }
597        }))
598    }
599
600    fn classes(&self) -> &[i32] {
601        &[0, 1]
602    }
603}
604
605#[allow(non_snake_case)]
606impl SklearnFit for SVC {
607    fn fit(&mut self, _X: &Array2<f64>, _y: &Array1<f64>) -> Result<()> {
608        self.fitted = true;
609        Ok(())
610    }
611}