quantum_transformer/
quantum_transformer.rs

1#![allow(
2    clippy::pedantic,
3    clippy::unnecessary_wraps,
4    clippy::needless_range_loop,
5    clippy::useless_vec,
6    clippy::needless_collect,
7    clippy::too_many_arguments,
8    clippy::manual_clamp
9)]
10//! Quantum Transformer Example
11//!
12//! This example demonstrates the quantum transformer architecture with various
13//! attention mechanisms, position encodings, and applications to different tasks
14//! like language modeling, sequence-to-sequence, and quantum data processing.
15
16use quantrs2_ml::prelude::*;
17use quantrs2_ml::qnn::QNNLayerType;
18use scirs2_core::ndarray::{Array1, Array2, Array3, Axis};
19use scirs2_core::random::prelude::*;
20
21fn main() -> Result<()> {
22    println!("=== Quantum Transformer Architecture Demo ===\n");
23
24    // Step 1: Basic transformer configuration
25    println!("1. Quantum Transformer Configurations...");
26    config_demo()?;
27
28    // Step 2: Quantum attention mechanisms
29    println!("\n2. Quantum Attention Mechanisms...");
30    attention_mechanisms_demo()?;
31
32    // Step 3: Position encoding variants
33    println!("\n3. Quantum Position Encodings...");
34    position_encoding_demo()?;
35
36    // Step 4: Full transformer forward pass
37    println!("\n4. Complete Transformer Forward Pass...");
38    transformer_forward_demo()?;
39
40    // Step 5: Language modeling application
41    println!("\n5. Quantum Language Modeling...");
42    language_modeling_demo()?;
43
44    // Step 6: Sequence-to-sequence tasks
45    println!("\n6. Quantum Sequence-to-Sequence...");
46    seq2seq_demo()?;
47
48    // Step 7: Quantum data processing
49    println!("\n7. Quantum Data Processing...");
50    quantum_data_demo()?;
51
52    // Step 8: Multi-scale transformers
53    println!("\n8. Multi-Scale Quantum Transformers...");
54    multiscale_demo()?;
55
56    println!("\n=== Quantum Transformer Demo Complete ===");
57
58    Ok(())
59}
60
61/// Demonstrate different transformer configurations
62fn config_demo() -> Result<()> {
63    println!("   Creating various transformer configurations...");
64
65    // Small efficient model
66    let small_config = QuantumTransformerConfig::small();
67    println!(
68        "   Small model: {} params, {} heads, {} layers",
69        small_config.model_dim, small_config.num_heads, small_config.num_layers
70    );
71
72    // Standard model
73    let default_config = QuantumTransformerConfig::default();
74    println!(
75        "   Default model: {} params, {} heads, {} layers",
76        default_config.model_dim, default_config.num_heads, default_config.num_layers
77    );
78
79    // Large model
80    let large_config = QuantumTransformerConfig::large();
81    println!(
82        "   Large model: {} params, {} heads, {} layers",
83        large_config.model_dim, large_config.num_heads, large_config.num_layers
84    );
85
86    // Custom configuration
87    let custom_config = QuantumTransformerConfig {
88        model_dim: 384,
89        num_heads: 6,
90        ff_dim: 1536,
91        num_layers: 8,
92        max_seq_len: 1024,
93        num_qubits: 12,
94        dropout_rate: 0.15,
95        attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
96        position_encoding: PositionEncodingType::Rotary,
97    };
98
99    println!(
100        "   Custom model: {} dim, {} qubits, {:?} attention",
101        custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
102    );
103
104    // Create transformer with custom config
105    let transformer = QuantumTransformer::new(custom_config)?;
106    println!(
107        "   Created transformer with {} total parameters",
108        transformer.num_parameters()
109    );
110
111    Ok(())
112}
113
114/// Demonstrate different quantum attention mechanisms
115fn attention_mechanisms_demo() -> Result<()> {
116    println!("   Testing various quantum attention mechanisms...");
117
118    let attention_types = vec![
119        ("Full Quantum", QuantumAttentionType::FullQuantum),
120        (
121            "Hybrid Quantum-Classical",
122            QuantumAttentionType::HybridQuantumClassical,
123        ),
124        (
125            "Variational Quantum",
126            QuantumAttentionType::VariationalQuantum,
127        ),
128        (
129            "Quantum Enhanced Multi-Head",
130            QuantumAttentionType::QuantumEnhancedMultiHead,
131        ),
132        (
133            "Quantum Self-Attention",
134            QuantumAttentionType::QuantumSelfAttention,
135        ),
136    ];
137
138    for (name, attention_type) in attention_types {
139        println!("\n   --- {name} Attention ---");
140
141        let attention = QuantumMultiHeadAttention::new(4, 256, attention_type, 8)?;
142        println!(
143            "   Created attention module: {} heads, {} model dim",
144            4, 256
145        ); // Fixed values since fields are private
146
147        // Test forward pass
148        let batch_size = 2;
149        let seq_len = 10;
150        let model_dim = 256;
151
152        let query = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, s, d)| {
153            0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
154        });
155        let key = query.clone();
156        let value = query.clone();
157
158        let attention_output = attention.forward(&query, &key, &value, None)?;
159
160        println!(
161            "   Attention output shape: {:?}",
162            attention_output.output.dim()
163        );
164        println!(
165            "   Attention weights shape: {:?}",
166            attention_output.attention_weights.dim()
167        );
168
169        // Analyze quantum attention properties
170        let quantum_info = &attention_output.quantum_info;
171        let avg_entanglement = quantum_info.entanglement_matrix.mean().unwrap_or(0.0);
172        let max_coherence = quantum_info
173            .coherence_scores
174            .iter()
175            .copied()
176            .fold(f64::NEG_INFINITY, f64::max);
177
178        println!("   Average entanglement: {avg_entanglement:.4}");
179        println!("   Maximum coherence: {max_coherence:.4}");
180
181        // Attention pattern analysis
182        let attention_weights = &attention_output.attention_weights;
183        let max_attention = attention_weights
184            .iter()
185            .copied()
186            .fold(f64::NEG_INFINITY, f64::max);
187        let avg_attention = attention_weights.mean().unwrap_or(0.0);
188
189        println!("   Max attention weight: {max_attention:.4}");
190        println!("   Average attention: {avg_attention:.4}");
191
192        // Check attention sparsity
193        let sparsity = attention_weights.iter().filter(|&&x| x < 0.01).count() as f64
194            / attention_weights.len() as f64;
195        println!("   Attention sparsity: {:.1}%", sparsity * 100.0);
196    }
197
198    Ok(())
199}
200
201/// Demonstrate different position encoding types
202fn position_encoding_demo() -> Result<()> {
203    println!("   Testing quantum position encoding variants...");
204
205    let encoding_types = vec![
206        ("Sinusoidal", PositionEncodingType::Sinusoidal),
207        ("Quantum Phase", PositionEncodingType::QuantumPhase),
208        ("Learnable Quantum", PositionEncodingType::LearnableQuantum),
209        ("Relative", PositionEncodingType::Relative),
210        ("Rotary (RoPE)", PositionEncodingType::Rotary),
211    ];
212
213    let model_dim = 128;
214    let max_seq_len = 64;
215    let num_qubits = 8;
216
217    for (name, encoding_type) in encoding_types {
218        println!("\n   --- {name} Position Encoding ---");
219
220        let pos_enc =
221            QuantumPositionEncoding::new(encoding_type, model_dim, max_seq_len, num_qubits)?;
222
223        let batch_size = 3;
224        let seq_len = 32;
225
226        let encodings = pos_enc.forward(seq_len, batch_size)?;
227        println!("   Encoding shape: {:?}", encodings.dim());
228
229        // Analyze position encoding properties
230        let encoding_range = {
231            let min_val = encodings.iter().copied().fold(f64::INFINITY, f64::min);
232            let max_val = encodings.iter().copied().fold(f64::NEG_INFINITY, f64::max);
233            max_val - min_val
234        };
235
236        println!("   Value range: {encoding_range:.4}");
237
238        // Check position distinguishability
239        let pos1 = encodings
240            .slice(scirs2_core::ndarray::s![0, 0, ..])
241            .to_owned();
242        let pos2 = encodings
243            .slice(scirs2_core::ndarray::s![0, seq_len - 1, ..])
244            .to_owned();
245        let position_distance = (&pos1 - &pos2).mapv(|x| x * x).sum().sqrt();
246
247        println!("   Distance between first and last position: {position_distance:.4}");
248
249        // Analyze periodicity for sinusoidal encodings
250        if name == "Sinusoidal" {
251            let mut periodicities = Vec::new();
252            for d in (0..model_dim).step_by(10) {
253                let values: Vec<f64> = (0..seq_len).map(|s| encodings[[0, s, d]]).collect();
254
255                // Simple periodicity check
256                let period = find_period(&values);
257                if period > 0 {
258                    periodicities.push(period);
259                }
260            }
261
262            if !periodicities.is_empty() {
263                let avg_period =
264                    periodicities.iter().sum::<usize>() as f64 / periodicities.len() as f64;
265                println!("   Average period length: {avg_period:.1}");
266            }
267        }
268
269        // Check quantum phase encoding properties
270        if name == "Quantum Phase" {
271            let phase_variance = encodings.var(0.0);
272            println!("   Phase encoding variance: {phase_variance:.4}");
273        }
274    }
275
276    Ok(())
277}
278
279/// Demonstrate complete transformer forward pass
280fn transformer_forward_demo() -> Result<()> {
281    println!("   Testing complete quantum transformer forward pass...");
282
283    let config = QuantumTransformerConfig {
284        model_dim: 256,
285        num_heads: 8,
286        ff_dim: 1024,
287        num_layers: 4,
288        max_seq_len: 128,
289        num_qubits: 10,
290        dropout_rate: 0.1,
291        attention_type: QuantumAttentionType::HybridQuantumClassical,
292        position_encoding: PositionEncodingType::QuantumPhase,
293    };
294
295    let transformer = QuantumTransformer::new(config.clone())?;
296    println!(
297        "   Created transformer: {} layers, {} parameters",
298        config.num_layers,
299        transformer.num_parameters()
300    );
301
302    // Test with different sequence lengths
303    let test_sequences = vec![
304        (2, 16, 128), // small batch, short sequence
305        (4, 32, 128), // medium batch, medium sequence
306        (1, 64, 128), // single sample, long sequence
307    ];
308
309    for (batch_size, seq_len, input_dim) in test_sequences {
310        println!("\n   Testing: batch={batch_size}, seq_len={seq_len}, input_dim={input_dim}");
311
312        // Create test input
313        let input = Array3::from_shape_fn((batch_size, seq_len, input_dim), |(b, s, d)| {
314            let base = 0.1 * (b as f64 + 1.0);
315            let seq_component = 0.05 * (s as f64 * 0.1).sin();
316            let dim_component = 0.02 * (d as f64 * 0.01).cos();
317            base + seq_component + dim_component
318        });
319
320        // Create causal mask for autoregressive modeling
321        let causal_mask = create_causal_mask(batch_size, seq_len);
322
323        // Forward pass
324        let start_time = std::time::Instant::now();
325        let output = transformer.forward(&input, Some(&causal_mask))?;
326        let forward_time = start_time.elapsed();
327
328        println!("   Output shape: {:?}", output.dim());
329        println!("   Forward pass time: {forward_time:.2?}");
330
331        // Analyze output properties
332        let output_mean = output.mean().unwrap_or(0.0);
333        let output_std = output.var(0.0).sqrt();
334        let output_range = {
335            let min_val = output.iter().copied().fold(f64::INFINITY, f64::min);
336            let max_val = output.iter().copied().fold(f64::NEG_INFINITY, f64::max);
337            max_val - min_val
338        };
339
340        println!(
341            "   Output statistics: mean={output_mean:.4}, std={output_std:.4}, range={output_range:.4}"
342        );
343
344        // Check causality (if using causal mask)
345        let causality_check = check_causality(&input, &output, &causal_mask);
346        if causality_check {
347            println!("   ✓ Causal dependencies respected");
348        } else {
349            println!("   ⚠ Potential causality violations detected");
350        }
351
352        // Memory efficiency analysis
353        let memory_per_token = (transformer.num_parameters() * 8 + output.len() * 8) as f64
354            / (batch_size * seq_len) as f64;
355        println!("   Memory per token: {memory_per_token:.1} bytes");
356    }
357
358    Ok(())
359}
360
361/// Demonstrate quantum language modeling
362fn language_modeling_demo() -> Result<()> {
363    println!("   Quantum language modeling with transformer...");
364
365    let config = QuantumTransformerConfig {
366        model_dim: 384,
367        num_heads: 6,
368        ff_dim: 1536,
369        num_layers: 6,
370        max_seq_len: 256,
371        num_qubits: 12,
372        dropout_rate: 0.1,
373        attention_type: QuantumAttentionType::QuantumSelfAttention,
374        position_encoding: PositionEncodingType::Rotary,
375    };
376
377    let transformer = QuantumTransformer::new(config.clone())?;
378
379    // Simulate language modeling task
380    let vocab_size = 1000;
381    let batch_size = 4;
382    let seq_len = 64;
383
384    // Create tokenized sequences (simulated)
385    let input_tokens =
386        Array3::from_shape_fn((batch_size, seq_len, config.model_dim), |(b, s, d)| {
387            // Simulate token embeddings
388            let token_id = (b * seq_len + s) % vocab_size;
389            let embedding_val = (token_id as f64 / vocab_size as f64).mul_add(2.0, -1.0);
390            embedding_val * 0.1f64.mul_add(d as f64 / config.model_dim as f64, 1.0)
391        });
392
393    println!("   Processing {batch_size} sequences of length {seq_len}");
394
395    // Create causal mask for language modeling
396    let causal_mask = create_causal_mask(batch_size, seq_len);
397
398    // Forward pass
399    let logits = transformer.forward(&input_tokens, Some(&causal_mask))?;
400
401    // Simulate next token prediction
402    let mut perplexities = Vec::new();
403
404    for batch_idx in 0..batch_size {
405        let mut log_likelihood = 0.0;
406        let mut valid_predictions = 0;
407
408        for pos in 0..seq_len - 1 {
409            let current_logits = logits.slice(scirs2_core::ndarray::s![batch_idx, pos, ..]);
410
411            // Convert to probabilities (simplified softmax)
412            let max_logit = current_logits
413                .iter()
414                .copied()
415                .fold(f64::NEG_INFINITY, f64::max);
416            let exp_logits: Array1<f64> = current_logits.mapv(|x| (x - max_logit).exp());
417            let sum_exp = exp_logits.sum();
418            let probs = exp_logits / sum_exp;
419
420            // Simulate target token (next position embedding)
421            let target_embedding =
422                input_tokens.slice(scirs2_core::ndarray::s![batch_idx, pos + 1, ..]);
423            let target_prob = compute_token_probability(&probs, &target_embedding.to_owned())?;
424
425            if target_prob > 1e-10 {
426                log_likelihood += target_prob.ln();
427                valid_predictions += 1;
428            }
429        }
430
431        if valid_predictions > 0 {
432            let avg_log_likelihood = log_likelihood / f64::from(valid_predictions);
433            let perplexity = (-avg_log_likelihood).exp();
434            perplexities.push(perplexity);
435        }
436    }
437
438    if !perplexities.is_empty() {
439        let avg_perplexity = perplexities.iter().sum::<f64>() / perplexities.len() as f64;
440        println!("   Average perplexity: {avg_perplexity:.2}");
441
442        // Analyze quantum language model properties
443        println!("   Quantum language model analysis:");
444
445        // Attention pattern analysis
446        println!("   - Uses quantum self-attention for context modeling");
447        println!("   - Rotary position encoding preserves relative positions");
448        println!(
449            "   - {} layers provide hierarchical representation",
450            config.num_layers
451        );
452
453        // Information flow analysis
454        let first_layer_norm = logits
455            .slice(scirs2_core::ndarray::s![0, .., ..])
456            .var(0.0)
457            .sqrt();
458        println!("   - Output layer standard deviation: {first_layer_norm:.4}");
459
460        // Quantum coherence in language representation
461        let quantum_coherence = analyze_quantum_language_coherence(&logits)?;
462        println!("   - Quantum coherence in representations: {quantum_coherence:.4}");
463    }
464
465    Ok(())
466}
467
468/// Demonstrate sequence-to-sequence tasks
469fn seq2seq_demo() -> Result<()> {
470    println!("   Quantum sequence-to-sequence modeling...");
471
472    // Encoder configuration
473    let encoder_config = QuantumTransformerConfig {
474        model_dim: 256,
475        num_heads: 8,
476        ff_dim: 1024,
477        num_layers: 4,
478        max_seq_len: 128,
479        num_qubits: 10,
480        dropout_rate: 0.1,
481        attention_type: QuantumAttentionType::HybridQuantumClassical,
482        position_encoding: PositionEncodingType::Sinusoidal,
483    };
484
485    // Decoder configuration (with causal attention)
486    let decoder_config = QuantumTransformerConfig {
487        model_dim: 256,
488        num_heads: 8,
489        ff_dim: 1024,
490        num_layers: 4,
491        max_seq_len: 128,
492        num_qubits: 10,
493        dropout_rate: 0.1,
494        attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
495        position_encoding: PositionEncodingType::QuantumPhase,
496    };
497
498    let encoder = QuantumTransformer::new(encoder_config)?;
499    let decoder = QuantumTransformer::new(decoder_config)?;
500
501    println!("   Created encoder-decoder architecture");
502    println!("   Encoder: {} parameters", encoder.num_parameters());
503    println!("   Decoder: {} parameters", decoder.num_parameters());
504
505    // Simulate translation task
506    let batch_size = 3;
507    let src_len = 32;
508    let tgt_len = 28;
509    let model_dim = 256;
510
511    // Source sequence (e.g., English)
512    let source = Array3::from_shape_fn((batch_size, src_len, model_dim), |(b, s, d)| {
513        let src_pattern = 0.3 * ((s as f64).mul_add(0.2, b as f64).sin());
514        0.1f64.mul_add(d as f64 / model_dim as f64, src_pattern)
515    });
516
517    // Target sequence (e.g., French)
518    let target = Array3::from_shape_fn((batch_size, tgt_len, model_dim), |(b, s, d)| {
519        let tgt_pattern = 0.4 * ((s as f64).mul_add(0.15, b as f64 * 0.3).cos());
520        0.12f64.mul_add(d as f64 / model_dim as f64, tgt_pattern)
521    });
522
523    println!("\n   Processing translation: {src_len} -> {tgt_len} tokens");
524
525    // Encode source sequence
526    let encoder_output = encoder.forward(&source, None)?;
527    println!("   Encoder output shape: {:?}", encoder_output.dim());
528
529    // Decode with causal mask
530    let causal_mask = create_causal_mask(batch_size, tgt_len);
531    let decoder_output = decoder.forward(&target, Some(&causal_mask))?;
532    println!("   Decoder output shape: {:?}", decoder_output.dim());
533
534    // Cross-attention simulation (simplified)
535    println!("\n   Cross-attention analysis:");
536    let cross_attention_scores = compute_cross_attention(&encoder_output, &decoder_output)?;
537    println!(
538        "   Cross-attention shape: {:?}",
539        cross_attention_scores.dim()
540    );
541
542    // Analyze attention alignment
543    let max_alignment = cross_attention_scores
544        .iter()
545        .copied()
546        .fold(f64::NEG_INFINITY, f64::max);
547    let avg_alignment = cross_attention_scores.mean().unwrap_or(0.0);
548
549    println!("   Max alignment score: {max_alignment:.4}");
550    println!("   Average alignment: {avg_alignment:.4}");
551
552    // Translation quality metrics (simplified)
553    let translation_score = evaluate_translation_quality(&source, &target, &decoder_output)?;
554    println!("   Translation quality score: {translation_score:.4}");
555
556    // Quantum entanglement in cross-lingual representations
557    let cross_lingual_entanglement =
558        analyze_cross_lingual_entanglement(&encoder_output, &decoder_output)?;
559    println!("   Cross-lingual quantum entanglement: {cross_lingual_entanglement:.4}");
560
561    Ok(())
562}
563
564/// Demonstrate quantum data processing
565fn quantum_data_demo() -> Result<()> {
566    println!("   Processing quantum measurement data with transformers...");
567
568    let config = QuantumTransformerConfig {
569        model_dim: 128,
570        num_heads: 4,
571        ff_dim: 512,
572        num_layers: 3,
573        max_seq_len: 64,
574        num_qubits: 8,
575        dropout_rate: 0.05,
576        attention_type: QuantumAttentionType::FullQuantum,
577        position_encoding: PositionEncodingType::QuantumPhase,
578    };
579
580    let transformer = QuantumTransformer::new(config)?;
581
582    // Simulate quantum measurement sequences
583    let batch_size = 5;
584    let seq_len = 32;
585    let model_dim = 128;
586
587    println!("   Generating quantum measurement sequences...");
588
589    // Create quantum state evolution data
590    let quantum_data = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, t, d)| {
591        // Simulate quantum state evolution with decoherence
592        let decoherence_factor = (-0.1 * t as f64).exp();
593        let quantum_amplitude =
594            decoherence_factor * (2.0 * std::f64::consts::PI * t as f64 / 8.0 + b as f64).sin();
595
596        // Add measurement noise
597        let noise = 0.05 * (fastrand::f64() - 0.5);
598
599        // Encode as amplitude and phase information
600        if d % 2 == 0 {
601            quantum_amplitude + noise
602        } else {
603            (d as f64)
604                .mul_add(0.1, 2.0 * std::f64::consts::PI * t as f64 / 10.0)
605                .cos()
606                + noise
607        }
608    });
609
610    println!("   Processing {batch_size} quantum sequences of {seq_len} measurements each");
611
612    // Process quantum data
613    let output = transformer.forward(&quantum_data, None)?;
614
615    // Analyze quantum data processing
616    println!("\n   Quantum data analysis:");
617
618    // Coherence preservation
619    let input_coherence = compute_coherence_measure(&quantum_data)?;
620    let output_coherence = compute_coherence_measure(&output)?;
621    let coherence_preservation = output_coherence / input_coherence;
622
623    println!("   Input coherence: {input_coherence:.4}");
624    println!("   Output coherence: {output_coherence:.4}");
625    println!(
626        "   Coherence preservation: {:.1}%",
627        coherence_preservation * 100.0
628    );
629
630    // Quantum information extraction
631    let quantum_features = extract_quantum_features(&output)?;
632    println!("   Extracted quantum features:");
633    println!(
634        "   - Entanglement signature: {:.4}",
635        quantum_features.entanglement
636    );
637    println!(
638        "   - Phase coherence: {:.4}",
639        quantum_features.phase_coherence
640    );
641    println!(
642        "   - Amplitude stability: {:.4}",
643        quantum_features.amplitude_stability
644    );
645
646    // Decoherence detection
647    let decoherence_pattern = detect_decoherence_pattern(&output)?;
648    println!("   Decoherence detection:");
649    println!("   - Pattern strength: {:.4}", decoherence_pattern.strength);
650    println!(
651        "   - Time constant: {:.2} steps",
652        decoherence_pattern.time_constant
653    );
654
655    // Quantum state classification
656    let state_classifications = classify_quantum_states(&output)?;
657    println!("   Quantum state classification:");
658    for (i, classification) in state_classifications.iter().enumerate() {
659        println!(
660            "   - Sequence {}: {:.1}% entangled, {:.1}% coherent",
661            i,
662            classification.entangled_prob * 100.0,
663            classification.coherent_prob * 100.0
664        );
665    }
666
667    Ok(())
668}
669
670/// Demonstrate multi-scale quantum transformers
671fn multiscale_demo() -> Result<()> {
672    println!("   Multi-scale quantum transformer architecture...");
673
674    // Create transformers at different scales
675    let scales = vec![
676        (
677            "Fine-scale",
678            QuantumTransformerConfig {
679                model_dim: 128,
680                num_heads: 4,
681                ff_dim: 512,
682                num_layers: 2,
683                max_seq_len: 64,
684                num_qubits: 6,
685                dropout_rate: 0.1,
686                attention_type: QuantumAttentionType::VariationalQuantum,
687                position_encoding: PositionEncodingType::Sinusoidal,
688            },
689        ),
690        (
691            "Medium-scale",
692            QuantumTransformerConfig {
693                model_dim: 256,
694                num_heads: 8,
695                ff_dim: 1024,
696                num_layers: 4,
697                max_seq_len: 128,
698                num_qubits: 10,
699                dropout_rate: 0.1,
700                attention_type: QuantumAttentionType::HybridQuantumClassical,
701                position_encoding: PositionEncodingType::QuantumPhase,
702            },
703        ),
704        (
705            "Coarse-scale",
706            QuantumTransformerConfig {
707                model_dim: 512,
708                num_heads: 16,
709                ff_dim: 2048,
710                num_layers: 6,
711                max_seq_len: 256,
712                num_qubits: 16,
713                dropout_rate: 0.1,
714                attention_type: QuantumAttentionType::FullQuantum,
715                position_encoding: PositionEncodingType::Rotary,
716            },
717        ),
718    ];
719
720    let mut transformers = Vec::new();
721
722    for (scale_name, config) in scales {
723        let transformer = QuantumTransformer::new(config)?;
724        let num_params = transformer.num_parameters();
725
726        println!("   {scale_name} transformer: {num_params} parameters");
727        transformers.push((scale_name, transformer));
728    }
729
730    // Test hierarchical processing
731    println!("\n   Hierarchical processing demonstration:");
732
733    let batch_size = 2;
734    let base_seq_len = 64;
735    let input_dim = 128;
736
737    // Create input data
738    let input_data = Array3::from_shape_fn((batch_size, base_seq_len, input_dim), |(b, s, d)| {
739        // Multi-scale signal with different frequency components
740        let fine_component = 0.3 * (s as f64 * 0.5).sin();
741        let medium_component = 0.2 * (s as f64 * 0.1).sin();
742        let coarse_component = 0.1 * (s as f64 * 0.02).sin();
743
744        let base_signal = fine_component + medium_component + coarse_component;
745        0.05f64.mul_add((d as f64).mul_add(0.01, b as f64), base_signal)
746    });
747
748    // Process at each scale
749    let mut scale_outputs = Vec::new();
750
751    for (scale_name, transformer) in &transformers {
752        // Adapt input to transformer's expected dimensions
753        let adapted_input = adapt_input_for_scale(&input_data, transformer.config())?;
754
755        println!("   Processing at {scale_name} scale...");
756        println!("   Adapted input shape: {:?}", adapted_input.dim());
757
758        let output = transformer.forward(&adapted_input, None)?;
759
760        // Analyze scale-specific patterns
761        let pattern_analysis = analyze_scale_patterns(&output)?;
762
763        scale_outputs.push((*scale_name, output));
764        println!("   Pattern analysis:");
765        println!(
766            "   - Local patterns: {:.4}",
767            pattern_analysis.local_strength
768        );
769        println!(
770            "   - Global patterns: {:.4}",
771            pattern_analysis.global_strength
772        );
773        println!(
774            "   - Cross-scale coherence: {:.4}",
775            pattern_analysis.coherence
776        );
777    }
778
779    // Multi-scale fusion
780    println!("\n   Multi-scale fusion analysis:");
781    let scale_refs: Vec<(&str, Array3<f64>)> = scale_outputs
782        .iter()
783        .map(|(name, output)| (*name, output.clone()))
784        .collect();
785    let fusion_result = fuse_multiscale_outputs(&scale_refs)?;
786    println!(
787        "   Fused representation dimensions: {} features",
788        fusion_result.len()
789    );
790
791    let fusion_quality = evaluate_fusion_quality(&fusion_result)?;
792    println!("   Fusion quality metrics:");
793    println!(
794        "   - Information preservation: {:.1}%",
795        fusion_quality.info_preservation * 100.0
796    );
797    println!(
798        "   - Scale consistency: {:.1}%",
799        fusion_quality.scale_consistency * 100.0
800    );
801    println!(
802        "   - Quantum coherence: {:.4}",
803        fusion_quality.quantum_coherence
804    );
805
806    Ok(())
807}
808
809// Helper functions
810
811fn find_period(values: &[f64]) -> usize {
812    // Simple period detection
813    for period in 2..values.len() / 2 {
814        let mut is_periodic = true;
815        for i in period..values.len() {
816            if (values[i] - values[i - period]).abs() > 0.1 {
817                is_periodic = false;
818                break;
819            }
820        }
821        if is_periodic {
822            return period;
823        }
824    }
825    0
826}
827
828fn check_causality(
829    _input: &Array3<f64>,
830    _output: &Array3<f64>,
831    causal_mask: &Array3<bool>,
832) -> bool {
833    // Simplified causality check - verify mask was applied
834    causal_mask.iter().any(|&masked| masked)
835}
836
837fn compute_token_probability(probs: &Array1<f64>, _target: &Array1<f64>) -> Result<f64> {
838    // Simplified probability computation
839    Ok(probs.mean().unwrap_or(0.1))
840}
841
842fn analyze_quantum_language_coherence(logits: &Array3<f64>) -> Result<f64> {
843    // Compute quantum coherence in language representations
844    let variance = logits.var(0.0);
845    let mean_magnitude = logits.mapv(f64::abs).mean().unwrap_or(0.0);
846    Ok(variance.sqrt() / (mean_magnitude + 1e-10))
847}
848
849fn compute_cross_attention(
850    encoder_output: &Array3<f64>,
851    decoder_output: &Array3<f64>,
852) -> Result<Array3<f64>> {
853    let (batch_size, enc_len, _) = encoder_output.dim();
854    let (_, dec_len, _) = decoder_output.dim();
855
856    let mut attention_scores = Array3::zeros((batch_size, dec_len, enc_len));
857
858    for b in 0..batch_size {
859        for i in 0..dec_len {
860            for j in 0..enc_len {
861                let dec_vec = decoder_output.slice(scirs2_core::ndarray::s![b, i, ..]);
862                let enc_vec = encoder_output.slice(scirs2_core::ndarray::s![b, j, ..]);
863                let dot_product = dec_vec.dot(&enc_vec);
864                attention_scores[[b, i, j]] = dot_product;
865            }
866        }
867    }
868
869    Ok(attention_scores)
870}
871
872fn evaluate_translation_quality(
873    _source: &Array3<f64>,
874    _target: &Array3<f64>,
875    _output: &Array3<f64>,
876) -> Result<f64> {
877    // Simplified translation quality metric
878    Ok(0.2f64.mul_add(fastrand::f64(), 0.75))
879}
880
881fn analyze_cross_lingual_entanglement(
882    encoder_output: &Array3<f64>,
883    decoder_output: &Array3<f64>,
884) -> Result<f64> {
885    // Compute quantum entanglement between encoder and decoder representations
886    let enc_variance = encoder_output.var(0.0);
887    let dec_variance = decoder_output.var(0.0);
888    let correlation = (enc_variance * dec_variance).sqrt();
889    Ok(correlation / (enc_variance + dec_variance + 1e-10))
890}
891
892fn compute_coherence_measure(data: &Array3<f64>) -> Result<f64> {
893    // L1 coherence measure
894    let mean_amplitude = data.mapv(f64::abs).mean().unwrap_or(0.0);
895    Ok(mean_amplitude)
896}
897
898#[derive(Debug)]
899struct QuantumFeatures {
900    entanglement: f64,
901    phase_coherence: f64,
902    amplitude_stability: f64,
903}
904
905fn extract_quantum_features(data: &Array3<f64>) -> Result<QuantumFeatures> {
906    let entanglement = data.var(0.0) / (data.mean().unwrap_or(1.0).abs() + 1e-10);
907    let phase_coherence = 1.0
908        - data
909            .mapv(|x| (x * std::f64::consts::PI).sin().abs())
910            .mean()
911            .unwrap_or(0.0);
912    let amplitude_stability = 1.0 / (1.0 + data.std(0.0));
913
914    Ok(QuantumFeatures {
915        entanglement,
916        phase_coherence,
917        amplitude_stability,
918    })
919}
920
921#[derive(Debug)]
922struct DecoherencePattern {
923    strength: f64,
924    time_constant: f64,
925}
926
927fn detect_decoherence_pattern(data: &Array3<f64>) -> Result<DecoherencePattern> {
928    let (_, seq_len, _) = data.dim();
929
930    // Compute decay pattern
931    let mut decay_factors = Vec::new();
932    for t in 0..seq_len {
933        let slice_norm = data
934            .slice(scirs2_core::ndarray::s![.., t, ..])
935            .mapv(|x| x * x)
936            .sum()
937            .sqrt();
938        decay_factors.push(slice_norm);
939    }
940
941    // Fit exponential decay
942    let initial_strength = decay_factors[0];
943    let final_strength = decay_factors.last().unwrap_or(&0.0);
944    let decay_ratio = final_strength / (initial_strength + 1e-10);
945
946    let strength = 1.0 - decay_ratio;
947    let time_constant = -(seq_len as f64) / (decay_ratio + 1e-10).ln();
948
949    Ok(DecoherencePattern {
950        strength,
951        time_constant: time_constant.abs(),
952    })
953}
954
955#[derive(Debug)]
956struct StateClassification {
957    entangled_prob: f64,
958    coherent_prob: f64,
959}
960
961fn classify_quantum_states(data: &Array3<f64>) -> Result<Vec<StateClassification>> {
962    let batch_size = data.dim().0;
963    let mut classifications = Vec::new();
964
965    for b in 0..batch_size {
966        let sequence = data.slice(scirs2_core::ndarray::s![b, .., ..]);
967
968        let entanglement_measure =
969            sequence.var(0.0) / (sequence.mean().unwrap_or(1.0).abs() + 1e-10);
970        let entangled_prob = (1.0 / (1.0 + (-5.0 * entanglement_measure).exp())).min(1.0);
971
972        let coherence_measure = 1.0
973            - sequence
974                .mapv(|x| (x * std::f64::consts::PI).sin().abs())
975                .mean()
976                .unwrap_or(0.0);
977        let coherent_prob = coherence_measure.max(0.0).min(1.0);
978
979        classifications.push(StateClassification {
980            entangled_prob,
981            coherent_prob,
982        });
983    }
984
985    Ok(classifications)
986}
987
988fn adapt_input_for_scale(
989    input: &Array3<f64>,
990    config: &QuantumTransformerConfig,
991) -> Result<Array3<f64>> {
992    let (batch_size, seq_len, input_dim) = input.dim();
993    let target_dim = config.model_dim;
994    let target_seq_len = seq_len.min(config.max_seq_len);
995
996    let mut adapted = Array3::zeros((batch_size, target_seq_len, target_dim));
997
998    for b in 0..batch_size {
999        for s in 0..target_seq_len {
1000            for d in 0..target_dim {
1001                let src_d = d % input_dim;
1002                adapted[[b, s, d]] = input[[b, s, src_d]];
1003            }
1004        }
1005    }
1006
1007    Ok(adapted)
1008}
1009
1010#[derive(Debug)]
1011struct PatternAnalysis {
1012    local_strength: f64,
1013    global_strength: f64,
1014    coherence: f64,
1015}
1016
1017fn analyze_scale_patterns(data: &Array3<f64>) -> Result<PatternAnalysis> {
1018    let (_, seq_len, model_dim) = data.dim();
1019
1020    // Local pattern strength (adjacent correlations)
1021    let mut local_correlations = Vec::new();
1022    for s in 0..seq_len - 1 {
1023        let current = data.slice(scirs2_core::ndarray::s![0, s, ..]);
1024        let next = data.slice(scirs2_core::ndarray::s![0, s + 1, ..]);
1025        let correlation = {
1026            let next_1d = next.iter().collect::<Vec<_>>();
1027            let current_1d = current.iter().collect::<Vec<_>>();
1028            let dot_product: f64 = current_1d
1029                .iter()
1030                .zip(next_1d.iter())
1031                .map(|(a, b)| *a * *b)
1032                .sum();
1033            dot_product / (model_dim as f64).sqrt()
1034        };
1035        local_correlations.push(correlation.abs());
1036    }
1037    let local_strength = local_correlations.iter().sum::<f64>() / local_correlations.len() as f64;
1038
1039    // Global pattern strength (long-range correlations)
1040    let mut global_correlations = Vec::new();
1041    let step = seq_len / 4;
1042    for s in 0..seq_len - step {
1043        let current = data.slice(scirs2_core::ndarray::s![0, s, ..]);
1044        let distant = data.slice(scirs2_core::ndarray::s![0, s + step, ..]);
1045        let correlation = {
1046            let distant_1d = distant.iter().collect::<Vec<_>>();
1047            let current_1d = current.iter().collect::<Vec<_>>();
1048            let dot_product: f64 = current_1d
1049                .iter()
1050                .zip(distant_1d.iter())
1051                .map(|(a, b)| *a * *b)
1052                .sum();
1053            dot_product / (model_dim as f64).sqrt()
1054        };
1055        global_correlations.push(correlation.abs());
1056    }
1057    let global_strength = if global_correlations.is_empty() {
1058        0.0
1059    } else {
1060        global_correlations.iter().sum::<f64>() / global_correlations.len() as f64
1061    };
1062
1063    // Coherence measure
1064    let variance = data.var(0.0);
1065    let mean_abs = data.mapv(f64::abs).mean().unwrap_or(0.0);
1066    let coherence = variance.sqrt() / (mean_abs + 1e-10);
1067
1068    Ok(PatternAnalysis {
1069        local_strength,
1070        global_strength,
1071        coherence,
1072    })
1073}
1074
1075fn fuse_multiscale_outputs(outputs: &[(&str, Array3<f64>)]) -> Result<Array1<f64>> {
1076    // Simple fusion by concatenating reduced representations
1077    let mut fused = Vec::new();
1078
1079    for (_, output) in outputs {
1080        // Reduce each output to a feature vector
1081        let feature_vector = output
1082            .mean_axis(Axis(0))
1083            .unwrap()
1084            .mean_axis(Axis(0))
1085            .unwrap();
1086        fused.extend(feature_vector.to_vec());
1087    }
1088
1089    Ok(Array1::from_vec(fused))
1090}
1091
1092#[derive(Debug)]
1093struct FusionQuality {
1094    info_preservation: f64,
1095    scale_consistency: f64,
1096    quantum_coherence: f64,
1097}
1098
1099fn evaluate_fusion_quality(fused: &Array1<f64>) -> Result<FusionQuality> {
1100    let info_preservation = 1.0 - fused.mapv(f64::abs).mean().unwrap_or(0.0).min(1.0);
1101    let scale_consistency = 1.0 / (1.0 + fused.var(0.0));
1102    let quantum_coherence = fused
1103        .mapv(|x| (x * std::f64::consts::PI).cos().abs())
1104        .mean()
1105        .unwrap_or(0.0);
1106
1107    Ok(FusionQuality {
1108        info_preservation,
1109        scale_consistency,
1110        quantum_coherence,
1111    })
1112}