tensorflow_quantum_demo/
tensorflow_quantum_demo.rs

1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2//! TensorFlow Quantum Compatibility Example
3//!
4//! This example demonstrates the TensorFlow Quantum (TFQ) compatibility layer,
5//! showing how to use TFQ-style APIs, PQC layers, and quantum datasets.
6
7use quantrs2_circuit::prelude::{Circuit, CircuitBuilder};
8use quantrs2_ml::prelude::*;
9use quantrs2_ml::simulator_backends::DynamicCircuit;
10use scirs2_core::ndarray::{Array1, Array2, Array3, Axis};
11use scirs2_core::random::prelude::*;
12use std::collections::HashMap;
13use std::sync::Arc;
14
15fn main() -> Result<()> {
16    println!("=== TensorFlow Quantum Compatibility Demo ===\n");
17
18    // Step 1: Create TFQ-style quantum circuits
19    println!("1. Creating TensorFlow Quantum style circuits...");
20
21    let (circuits, circuit_symbols) = create_tfq_circuits()?;
22    println!(
23        "   - Created {} parameterized quantum circuits",
24        circuits.len()
25    );
26    println!("   - Circuit symbols: {circuit_symbols:?}");
27
28    // Step 2: Build TFQ-style model with PQC layers
29    println!("\n2. Building TFQ-compatible model...");
30
31    let mut model = TFQModel::new(vec![4, 1]); // input_shape: [batch_size, features]
32
33    // Add quantum circuit layer (equivalent to tfq.layers.PQC)
34    // Note: QuantumCircuitLayer does not implement TFQLayer in current API
35    // model.add_layer(Box::new(QuantumCircuitLayer::new(
36    //     circuits[0].clone(),
37    //     circuit_symbols.clone(),
38    //     Observable::PauliZ(vec![0]),
39    //     Arc::new(StatevectorBackend::new(8))
40    // )));
41    println!("   - Quantum circuit layer placeholder added");
42
43    // Add classical preprocessing layer
44    // Note: TFQDenseLayer not implemented in current API
45    // model.add_layer(Box::new(TFQDenseLayer::new(
46    //     4, 8,
47    //     ActivationFunction::ReLU,
48    //     ParameterInitStrategy::XavierUniform
49    // )?));
50
51    // Add PQC layer with different observable
52    // Note: PQCLayer not implemented in current API
53    // model.add_layer(Box::new(PQCLayer::new(
54    //     circuits[1].clone(),
55    //     Observable::PauliZ(vec![1]),
56    //     RegularizationType::L2(0.01)
57    // )?));
58
59    // Add quantum convolutional layer
60    // Note: QuantumConvolutionalLayer not implemented in current API
61    // model.add_layer(Box::new(QuantumConvolutionalLayer::new(
62    //     circuits[2].clone(),
63    //     (2, 2), // kernel_size
64    //     PaddingType::Valid,
65    //     2       // stride
66    // )?));
67
68    // Final output layer
69    // Note: TFQDenseLayer not implemented in current API
70    // model.add_layer(Box::new(TFQDenseLayer::new(
71    //     8, 2,
72    //     ActivationFunction::Softmax,
73    //     ParameterInitStrategy::HeNormal
74    // )?));
75
76    println!("   Model architecture:");
77    // model.summary(); // Not implemented in current API
78
79    // Step 3: Create TFQ-style quantum dataset
80    println!("\n3. Creating TensorFlow Quantum dataset...");
81
82    let quantum_dataset = create_tfq_quantum_dataset()?;
83    // println!("   - Dataset size: {}", quantum_dataset.size());
84    // println!("   - Data encoding: {:?}", quantum_dataset.encoding_type());
85    // println!("   - Batch size: {}", quantum_dataset.batch_size());
86    println!("   - Quantum dataset created successfully");
87
88    // Step 4: Configure TFQ-style training
89    println!("\n4. Configuring TFQ training setup...");
90
91    let optimizer = TFQOptimizer::Adam {
92        learning_rate: 0.001,
93        beta1: 0.9,
94        beta2: 0.999,
95        epsilon: 1e-7,
96    };
97
98    let loss_function = TFQLossFunction::CategoricalCrossentropy;
99
100    model.compile()?;
101
102    println!("   - Optimizer: Adam");
103    println!("   - Loss: Sparse Categorical Crossentropy");
104    println!("   - Metrics: Accuracy, Precision, Recall");
105
106    // Step 5: Train with TFQ-style fit method
107    println!("\n5. Training with TensorFlow Quantum style...");
108
109    // Note: fit method not fully implemented in current API
110    // let history = model.fit(
111    //     &quantum_dataset,
112    //     15,    // epochs
113    //     0.2,   // validation_split
114    //     1,     // verbose
115    //     vec![
116    //         Box::new(EarlyStoppingCallback::new(3, "val_loss")),      // patience, monitor
117    //         Box::new(ReduceLROnPlateauCallback::new(0.5, 2)),         // factor, patience
118    //     ]
119    // )?;
120    println!("   Training setup configured (fit method placeholder)");
121
122    // println!("   Training completed!");
123    // println!("   - Final training accuracy: {:.3}", history.final_metric("accuracy"));
124    // println!("   - Final validation accuracy: {:.3}", history.final_metric("val_accuracy"));
125    // println!("   - Best epoch: {}", history.best_epoch());
126    println!("   Training placeholder completed");
127
128    // Step 6: Evaluate model performance
129    println!("\n6. Model evaluation...");
130
131    let test_dataset = create_tfq_test_dataset()?;
132    // let evaluation_results = model.evaluate(&test_dataset, 1)?;  // verbose
133    //
134    // println!("   Test Results:");
135    // for (metric, value) in evaluation_results.iter() {
136    //     println!("   - {}: {:.4}", metric, value);
137    // }
138    println!("   Test dataset created successfully");
139
140    // Step 7: Quantum circuit analysis
141    println!("\n7. Quantum circuit analysis...");
142
143    // let circuit_analysis = model.analyze_quantum_circuits()?;
144    // println!("   Circuit Properties:");
145    // println!("   - Total quantum parameters: {}", circuit_analysis.total_quantum_params);
146    // println!("   - Circuit depth: {}", circuit_analysis.max_circuit_depth);
147    // println!("   - Gate types used: {:?}", circuit_analysis.gate_types);
148    // println!("   - Entangling gates: {}", circuit_analysis.entangling_gate_count);
149    println!("   Circuit analysis placeholder completed");
150
151    // Step 8: Parameter shift gradients (TFQ-style)
152    println!("\n8. Computing parameter shift gradients...");
153
154    // let sample_input = quantum_dataset.get_batch(0)?;
155    // let gradients = model.compute_parameter_shift_gradients(&sample_input)?;
156    println!("   Parameter shift gradients placeholder");
157
158    // println!("   Gradient Analysis:");
159    // println!("   - Quantum gradients computed: {}", gradients.quantum_gradients.len());
160    // println!("   - Classical gradients computed: {}", gradients.classical_gradients.len());
161    // println!("   - Max quantum gradient: {:.6}",
162    //     gradients.quantum_gradients.iter().fold(0.0f64, |a, &b| a.max(b.abs())));
163    // println!("   - Gradient variance: {:.6}",
164    //     compute_gradient_variance(&gradients.quantum_gradients));
165    println!("   Gradient analysis placeholder completed");
166
167    // Step 9: Quantum expectation values
168    println!("\n9. Computing quantum expectation values...");
169
170    let observables = [Observable::PauliZ(vec![0]), Observable::PauliZ(vec![1])];
171
172    // let expectation_values = model.compute_expectation_values(&sample_input, &observables)?;
173    // println!("   Expectation Values:");
174    // for (i, (obs, val)) in observables.iter().zip(expectation_values.iter()).enumerate() {
175    //     println!("   - Observable {}: {:.4}", i, val);
176    // }
177    println!("   Expectation values placeholder completed");
178
179    // Step 10: TFQ utils demonstrations
180    println!("\n10. TensorFlow Quantum utilities...");
181
182    // Circuit conversion
183    let dynamic_circuit = DynamicCircuit::from_circuit(circuits[0].clone())?;
184    let tfq_format_circuit = tfq_utils::circuit_to_tfq_format(&dynamic_circuit)?;
185    println!("    - Converted circuit to TFQ format (placeholder)");
186
187    // Batch circuit execution
188    // let batch_circuits = vec![circuits[0].clone(), circuits[1].clone()];
189    // let batch_params = Array2::from_shape_fn((2, 4), |(i, j)| (i + j) as f64 * 0.1);
190    // let batch_results = tfq_utils::batch_execute_circuits(&batch_circuits, &batch_params, &observables, &backend)?;
191    // println!("    - Batch execution results shape: {:?}", batch_results.dim());
192    println!("    - Batch execution placeholder completed");
193
194    // Data encoding utilities
195    let classical_data = Array2::from_shape_fn((10, 4), |(i, j)| (i + j) as f64 * 0.2);
196    // let encoded_circuits = tfq_utils::encode_data_to_circuits(
197    //     &classical_data,
198    //     DataEncodingType::Angle
199    // )?;
200    let encoded_circuits = [tfq_utils::create_data_encoding_circuit(
201        4,
202        DataEncodingType::Angle,
203    )?];
204    println!(
205        "    - Encoded {} data points to quantum circuits",
206        encoded_circuits.len()
207    );
208
209    // Step 11: Compare with TensorFlow classical model
210    println!("\n11. Comparing with TensorFlow classical equivalent...");
211
212    create_tensorflow_classical_model()?;
213    // let classical_accuracy = train_classical_tensorflow_model(classical_model, &quantum_dataset)?;
214    //
215    // let quantum_accuracy = evaluation_results.get("accuracy").unwrap_or(&0.0);
216    // println!("    - Quantum TFQ model accuracy: {:.3}", quantum_accuracy);
217    // println!("    - Classical TF model accuracy: {:.3}", classical_accuracy);
218    // println!("    - Quantum advantage: {:.3}", quantum_accuracy - classical_accuracy);
219    println!("    - Classical comparison placeholder completed");
220
221    // Step 12: Model export (TFQ format)
222    println!("\n12. Exporting model in TFQ format...");
223
224    // model.save_tfq_format("quantum_model_tfq.pb")?;
225    // println!("    - Model exported to: quantum_model_tfq.pb");
226    //
227    // // Export to TensorFlow SavedModel format
228    // model.export_savedmodel("quantum_model_savedmodel/")?;
229    // println!("    - SavedModel exported to: quantum_model_savedmodel/");
230    println!("    - Model export placeholder completed");
231
232    // Step 13: Advanced TFQ features
233    println!("\n13. Advanced TensorFlow Quantum features...");
234
235    // Quantum data augmentation
236    // let augmented_dataset = quantum_dataset.augment_with_noise(0.05)?;
237    // println!("    - Created augmented dataset with noise level 0.05");
238    //
239    // // Circuit optimization for hardware
240    // let optimized_circuits = tfq_utils::optimize_circuits_for_hardware(
241    //     &circuits,
242    //     HardwareType::IonQ
243    // )?;
244    // println!("    - Optimized {} circuits for IonQ hardware", optimized_circuits.len());
245    //
246    // // Barren plateau analysis
247    // let plateau_analysis = analyze_barren_plateaus(&model, &quantum_dataset)?;
248    // println!("    - Barren plateau risk: {:.3}", plateau_analysis.risk_score);
249    // println!("    - Recommended mitigation: {}", plateau_analysis.mitigation_strategy);
250    println!("    - Advanced features placeholder completed");
251
252    println!("\n=== TensorFlow Quantum Demo Complete ===");
253
254    Ok(())
255}
256
257fn create_tfq_circuits() -> Result<(Vec<Circuit<8>>, Vec<String>)> {
258    let mut circuits = Vec::new();
259    let mut symbols = Vec::new();
260
261    // Circuit 1: Basic parameterized circuit
262    let mut circuit1 = CircuitBuilder::new();
263    circuit1.ry(0, 0.0)?;
264    circuit1.ry(1, 0.0)?;
265    circuit1.cnot(0, 1)?;
266    circuit1.ry(2, 0.0)?;
267    circuit1.cnot(1, 2)?;
268    circuits.push(circuit1.build());
269    symbols.extend(vec![
270        "theta_0".to_string(),
271        "theta_1".to_string(),
272        "theta_2".to_string(),
273    ]);
274
275    // Circuit 2: Entangling circuit
276    let mut circuit2 = CircuitBuilder::new();
277    circuit2.h(0)?;
278    circuit2.cnot(0, 1)?;
279    circuit2.cnot(1, 2)?;
280    circuit2.cnot(2, 3)?;
281    circuit2.ry(0, 0.0)?;
282    circuit2.ry(1, 0.0)?;
283    circuits.push(circuit2.build());
284    symbols.extend(vec!["phi_0".to_string(), "phi_1".to_string()]);
285
286    // Circuit 3: Convolutional-style circuit
287    let mut circuit3 = CircuitBuilder::new();
288    circuit3.ry(0, 0.0)?;
289    circuit3.ry(1, 0.0)?;
290    circuit3.cnot(0, 1)?;
291    circuits.push(circuit3.build());
292    symbols.extend(vec!["alpha_0".to_string(), "alpha_1".to_string()]);
293
294    Ok((circuits, symbols))
295}
296
297fn create_tfq_quantum_dataset() -> Result<QuantumDataset> {
298    let num_samples = 1000;
299    let num_features = 4;
300
301    // Create classical data
302    let classical_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
303        let noise = fastrand::f64() * 0.1;
304        (i as f64).mul_add(0.01, j as f64 * 0.1).sin() + noise
305    });
306
307    // Create labels (binary classification)
308    let labels = Array1::from_shape_fn(num_samples, |i| {
309        let sum = (0..num_features)
310            .map(|j| classical_data[[i, j]])
311            .sum::<f64>();
312        if sum > 0.0 {
313            1.0
314        } else {
315            0.0
316        }
317    });
318
319    // Create quantum circuits for the dataset
320    let circuits =
321        vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
322            .into_iter()
323            .map(|dc| match dc {
324                DynamicCircuit::Circuit8(c) => c,
325                _ => panic!("Expected Circuit8"),
326            })
327            .collect();
328
329    // Create quantum dataset with angle encoding
330    QuantumDataset::new(
331        circuits,
332        classical_data,
333        labels,
334        32, // batch_size
335    )
336}
337
338fn create_tfq_test_dataset() -> Result<QuantumDataset> {
339    let num_samples = 200;
340    let num_features = 4;
341
342    let test_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
343        let noise = fastrand::f64() * 0.1;
344        (i as f64).mul_add(0.015, j as f64 * 0.12).sin() + noise
345    });
346
347    let test_labels = Array1::from_shape_fn(num_samples, |i| {
348        let sum = (0..num_features).map(|j| test_data[[i, j]]).sum::<f64>();
349        if sum > 0.0 {
350            1.0
351        } else {
352            0.0
353        }
354    });
355
356    // Create quantum circuits for the test dataset
357    let test_circuits =
358        vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
359            .into_iter()
360            .map(|dc| match dc {
361                DynamicCircuit::Circuit8(c) => c,
362                _ => panic!("Expected Circuit8"),
363            })
364            .collect();
365
366    QuantumDataset::new(test_circuits, test_data, test_labels, 32)
367}
368
369fn compute_gradient_variance(gradients: &[f64]) -> f64 {
370    let mean = gradients.iter().sum::<f64>() / gradients.len() as f64;
371    let variance =
372        gradients.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / gradients.len() as f64;
373    variance
374}
375
376const fn create_tensorflow_classical_model() -> Result<()> {
377    // Placeholder for classical TensorFlow model creation
378    Ok(())
379}
380
381// Placeholder function for remaining code
382const fn placeholder_function() -> Result<()> {
383    // Ok(TensorFlowClassicalModel::new(vec![
384    //     TFLayer::Dense { units: 8, activation: "relu" },
385    //     TFLayer::Dense { units: 4, activation: "relu" },
386    //     TFLayer::Dense { units: 2, activation: "softmax" },
387    // ]))
388    Ok(())
389}
390
391// fn train_classical_tensorflow_model(
392//     mut model: TensorFlowClassicalModel,
393//     dataset: &QuantumDataset
394// ) -> Result<f64> {
395//     // Simplified classical training for comparison
396//     model.compile("adam", "sparse_categorical_crossentropy", vec!["accuracy"])?;
397//     let history = model.fit(dataset, 10, 0.2)?;
398//     Ok(history.final_metric("val_accuracy"))
399// }
400
401fn analyze_barren_plateaus(
402    model: &TFQModel,
403    dataset: &QuantumDataset,
404) -> Result<BarrenPlateauAnalysis> {
405    // Analyze gradient variance across training
406    // let sample_batch = dataset.get_batch(0)?;
407    // let gradients = model.compute_parameter_shift_gradients(&sample_batch)?;
408    println!("   Sample batch and gradients placeholder");
409
410    // let variance = compute_gradient_variance(&gradients.quantum_gradients);
411    let variance = 0.001; // placeholder
412    let risk_score = if variance < 1e-6 {
413        0.9
414    } else if variance < 1e-3 {
415        0.5
416    } else {
417        0.1
418    };
419
420    let mitigation_strategy = if risk_score > 0.7 {
421        "Consider parameter initialization strategies or circuit pre-training".to_string()
422    } else if risk_score > 0.3 {
423        "Monitor gradient variance during training".to_string()
424    } else {
425        "Low barren plateau risk detected".to_string()
426    };
427
428    Ok(BarrenPlateauAnalysis {
429        risk_score,
430        gradient_variance: variance,
431        mitigation_strategy,
432    })
433}
434
435// Supporting structs and implementations (simplified for demo)
436struct BarrenPlateauAnalysis {
437    risk_score: f64,
438    gradient_variance: f64,
439    mitigation_strategy: String,
440}
441
442struct TensorFlowClassicalModel {
443    layers: Vec<TFLayer>,
444}
445
446impl TensorFlowClassicalModel {
447    const fn new(layers: Vec<TFLayer>) -> Self {
448        Self { layers }
449    }
450
451    fn compile(&mut self, _optimizer: &str, _loss: &str, _metrics: Vec<&str>) -> Result<()> {
452        Ok(())
453    }
454
455    fn fit(
456        &mut self,
457        _dataset: &QuantumDataset,
458        _epochs: usize,
459        _validation_split: f64,
460    ) -> Result<TrainingHistory> {
461        Ok(TrainingHistory::new())
462    }
463}
464
465enum TFLayer {
466    Dense {
467        units: usize,
468        activation: &'static str,
469    },
470}
471
472struct TrainingHistory {
473    metrics: HashMap<String, f64>,
474}
475
476impl TrainingHistory {
477    fn new() -> Self {
478        let mut metrics = HashMap::new();
479        metrics.insert("val_accuracy".to_string(), 0.75); // Mock value
480        Self { metrics }
481    }
482
483    fn final_metric(&self, metric: &str) -> f64 {
484        *self.metrics.get(metric).unwrap_or(&0.0)
485    }
486}
487
488enum HardwareType {
489    IonQ,
490    IBM,
491    Google,
492}
493
494enum ReductionType {
495    Mean,
496    Sum,
497    None,
498}