tensorflow_quantum_demo/tensorflow_quantum_demo.rs
1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2//! TensorFlow Quantum Compatibility Example
3//!
4//! This example demonstrates the TensorFlow Quantum (TFQ) compatibility layer,
5//! showing how to use TFQ-style APIs, PQC layers, and quantum datasets.
6
7use quantrs2_circuit::prelude::{Circuit, CircuitBuilder};
8use quantrs2_ml::prelude::*;
9use quantrs2_ml::simulator_backends::DynamicCircuit;
10use scirs2_core::ndarray::{Array1, Array2, Array3, Axis};
11use scirs2_core::random::prelude::*;
12use std::collections::HashMap;
13use std::sync::Arc;
14
15fn main() -> Result<()> {
16 println!("=== TensorFlow Quantum Compatibility Demo ===\n");
17
18 // Step 1: Create TFQ-style quantum circuits
19 println!("1. Creating TensorFlow Quantum style circuits...");
20
21 let (circuits, circuit_symbols) = create_tfq_circuits()?;
22 println!(
23 " - Created {} parameterized quantum circuits",
24 circuits.len()
25 );
26 println!(" - Circuit symbols: {circuit_symbols:?}");
27
28 // Step 2: Build TFQ-style model with PQC layers
29 println!("\n2. Building TFQ-compatible model...");
30
31 let mut model = TFQModel::new(vec![4, 1]); // input_shape: [batch_size, features]
32
33 // Add quantum circuit layer (equivalent to tfq.layers.PQC)
34 // Note: QuantumCircuitLayer does not implement TFQLayer in current API
35 // model.add_layer(Box::new(QuantumCircuitLayer::new(
36 // circuits[0].clone(),
37 // circuit_symbols.clone(),
38 // Observable::PauliZ(vec![0]),
39 // Arc::new(StatevectorBackend::new(8))
40 // )));
41 println!(" - Quantum circuit layer placeholder added");
42
43 // Add classical preprocessing layer
44 // Note: TFQDenseLayer not implemented in current API
45 // model.add_layer(Box::new(TFQDenseLayer::new(
46 // 4, 8,
47 // ActivationFunction::ReLU,
48 // ParameterInitStrategy::XavierUniform
49 // )?));
50
51 // Add PQC layer with different observable
52 // Note: PQCLayer not implemented in current API
53 // model.add_layer(Box::new(PQCLayer::new(
54 // circuits[1].clone(),
55 // Observable::PauliZ(vec![1]),
56 // RegularizationType::L2(0.01)
57 // )?));
58
59 // Add quantum convolutional layer
60 // Note: QuantumConvolutionalLayer not implemented in current API
61 // model.add_layer(Box::new(QuantumConvolutionalLayer::new(
62 // circuits[2].clone(),
63 // (2, 2), // kernel_size
64 // PaddingType::Valid,
65 // 2 // stride
66 // )?));
67
68 // Final output layer
69 // Note: TFQDenseLayer not implemented in current API
70 // model.add_layer(Box::new(TFQDenseLayer::new(
71 // 8, 2,
72 // ActivationFunction::Softmax,
73 // ParameterInitStrategy::HeNormal
74 // )?));
75
76 println!(" Model architecture:");
77 // model.summary(); // Not implemented in current API
78
79 // Step 3: Create TFQ-style quantum dataset
80 println!("\n3. Creating TensorFlow Quantum dataset...");
81
82 let quantum_dataset = create_tfq_quantum_dataset()?;
83 // println!(" - Dataset size: {}", quantum_dataset.size());
84 // println!(" - Data encoding: {:?}", quantum_dataset.encoding_type());
85 // println!(" - Batch size: {}", quantum_dataset.batch_size());
86 println!(" - Quantum dataset created successfully");
87
88 // Step 4: Configure TFQ-style training
89 println!("\n4. Configuring TFQ training setup...");
90
91 let optimizer = TFQOptimizer::Adam {
92 learning_rate: 0.001,
93 beta1: 0.9,
94 beta2: 0.999,
95 epsilon: 1e-7,
96 };
97
98 let loss_function = TFQLossFunction::CategoricalCrossentropy;
99
100 model.compile()?;
101
102 println!(" - Optimizer: Adam");
103 println!(" - Loss: Sparse Categorical Crossentropy");
104 println!(" - Metrics: Accuracy, Precision, Recall");
105
106 // Step 5: Train with TFQ-style fit method
107 println!("\n5. Training with TensorFlow Quantum style...");
108
109 // Note: fit method not fully implemented in current API
110 // let history = model.fit(
111 // &quantum_dataset,
112 // 15, // epochs
113 // 0.2, // validation_split
114 // 1, // verbose
115 // vec![
116 // Box::new(EarlyStoppingCallback::new(3, "val_loss")), // patience, monitor
117 // Box::new(ReduceLROnPlateauCallback::new(0.5, 2)), // factor, patience
118 // ]
119 // )?;
120 println!(" Training setup configured (fit method placeholder)");
121
122 // println!(" Training completed!");
123 // println!(" - Final training accuracy: {:.3}", history.final_metric("accuracy"));
124 // println!(" - Final validation accuracy: {:.3}", history.final_metric("val_accuracy"));
125 // println!(" - Best epoch: {}", history.best_epoch());
126 println!(" Training placeholder completed");
127
128 // Step 6: Evaluate model performance
129 println!("\n6. Model evaluation...");
130
131 let test_dataset = create_tfq_test_dataset()?;
132 // let evaluation_results = model.evaluate(&test_dataset, 1)?; // verbose
133 //
134 // println!(" Test Results:");
135 // for (metric, value) in evaluation_results.iter() {
136 // println!(" - {}: {:.4}", metric, value);
137 // }
138 println!(" Test dataset created successfully");
139
140 // Step 7: Quantum circuit analysis
141 println!("\n7. Quantum circuit analysis...");
142
143 // let circuit_analysis = model.analyze_quantum_circuits()?;
144 // println!(" Circuit Properties:");
145 // println!(" - Total quantum parameters: {}", circuit_analysis.total_quantum_params);
146 // println!(" - Circuit depth: {}", circuit_analysis.max_circuit_depth);
147 // println!(" - Gate types used: {:?}", circuit_analysis.gate_types);
148 // println!(" - Entangling gates: {}", circuit_analysis.entangling_gate_count);
149 println!(" Circuit analysis placeholder completed");
150
151 // Step 8: Parameter shift gradients (TFQ-style)
152 println!("\n8. Computing parameter shift gradients...");
153
154 // let sample_input = quantum_dataset.get_batch(0)?;
155 // let gradients = model.compute_parameter_shift_gradients(&sample_input)?;
156 println!(" Parameter shift gradients placeholder");
157
158 // println!(" Gradient Analysis:");
159 // println!(" - Quantum gradients computed: {}", gradients.quantum_gradients.len());
160 // println!(" - Classical gradients computed: {}", gradients.classical_gradients.len());
161 // println!(" - Max quantum gradient: {:.6}",
162 // gradients.quantum_gradients.iter().fold(0.0f64, |a, &b| a.max(b.abs())));
163 // println!(" - Gradient variance: {:.6}",
164 // compute_gradient_variance(&gradients.quantum_gradients));
165 println!(" Gradient analysis placeholder completed");
166
167 // Step 9: Quantum expectation values
168 println!("\n9. Computing quantum expectation values...");
169
170 let observables = [Observable::PauliZ(vec![0]), Observable::PauliZ(vec![1])];
171
172 // let expectation_values = model.compute_expectation_values(&sample_input, &observables)?;
173 // println!(" Expectation Values:");
174 // for (i, (obs, val)) in observables.iter().zip(expectation_values.iter()).enumerate() {
175 // println!(" - Observable {}: {:.4}", i, val);
176 // }
177 println!(" Expectation values placeholder completed");
178
179 // Step 10: TFQ utils demonstrations
180 println!("\n10. TensorFlow Quantum utilities...");
181
182 // Circuit conversion
183 let dynamic_circuit = DynamicCircuit::from_circuit(circuits[0].clone())?;
184 let tfq_format_circuit = tfq_utils::circuit_to_tfq_format(&dynamic_circuit)?;
185 println!(" - Converted circuit to TFQ format (placeholder)");
186
187 // Batch circuit execution
188 // let batch_circuits = vec![circuits[0].clone(), circuits[1].clone()];
189 // let batch_params = Array2::from_shape_fn((2, 4), |(i, j)| (i + j) as f64 * 0.1);
190 // let batch_results = tfq_utils::batch_execute_circuits(&batch_circuits, &batch_params, &observables, &backend)?;
191 // println!(" - Batch execution results shape: {:?}", batch_results.dim());
192 println!(" - Batch execution placeholder completed");
193
194 // Data encoding utilities
195 let classical_data = Array2::from_shape_fn((10, 4), |(i, j)| (i + j) as f64 * 0.2);
196 // let encoded_circuits = tfq_utils::encode_data_to_circuits(
197 // &classical_data,
198 // DataEncodingType::Angle
199 // )?;
200 let encoded_circuits = [tfq_utils::create_data_encoding_circuit(
201 4,
202 DataEncodingType::Angle,
203 )?];
204 println!(
205 " - Encoded {} data points to quantum circuits",
206 encoded_circuits.len()
207 );
208
209 // Step 11: Compare with TensorFlow classical model
210 println!("\n11. Comparing with TensorFlow classical equivalent...");
211
212 create_tensorflow_classical_model()?;
213 // let classical_accuracy = train_classical_tensorflow_model(classical_model, &quantum_dataset)?;
214 //
215 // let quantum_accuracy = evaluation_results.get("accuracy").unwrap_or(&0.0);
216 // println!(" - Quantum TFQ model accuracy: {:.3}", quantum_accuracy);
217 // println!(" - Classical TF model accuracy: {:.3}", classical_accuracy);
218 // println!(" - Quantum advantage: {:.3}", quantum_accuracy - classical_accuracy);
219 println!(" - Classical comparison placeholder completed");
220
221 // Step 12: Model export (TFQ format)
222 println!("\n12. Exporting model in TFQ format...");
223
224 // model.save_tfq_format("quantum_model_tfq.pb")?;
225 // println!(" - Model exported to: quantum_model_tfq.pb");
226 //
227 // // Export to TensorFlow SavedModel format
228 // model.export_savedmodel("quantum_model_savedmodel/")?;
229 // println!(" - SavedModel exported to: quantum_model_savedmodel/");
230 println!(" - Model export placeholder completed");
231
232 // Step 13: Advanced TFQ features
233 println!("\n13. Advanced TensorFlow Quantum features...");
234
235 // Quantum data augmentation
236 // let augmented_dataset = quantum_dataset.augment_with_noise(0.05)?;
237 // println!(" - Created augmented dataset with noise level 0.05");
238 //
239 // // Circuit optimization for hardware
240 // let optimized_circuits = tfq_utils::optimize_circuits_for_hardware(
241 // &circuits,
242 // HardwareType::IonQ
243 // )?;
244 // println!(" - Optimized {} circuits for IonQ hardware", optimized_circuits.len());
245 //
246 // // Barren plateau analysis
247 // let plateau_analysis = analyze_barren_plateaus(&model, &quantum_dataset)?;
248 // println!(" - Barren plateau risk: {:.3}", plateau_analysis.risk_score);
249 // println!(" - Recommended mitigation: {}", plateau_analysis.mitigation_strategy);
250 println!(" - Advanced features placeholder completed");
251
252 println!("\n=== TensorFlow Quantum Demo Complete ===");
253
254 Ok(())
255}
256
257fn create_tfq_circuits() -> Result<(Vec<Circuit<8>>, Vec<String>)> {
258 let mut circuits = Vec::new();
259 let mut symbols = Vec::new();
260
261 // Circuit 1: Basic parameterized circuit
262 let mut circuit1 = CircuitBuilder::new();
263 circuit1.ry(0, 0.0)?;
264 circuit1.ry(1, 0.0)?;
265 circuit1.cnot(0, 1)?;
266 circuit1.ry(2, 0.0)?;
267 circuit1.cnot(1, 2)?;
268 circuits.push(circuit1.build());
269 symbols.extend(vec![
270 "theta_0".to_string(),
271 "theta_1".to_string(),
272 "theta_2".to_string(),
273 ]);
274
275 // Circuit 2: Entangling circuit
276 let mut circuit2 = CircuitBuilder::new();
277 circuit2.h(0)?;
278 circuit2.cnot(0, 1)?;
279 circuit2.cnot(1, 2)?;
280 circuit2.cnot(2, 3)?;
281 circuit2.ry(0, 0.0)?;
282 circuit2.ry(1, 0.0)?;
283 circuits.push(circuit2.build());
284 symbols.extend(vec!["phi_0".to_string(), "phi_1".to_string()]);
285
286 // Circuit 3: Convolutional-style circuit
287 let mut circuit3 = CircuitBuilder::new();
288 circuit3.ry(0, 0.0)?;
289 circuit3.ry(1, 0.0)?;
290 circuit3.cnot(0, 1)?;
291 circuits.push(circuit3.build());
292 symbols.extend(vec!["alpha_0".to_string(), "alpha_1".to_string()]);
293
294 Ok((circuits, symbols))
295}
296
297fn create_tfq_quantum_dataset() -> Result<QuantumDataset> {
298 let num_samples = 1000;
299 let num_features = 4;
300
301 // Create classical data
302 let classical_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
303 let noise = fastrand::f64() * 0.1;
304 (i as f64).mul_add(0.01, j as f64 * 0.1).sin() + noise
305 });
306
307 // Create labels (binary classification)
308 let labels = Array1::from_shape_fn(num_samples, |i| {
309 let sum = (0..num_features)
310 .map(|j| classical_data[[i, j]])
311 .sum::<f64>();
312 if sum > 0.0 {
313 1.0
314 } else {
315 0.0
316 }
317 });
318
319 // Create quantum circuits for the dataset
320 let circuits =
321 vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
322 .into_iter()
323 .map(|dc| match dc {
324 DynamicCircuit::Circuit8(c) => c,
325 _ => panic!("Expected Circuit8"),
326 })
327 .collect();
328
329 // Create quantum dataset with angle encoding
330 QuantumDataset::new(
331 circuits,
332 classical_data,
333 labels,
334 32, // batch_size
335 )
336}
337
338fn create_tfq_test_dataset() -> Result<QuantumDataset> {
339 let num_samples = 200;
340 let num_features = 4;
341
342 let test_data = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
343 let noise = fastrand::f64() * 0.1;
344 (i as f64).mul_add(0.015, j as f64 * 0.12).sin() + noise
345 });
346
347 let test_labels = Array1::from_shape_fn(num_samples, |i| {
348 let sum = (0..num_features).map(|j| test_data[[i, j]]).sum::<f64>();
349 if sum > 0.0 {
350 1.0
351 } else {
352 0.0
353 }
354 });
355
356 // Create quantum circuits for the test dataset
357 let test_circuits =
358 vec![tfq_utils::create_data_encoding_circuit(4, DataEncodingType::Angle)?; num_samples]
359 .into_iter()
360 .map(|dc| match dc {
361 DynamicCircuit::Circuit8(c) => c,
362 _ => panic!("Expected Circuit8"),
363 })
364 .collect();
365
366 QuantumDataset::new(test_circuits, test_data, test_labels, 32)
367}
368
369fn compute_gradient_variance(gradients: &[f64]) -> f64 {
370 let mean = gradients.iter().sum::<f64>() / gradients.len() as f64;
371 let variance =
372 gradients.iter().map(|&x| (x - mean).powi(2)).sum::<f64>() / gradients.len() as f64;
373 variance
374}
375
376const fn create_tensorflow_classical_model() -> Result<()> {
377 // Placeholder for classical TensorFlow model creation
378 Ok(())
379}
380
381// Placeholder function for remaining code
382const fn placeholder_function() -> Result<()> {
383 // Ok(TensorFlowClassicalModel::new(vec![
384 // TFLayer::Dense { units: 8, activation: "relu" },
385 // TFLayer::Dense { units: 4, activation: "relu" },
386 // TFLayer::Dense { units: 2, activation: "softmax" },
387 // ]))
388 Ok(())
389}
390
391// fn train_classical_tensorflow_model(
392// mut model: TensorFlowClassicalModel,
393// dataset: &QuantumDataset
394// ) -> Result<f64> {
395// // Simplified classical training for comparison
396// model.compile("adam", "sparse_categorical_crossentropy", vec!["accuracy"])?;
397// let history = model.fit(dataset, 10, 0.2)?;
398// Ok(history.final_metric("val_accuracy"))
399// }
400
401fn analyze_barren_plateaus(
402 model: &TFQModel,
403 dataset: &QuantumDataset,
404) -> Result<BarrenPlateauAnalysis> {
405 // Analyze gradient variance across training
406 // let sample_batch = dataset.get_batch(0)?;
407 // let gradients = model.compute_parameter_shift_gradients(&sample_batch)?;
408 println!(" Sample batch and gradients placeholder");
409
410 // let variance = compute_gradient_variance(&gradients.quantum_gradients);
411 let variance = 0.001; // placeholder
412 let risk_score = if variance < 1e-6 {
413 0.9
414 } else if variance < 1e-3 {
415 0.5
416 } else {
417 0.1
418 };
419
420 let mitigation_strategy = if risk_score > 0.7 {
421 "Consider parameter initialization strategies or circuit pre-training".to_string()
422 } else if risk_score > 0.3 {
423 "Monitor gradient variance during training".to_string()
424 } else {
425 "Low barren plateau risk detected".to_string()
426 };
427
428 Ok(BarrenPlateauAnalysis {
429 risk_score,
430 gradient_variance: variance,
431 mitigation_strategy,
432 })
433}
434
435// Supporting structs and implementations (simplified for demo)
436struct BarrenPlateauAnalysis {
437 risk_score: f64,
438 gradient_variance: f64,
439 mitigation_strategy: String,
440}
441
442struct TensorFlowClassicalModel {
443 layers: Vec<TFLayer>,
444}
445
446impl TensorFlowClassicalModel {
447 const fn new(layers: Vec<TFLayer>) -> Self {
448 Self { layers }
449 }
450
451 fn compile(&mut self, _optimizer: &str, _loss: &str, _metrics: Vec<&str>) -> Result<()> {
452 Ok(())
453 }
454
455 fn fit(
456 &mut self,
457 _dataset: &QuantumDataset,
458 _epochs: usize,
459 _validation_split: f64,
460 ) -> Result<TrainingHistory> {
461 Ok(TrainingHistory::new())
462 }
463}
464
465enum TFLayer {
466 Dense {
467 units: usize,
468 activation: &'static str,
469 },
470}
471
472struct TrainingHistory {
473 metrics: HashMap<String, f64>,
474}
475
476impl TrainingHistory {
477 fn new() -> Self {
478 let mut metrics = HashMap::new();
479 metrics.insert("val_accuracy".to_string(), 0.75); // Mock value
480 Self { metrics }
481 }
482
483 fn final_metric(&self, metric: &str) -> f64 {
484 *self.metrics.get(metric).unwrap_or(&0.0)
485 }
486}
487
488enum HardwareType {
489 IonQ,
490 IBM,
491 Google,
492}
493
494enum ReductionType {
495 Mean,
496 Sum,
497 None,
498}