sklearn_pipeline_demo/
sklearn_pipeline_demo.rs

1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2//! Scikit-learn Compatible Quantum ML Pipeline Example
3//!
4//! This example demonstrates the scikit-learn compatibility layer, showing how to use
5//! quantum models with familiar sklearn APIs including pipelines, cross-validation, and grid search.
6
7use quantrs2_ml::prelude::*;
8use quantrs2_ml::sklearn_compatibility::{
9    metrics, model_selection, Pipeline, QuantumFeatureEncoder, SelectKBest, SklearnFit,
10    StandardScaler,
11};
12use scirs2_core::ndarray::{s, Array1, Array2, Axis};
13use scirs2_core::random::prelude::*;
14use std::collections::HashMap;
15
16#[allow(non_snake_case)]
17fn main() -> Result<()> {
18    println!("=== Scikit-learn Compatible Quantum ML Demo ===\n");
19
20    // Step 1: Create sklearn-style dataset
21    println!("1. Creating scikit-learn style dataset...");
22
23    let (X, y) = create_sklearn_dataset()?;
24    println!("   - Dataset shape: {:?}", X.dim());
25    println!(
26        "   - Labels: {} classes",
27        y.iter()
28            .map(|&x| x as i32)
29            .collect::<std::collections::HashSet<_>>()
30            .len()
31    );
32    println!(
33        "   - Feature range: [{:.3}, {:.3}]",
34        X.iter().fold(f64::INFINITY, |a, &b| a.min(b)),
35        X.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b))
36    );
37
38    // Step 2: Create sklearn-compatible quantum estimators
39    println!("\n2. Creating sklearn-compatible quantum estimators...");
40
41    // Quantum Support Vector Classifier
42    let qsvc = QuantumSVC::new();
43
44    // Quantum Multi-Layer Perceptron Classifier
45    let qmlp = QuantumMLPClassifier::new();
46
47    // Quantum K-Means Clustering
48    let mut qkmeans = QuantumKMeans::new(2); // n_clusters
49
50    println!("   - QuantumSVC: quantum kernel");
51    println!("   - QuantumMLP: multi-layer perceptron");
52    println!("   - QuantumKMeans: 2 clusters");
53
54    // Step 3: Create sklearn-style preprocessing pipeline
55    println!("\n3. Building sklearn-compatible preprocessing pipeline...");
56
57    let preprocessing_pipeline = Pipeline::new(vec![
58        ("scaler", Box::new(StandardScaler::new())),
59        (
60            "feature_selection",
61            Box::new(SelectKBest::new(
62                "quantum_mutual_info", // score_func
63                3,                     // k
64            )),
65        ),
66        (
67            "quantum_encoder",
68            Box::new(QuantumFeatureEncoder::new(
69                "angle", // encoding_type
70                "l2",    // normalization
71            )),
72        ),
73    ])?;
74
75    // Step 4: Create complete quantum ML pipeline
76    println!("\n4. Creating complete quantum ML pipeline...");
77
78    let quantum_pipeline = Pipeline::new(vec![
79        ("preprocessing", Box::new(preprocessing_pipeline)),
80        ("classifier", Box::new(qsvc)),
81    ])?;
82
83    println!("   Pipeline steps:");
84    for (i, step_name) in quantum_pipeline.named_steps().iter().enumerate() {
85        println!("   {}. {}", i + 1, step_name);
86    }
87
88    // Step 5: Train-test split (sklearn style)
89    println!("\n5. Performing train-test split...");
90
91    let (X_train, X_test, y_train, y_test) = model_selection::train_test_split(
92        &X,
93        &y,
94        0.3,      // test_size
95        Some(42), // random_state
96    )?;
97
98    println!("   - Training set: {:?}", X_train.dim());
99    println!("   - Test set: {:?}", X_test.dim());
100
101    // Step 6: Cross-validation with quantum models
102    println!("\n6. Performing cross-validation...");
103
104    let mut pipeline_clone = quantum_pipeline.clone();
105    let cv_scores = model_selection::cross_val_score(
106        &mut pipeline_clone,
107        &X_train,
108        &y_train,
109        5, // cv
110    )?;
111
112    println!("   Cross-validation scores: {cv_scores:?}");
113    println!(
114        "   Mean CV accuracy: {:.3} (+/- {:.3})",
115        cv_scores.mean().unwrap(),
116        cv_scores.std(0.0) * 2.0
117    );
118
119    // Step 7: Hyperparameter grid search
120    println!("\n7. Hyperparameter optimization with GridSearchCV...");
121
122    let param_grid = HashMap::from([
123        (
124            "classifier__C".to_string(),
125            vec!["0.1".to_string(), "1.0".to_string(), "10.0".to_string()],
126        ),
127        (
128            "classifier__feature_map_depth".to_string(),
129            vec!["1".to_string(), "2".to_string(), "3".to_string()],
130        ),
131        (
132            "preprocessing__feature_selection__k".to_string(),
133            vec!["2".to_string(), "3".to_string(), "4".to_string()],
134        ),
135    ]);
136
137    let mut grid_search = model_selection::GridSearchCV::new(
138        quantum_pipeline, // estimator
139        param_grid,
140        3, // cv
141    );
142
143    grid_search.fit(&X_train, &y_train)?;
144
145    println!("   Best parameters: {:?}", grid_search.best_params_);
146    println!(
147        "   Best cross-validation score: {:.3}",
148        grid_search.best_score_
149    );
150
151    // Step 8: Train best model and evaluate
152    println!("\n8. Training best model and evaluation...");
153
154    let best_model = grid_search.best_estimator_;
155    let y_pred = best_model.predict(&X_test)?;
156
157    // Calculate metrics using sklearn-style functions
158    let y_test_int = y_test.mapv(|x| x.round() as i32);
159    let accuracy = metrics::accuracy_score(&y_test_int, &y_pred);
160    let precision = metrics::precision_score(&y_test_int, &y_pred, "weighted"); // average
161    let recall = metrics::recall_score(&y_test_int, &y_pred, "weighted"); // average
162    let f1 = metrics::f1_score(&y_test_int, &y_pred, "weighted"); // average
163
164    println!("   Test Results:");
165    println!("   - Accuracy: {accuracy:.3}");
166    println!("   - Precision: {precision:.3}");
167    println!("   - Recall: {recall:.3}");
168    println!("   - F1-score: {f1:.3}");
169
170    // Step 9: Classification report
171    println!("\n9. Detailed classification report...");
172
173    let classification_report = metrics::classification_report(
174        &y_test_int,
175        &y_pred,
176        vec!["Class 0", "Class 1"], // target_names
177        3,                          // digits
178    );
179    println!("{classification_report}");
180
181    // Step 10: Feature importance analysis
182    println!("\n10. Feature importance analysis...");
183
184    if let Some(feature_importances) = best_model.feature_importances() {
185        println!("    Quantum Feature Importances:");
186        for (i, importance) in feature_importances.iter().enumerate() {
187            println!("    - Feature {i}: {importance:.4}");
188        }
189    }
190
191    // Step 11: Model comparison with classical sklearn models
192    println!("\n11. Comparing with classical sklearn models...");
193
194    let classical_models = vec![
195        (
196            "Logistic Regression",
197            Box::new(LogisticRegression::new()) as Box<dyn SklearnClassifier>,
198        ),
199        (
200            "Random Forest",
201            Box::new(RandomForestClassifier::new()) as Box<dyn SklearnClassifier>,
202        ),
203        ("SVM", Box::new(SVC::new()) as Box<dyn SklearnClassifier>),
204    ];
205
206    let mut comparison_results = Vec::new();
207
208    for (name, mut model) in classical_models {
209        model.fit(&X_train, Some(&y_train))?;
210        let y_pred_classical = model.predict(&X_test)?;
211        let classical_accuracy = metrics::accuracy_score(&y_test_int, &y_pred_classical);
212        comparison_results.push((name, classical_accuracy));
213    }
214
215    println!("    Model Comparison:");
216    println!("    - Quantum Pipeline: {accuracy:.3}");
217    for (name, classical_accuracy) in comparison_results {
218        println!("    - {name}: {classical_accuracy:.3}");
219    }
220
221    // Step 12: Clustering with quantum K-means
222    println!("\n12. Quantum clustering analysis...");
223
224    let cluster_labels = qkmeans.fit_predict(&X)?;
225    let silhouette_score = metrics::silhouette_score(&X, &cluster_labels, "euclidean"); // metric
226    let calinski_score = metrics::calinski_harabasz_score(&X, &cluster_labels);
227
228    println!("    Clustering Results:");
229    println!("    - Silhouette Score: {silhouette_score:.3}");
230    println!("    - Calinski-Harabasz Score: {calinski_score:.3}");
231    println!(
232        "    - Unique clusters found: {}",
233        cluster_labels
234            .iter()
235            .collect::<std::collections::HashSet<_>>()
236            .len()
237    );
238
239    // Step 13: Model persistence (sklearn style)
240    println!("\n13. Model persistence (sklearn joblib style)...");
241
242    // Save model
243    best_model.save("quantum_sklearn_model.joblib")?;
244    println!("    - Model saved to: quantum_sklearn_model.joblib");
245
246    // Load model
247    let loaded_model = QuantumSVC::load("quantum_sklearn_model.joblib")?;
248    let test_subset = X_test.slice(s![..5, ..]).to_owned();
249    let y_pred_loaded = loaded_model.predict(&test_subset)?;
250    println!("    - Model loaded and tested on 5 samples");
251
252    // Step 14: Advanced sklearn utilities
253    println!("\n14. Advanced sklearn utilities...");
254
255    // Learning curves (commented out - function not available)
256    // let (train_sizes, train_scores, val_scores) = model_selection::learning_curve(...)?;
257    println!("    Learning Curve Analysis: (Mock results)");
258    let train_sizes = [0.1, 0.33, 0.55, 0.78, 1.0];
259    let train_scores = [0.65, 0.72, 0.78, 0.82, 0.85];
260    let val_scores = [0.62, 0.70, 0.76, 0.79, 0.81];
261
262    for (i, &size) in train_sizes.iter().enumerate() {
263        println!(
264            "    - {:.0}% data: train={:.3}, val={:.3}",
265            size * 100.0,
266            train_scores[i],
267            val_scores[i]
268        );
269    }
270
271    // Validation curves (commented out - function not available)
272    // let (train_scores_val, test_scores_val) = model_selection::validation_curve(...)?;
273    println!("    Validation Curve (C parameter): (Mock results)");
274    let param_range = [0.1, 0.5, 1.0, 2.0, 5.0];
275    let train_scores_val = [0.70, 0.75, 0.80, 0.78, 0.75];
276    let test_scores_val = [0.68, 0.73, 0.78, 0.76, 0.72];
277
278    for (i, &param_value) in param_range.iter().enumerate() {
279        println!(
280            "    - C={}: train={:.3}, test={:.3}",
281            param_value, train_scores_val[i], test_scores_val[i]
282        );
283    }
284
285    // Step 15: Quantum-specific sklearn extensions
286    println!("\n15. Quantum-specific sklearn extensions...");
287
288    // Quantum feature analysis
289    let quantum_feature_analysis = analyze_quantum_features(&best_model, &X_test)?;
290    println!("    Quantum Feature Analysis:");
291    println!(
292        "    - Quantum advantage score: {:.3}",
293        quantum_feature_analysis.advantage_score
294    );
295    println!(
296        "    - Feature entanglement: {:.3}",
297        quantum_feature_analysis.entanglement_measure
298    );
299    println!(
300        "    - Circuit depth efficiency: {:.3}",
301        quantum_feature_analysis.circuit_efficiency
302    );
303
304    // Quantum model interpretation
305    let sample_row = X_test.row(0).to_owned();
306    let quantum_interpretation = interpret_quantum_model(&best_model, &sample_row)?;
307    println!("    Quantum Model Interpretation (sample 0):");
308    println!(
309        "    - Quantum state fidelity: {:.3}",
310        quantum_interpretation.state_fidelity
311    );
312    println!(
313        "    - Feature contributions: {:?}",
314        quantum_interpretation.feature_contributions
315    );
316
317    println!("\n=== Scikit-learn Integration Demo Complete ===");
318
319    Ok(())
320}
321
322#[allow(non_snake_case)]
323fn create_sklearn_dataset() -> Result<(Array2<f64>, Array1<f64>)> {
324    let num_samples = 300;
325    let num_features = 4;
326
327    // Create a dataset similar to sklearn's make_classification
328    let X = Array2::from_shape_fn((num_samples, num_features), |(i, j)| {
329        let base = (i as f64).mul_add(0.02, j as f64 * 0.5);
330        let noise = fastrand::f64().mul_add(0.3, -0.15);
331        base.sin() + noise
332    });
333
334    // Create separable classes
335    let y = Array1::from_shape_fn(num_samples, |i| {
336        let feature_sum = (0..num_features).map(|j| X[[i, j]]).sum::<f64>();
337        if feature_sum > 0.0 {
338            1.0
339        } else {
340            0.0
341        }
342    });
343
344    Ok((X, y))
345}
346
347#[allow(non_snake_case)] // X is standard ML convention for feature matrix
348fn analyze_quantum_features(
349    model: &dyn SklearnClassifier,
350    X: &Array2<f64>,
351) -> Result<QuantumFeatureAnalysis> {
352    // Analyze quantum-specific properties
353    let predictions_quantum = model.predict(X)?;
354
355    // Create classical baseline for comparison
356    let mut classical_model = LogisticRegression::new();
357    SklearnFit::fit(
358        &mut classical_model,
359        X,
360        &predictions_quantum.mapv(f64::from),
361    )?; // Use quantum predictions as targets
362    let predictions_classical = classical_model.predict(X)?;
363
364    // Calculate quantum advantage score
365    let advantage_score = predictions_quantum
366        .iter()
367        .zip(predictions_classical.iter())
368        .map(|(&q, &c)| (f64::from(q) - f64::from(c)).abs())
369        .sum::<f64>()
370        / predictions_quantum.len() as f64;
371
372    Ok(QuantumFeatureAnalysis {
373        advantage_score,
374        entanglement_measure: 0.75, // Mock value
375        circuit_efficiency: 0.85,   // Mock value
376    })
377}
378
379fn interpret_quantum_model(
380    model: &dyn SklearnClassifier,
381    sample: &Array1<f64>,
382) -> Result<QuantumInterpretation> {
383    // Quantum model interpretation
384    let prediction = model.predict(&sample.clone().insert_axis(Axis(0)))?;
385
386    Ok(QuantumInterpretation {
387        state_fidelity: 0.92,                            // Mock value
388        feature_contributions: vec![0.3, 0.2, 0.4, 0.1], // Mock values
389        prediction: f64::from(prediction[0]),
390    })
391}
392
393// Supporting structures and trait implementations
394
395struct QuantumFeatureAnalysis {
396    advantage_score: f64,
397    entanglement_measure: f64,
398    circuit_efficiency: f64,
399}
400
401struct QuantumInterpretation {
402    state_fidelity: f64,
403    feature_contributions: Vec<f64>,
404    prediction: f64,
405}
406
407// Mock implementations for classical sklearn models
408struct LogisticRegression {
409    fitted: bool,
410}
411
412impl LogisticRegression {
413    const fn new() -> Self {
414        Self { fitted: false }
415    }
416}
417
418#[allow(non_snake_case)]
419impl SklearnEstimator for LogisticRegression {
420    fn fit(&mut self, _X: &Array2<f64>, _y: Option<&Array1<f64>>) -> Result<()> {
421        self.fitted = true;
422        Ok(())
423    }
424
425    fn get_params(&self) -> HashMap<String, String> {
426        HashMap::new()
427    }
428
429    fn set_params(&mut self, _params: HashMap<String, String>) -> Result<()> {
430        Ok(())
431    }
432
433    fn is_fitted(&self) -> bool {
434        self.fitted
435    }
436}
437
438#[allow(non_snake_case)]
439impl SklearnClassifier for LogisticRegression {
440    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
441        if !self.fitted {
442            return Err(MLError::InvalidConfiguration(
443                "Model not fitted".to_string(),
444            ));
445        }
446        // Mock predictions
447        Ok(Array1::from_shape_fn(X.nrows(), |i| i32::from(i % 2 == 0)))
448    }
449
450    fn predict_proba(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
451        Ok(Array2::from_shape_fn((X.nrows(), 2), |(i, j)| {
452            if j == 0 {
453                0.3
454            } else {
455                0.7
456            }
457        }))
458    }
459
460    fn classes(&self) -> &[i32] {
461        &[0, 1]
462    }
463}
464
465#[allow(non_snake_case)]
466impl SklearnFit for LogisticRegression {
467    fn fit(&mut self, _X: &Array2<f64>, _y: &Array1<f64>) -> Result<()> {
468        self.fitted = true;
469        Ok(())
470    }
471}
472
473struct RandomForestClassifier {
474    fitted: bool,
475}
476
477impl RandomForestClassifier {
478    const fn new() -> Self {
479        Self { fitted: false }
480    }
481}
482
483#[allow(non_snake_case)]
484impl SklearnEstimator for RandomForestClassifier {
485    fn fit(&mut self, _X: &Array2<f64>, _y: Option<&Array1<f64>>) -> Result<()> {
486        self.fitted = true;
487        Ok(())
488    }
489
490    fn get_params(&self) -> HashMap<String, String> {
491        HashMap::new()
492    }
493
494    fn set_params(&mut self, _params: HashMap<String, String>) -> Result<()> {
495        Ok(())
496    }
497
498    fn is_fitted(&self) -> bool {
499        self.fitted
500    }
501}
502
503#[allow(non_snake_case)]
504impl SklearnClassifier for RandomForestClassifier {
505    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
506        if !self.fitted {
507            return Err(MLError::InvalidConfiguration(
508                "Model not fitted".to_string(),
509            ));
510        }
511        // Mock predictions with higher accuracy
512        Ok(Array1::from_shape_fn(X.nrows(), |i| {
513            i32::from((i * 3) % 4 != 0)
514        }))
515    }
516
517    fn predict_proba(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
518        Ok(Array2::from_shape_fn((X.nrows(), 2), |(i, j)| {
519            if j == 0 {
520                0.4
521            } else {
522                0.6
523            }
524        }))
525    }
526
527    fn classes(&self) -> &[i32] {
528        &[0, 1]
529    }
530}
531
532#[allow(non_snake_case)]
533impl SklearnFit for RandomForestClassifier {
534    fn fit(&mut self, _X: &Array2<f64>, _y: &Array1<f64>) -> Result<()> {
535        self.fitted = true;
536        Ok(())
537    }
538}
539
540struct SVC {
541    fitted: bool,
542}
543
544impl SVC {
545    const fn new() -> Self {
546        Self { fitted: false }
547    }
548}
549
550#[allow(non_snake_case)]
551impl SklearnEstimator for SVC {
552    fn fit(&mut self, _X: &Array2<f64>, _y: Option<&Array1<f64>>) -> Result<()> {
553        self.fitted = true;
554        Ok(())
555    }
556
557    fn get_params(&self) -> HashMap<String, String> {
558        HashMap::new()
559    }
560
561    fn set_params(&mut self, _params: HashMap<String, String>) -> Result<()> {
562        Ok(())
563    }
564
565    fn is_fitted(&self) -> bool {
566        self.fitted
567    }
568}
569
570#[allow(non_snake_case)]
571impl SklearnClassifier for SVC {
572    fn predict(&self, X: &Array2<f64>) -> Result<Array1<i32>> {
573        if !self.fitted {
574            return Err(MLError::InvalidConfiguration(
575                "Model not fitted".to_string(),
576            ));
577        }
578        // Mock predictions
579        Ok(Array1::from_shape_fn(X.nrows(), |i| i32::from(i % 3 != 0)))
580    }
581
582    fn predict_proba(&self, X: &Array2<f64>) -> Result<Array2<f64>> {
583        Ok(Array2::from_shape_fn((X.nrows(), 2), |(i, j)| {
584            if j == 0 {
585                0.35
586            } else {
587                0.65
588            }
589        }))
590    }
591
592    fn classes(&self) -> &[i32] {
593        &[0, 1]
594    }
595}
596
597#[allow(non_snake_case)]
598impl SklearnFit for SVC {
599    fn fit(&mut self, _X: &Array2<f64>, _y: &Array1<f64>) -> Result<()> {
600        self.fitted = true;
601        Ok(())
602    }
603}