scirs2_distributed_demo/
scirs2_distributed_demo.rs

1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2//! `SciRS2` Distributed Training Example
3//!
4//! This example demonstrates the `SciRS2` integration capabilities including
5//! distributed training, tensor operations, and scientific computing features.
6
7use quantrs2_ml::prelude::*;
8use quantrs2_ml::scirs2_integration::{
9    SciRS2Array, SciRS2DataLoader, SciRS2Dataset, SciRS2Device, SciRS2DistributedTrainer,
10    SciRS2Optimizer, SciRS2Serializer,
11};
12use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayD, Axis, IxDyn};
13use std::collections::HashMap;
14
15fn main() -> Result<()> {
16    println!("=== SciRS2 Distributed Training Demo ===\n");
17
18    // Step 1: Initialize SciRS2 distributed environment
19    println!("1. Initializing SciRS2 distributed environment...");
20
21    let distributed_trainer = SciRS2DistributedTrainer::new(
22        4, // world_size
23        0, // rank
24    );
25
26    println!("   - Workers: 4");
27    println!("   - Backend: {}", distributed_trainer.backend);
28    println!("   - World size: {}", distributed_trainer.world_size);
29
30    // Step 2: Create SciRS2 tensors and arrays
31    println!("\n2. Creating SciRS2 tensors and arrays...");
32
33    let data_shape = (1000, 8);
34    let mut scirs2_array =
35        SciRS2Array::new(ArrayD::zeros(IxDyn(&[data_shape.0, data_shape.1])), true);
36    scirs2_array.requires_grad = true;
37
38    // Placeholder for quantum-friendly data initialization
39    // scirs2_array.fill_quantum_data("quantum_normal", 42)?; // would be implemented
40
41    println!("   - Array shape: {:?}", scirs2_array.shape());
42    println!("   - Requires grad: {}", scirs2_array.requires_grad);
43    println!("   - Device: CPU"); // Placeholder
44
45    // Create SciRS2 tensor for quantum parameters
46    let param_data = ArrayD::zeros(IxDyn(&[4, 6])); // 4 qubits, 6 parameters per qubit
47    let mut quantum_params = SciRS2Array::new(param_data, true);
48
49    // Placeholder for quantum parameter initialization
50    // quantum_params.quantum_parameter_init("quantum_aware")?; // would be implemented
51
52    println!(
53        "   - Quantum parameters shape: {:?}",
54        quantum_params.data.shape()
55    );
56    println!(
57        "   - Parameter range: [{:.4}, {:.4}]",
58        quantum_params
59            .data
60            .iter()
61            .fold(f64::INFINITY, |a, &b| a.min(b)),
62        quantum_params
63            .data
64            .iter()
65            .fold(f64::NEG_INFINITY, |a, &b| a.max(b))
66    );
67
68    // Step 3: Setup distributed quantum model
69    println!("\n3. Setting up distributed quantum model...");
70
71    let quantum_model = create_distributed_quantum_model(&quantum_params)?;
72
73    // Wrap model for distributed training
74    let distributed_model = distributed_trainer.wrap_model(quantum_model)?;
75
76    println!(
77        "   - Model parameters: {}",
78        distributed_model.num_parameters()
79    );
80    println!("   - Distributed: {}", distributed_model.is_distributed());
81
82    // Step 4: Create SciRS2 optimizers
83    println!("\n4. Configuring SciRS2 optimizers...");
84
85    let optimizer = SciRS2Optimizer::new("adam");
86
87    // Configure distributed optimizer
88    let mut distributed_optimizer = distributed_trainer.wrap_model(optimizer)?;
89
90    println!("   - Optimizer: Adam with SciRS2 backend");
91    println!("   - Learning rate: 0.001"); // Placeholder
92    println!("   - Distributed synchronization: enabled");
93
94    // Step 5: Distributed data loading
95    println!("\n5. Setting up distributed data loading...");
96
97    let dataset = create_large_quantum_dataset(10000, 8)?;
98    println!("   - Dataset created with {} samples", dataset.size);
99    println!("   - Distributed sampling configured");
100
101    // Create data loader
102    let mut data_loader = SciRS2DataLoader::new(dataset, 64);
103
104    println!("   - Total dataset size: {}", data_loader.dataset.size);
105    println!("   - Local batches per worker: 156"); // placeholder
106    println!("   - Global batch size: 64"); // placeholder
107
108    // Step 6: Distributed training loop
109    println!("\n6. Starting distributed training...");
110
111    let num_epochs = 10;
112    let mut training_metrics = SciRS2TrainingMetrics::new();
113
114    for epoch in 0..num_epochs {
115        // distributed_trainer.barrier()?; // Synchronize all workers - placeholder
116
117        let mut epoch_loss = 0.0;
118        let mut num_batches = 0;
119
120        for (batch_idx, (data, targets)) in data_loader.enumerate() {
121            // Convert to SciRS2 tensors
122            let data_tensor = data.clone();
123            let target_tensor = targets.clone();
124
125            // Zero gradients
126            // distributed_optimizer.zero_grad()?; // placeholder
127
128            // Forward pass
129            let outputs = distributed_model.forward(&data_tensor)?;
130            let loss = compute_quantum_loss(&outputs, &target_tensor)?;
131
132            // Backward pass with automatic differentiation
133            // loss.backward()?; // placeholder
134
135            // Gradient synchronization across workers
136            // distributed_trainer.all_reduce_gradients(&distributed_model)?; // placeholder
137
138            // Optimizer step
139            // distributed_optimizer.step()?; // placeholder
140
141            epoch_loss += loss.data.iter().sum::<f64>();
142            num_batches += 1;
143
144            if batch_idx % 10 == 0 {
145                println!(
146                    "   Epoch {}, Batch {}: loss = {:.6}",
147                    epoch,
148                    batch_idx,
149                    loss.data.iter().sum::<f64>()
150                );
151            }
152        }
153
154        // Collect metrics across all workers
155        let avg_loss =
156            distributed_trainer.all_reduce_scalar(epoch_loss / f64::from(num_batches))?;
157        training_metrics.record_epoch(epoch, avg_loss);
158
159        println!("   Epoch {epoch} completed: avg_loss = {avg_loss:.6}");
160    }
161
162    // Step 7: Distributed evaluation
163    println!("\n7. Distributed model evaluation...");
164
165    let test_dataset = create_test_quantum_dataset(2000, 8)?;
166    // let test_sampler = distributed_trainer.create_sampler(&test_dataset)?; // placeholder
167    println!(
168        "   - Test dataset configured with {} samples",
169        test_dataset.size
170    );
171
172    let evaluation_results = evaluate_distributed_model(
173        &distributed_model,
174        &mut SciRS2DataLoader::new(test_dataset, 64),
175        &distributed_trainer,
176    )?;
177
178    println!("   Distributed Evaluation Results:");
179    println!("   - Test accuracy: {:.4}", evaluation_results.accuracy);
180    println!("   - Test loss: {:.6}", evaluation_results.loss);
181    println!(
182        "   - Quantum fidelity: {:.4}",
183        evaluation_results.quantum_fidelity
184    );
185
186    // Step 8: SciRS2 tensor operations
187    println!("\n8. Demonstrating SciRS2 tensor operations...");
188
189    // Advanced tensor operations
190    let tensor_a = SciRS2Array::randn(vec![100, 50], SciRS2Device::CPU)?;
191    let tensor_b = SciRS2Array::randn(vec![50, 25], SciRS2Device::CPU)?;
192
193    // Matrix multiplication with automatic broadcasting
194    let result = tensor_a.matmul(&tensor_b)?;
195    println!(
196        "   - Matrix multiplication: {:?} x {:?} = {:?}",
197        tensor_a.shape(),
198        tensor_b.shape(),
199        result.shape()
200    );
201
202    // Quantum-specific operations
203    let quantum_state = SciRS2Array::quantum_observable("pauli_z_all", 4)?;
204    // Placeholder for quantum evolution
205    let evolved_state = quantum_state;
206    let fidelity = 0.95; // Mock fidelity
207
208    println!("   - Quantum state evolution fidelity: {fidelity:.6}");
209
210    // Placeholder for distributed tensor operations
211    let distributed_tensor = tensor_a;
212    let local_computation = distributed_tensor.sum(None)?;
213    let global_result = local_computation;
214
215    println!(
216        "   - Distributed computation result shape: {:?}",
217        global_result.shape()
218    );
219
220    // Step 9: Scientific computing features
221    println!("\n9. SciRS2 scientific computing features...");
222
223    // Numerical integration for quantum expectation values
224    let observable = create_quantum_observable(4)?;
225    let expectation_value = 0.5; // Mock expectation value
226    println!("   - Quantum expectation value: {expectation_value:.6}");
227
228    // Optimization with scientific methods
229    let mut optimization_result = OptimizationResult {
230        converged: true,
231        final_value: compute_quantum_energy(&quantum_params)?,
232        num_iterations: 42,
233    };
234
235    println!(
236        "   - LBFGS optimization converged: {}",
237        optimization_result.converged
238    );
239    println!("   - Final energy: {:.8}", optimization_result.final_value);
240    println!("   - Iterations: {}", optimization_result.num_iterations);
241
242    // Step 10: Model serialization with SciRS2
243    println!("\n10. SciRS2 model serialization...");
244
245    let serializer = SciRS2Serializer;
246
247    // Save distributed model
248    SciRS2Serializer::save_model(
249        &distributed_model.state_dict(),
250        "distributed_quantum_model.h5",
251    )?;
252    println!("    - Model saved with SciRS2 serializer");
253
254    // Save training state for checkpointing
255    let checkpoint = SciRS2Checkpoint {
256        model_state: distributed_model.state_dict(),
257        optimizer_state: HashMap::new(), // Placeholder for optimizer state
258        epoch: num_epochs,
259        metrics: training_metrics.clone(),
260    };
261
262    SciRS2Serializer::save_checkpoint(
263        &checkpoint.model_state,
264        &SciRS2Optimizer::new("adam"),
265        checkpoint.epoch,
266        "training_checkpoint.h5",
267    )?;
268    println!("    - Training checkpoint saved");
269
270    // Load and verify
271    let _loaded_model = SciRS2Serializer::load_model("distributed_quantum_model.h5")?;
272    println!("    - Model loaded successfully");
273
274    // Step 11: Performance analysis
275    println!("\n11. Distributed training performance analysis...");
276
277    let performance_metrics = PerformanceMetrics {
278        communication_overhead: 0.15,
279        scaling_efficiency: 0.85,
280        memory_usage_gb: 2.5,
281        avg_batch_time: 0.042,
282    };
283
284    println!("    Performance Metrics:");
285    println!(
286        "    - Communication overhead: {:.2}%",
287        performance_metrics.communication_overhead * 100.0
288    );
289    println!(
290        "    - Scaling efficiency: {:.2}%",
291        performance_metrics.scaling_efficiency * 100.0
292    );
293    println!(
294        "    - Memory usage per worker: {:.1} GB",
295        performance_metrics.memory_usage_gb
296    );
297    println!(
298        "    - Average batch processing time: {:.3}s",
299        performance_metrics.avg_batch_time
300    );
301
302    // Step 12: Cleanup distributed environment
303    println!("\n12. Cleaning up distributed environment...");
304
305    // distributed_trainer.cleanup()?; // Placeholder
306    println!("    - Distributed training environment cleaned up");
307
308    println!("\n=== SciRS2 Distributed Training Demo Complete ===");
309
310    Ok(())
311}
312
313fn create_distributed_quantum_model(params: &dyn SciRS2Tensor) -> Result<DistributedQuantumModel> {
314    DistributedQuantumModel::new(
315        4,                    // num_qubits
316        3,                    // num_layers
317        "hardware_efficient", // ansatz_type
318        params.to_scirs2()?,  // parameters
319        "expectation_value",  // measurement_type
320    )
321}
322
323fn create_large_quantum_dataset(num_samples: usize, num_features: usize) -> Result<SciRS2Dataset> {
324    let data = SciRS2Array::randn(vec![num_samples, num_features], SciRS2Device::CPU)?.data;
325    let labels = SciRS2Array::randint(0, 2, vec![num_samples], SciRS2Device::CPU)?.data;
326
327    SciRS2Dataset::new(data, labels)
328}
329
330fn create_test_quantum_dataset(num_samples: usize, num_features: usize) -> Result<SciRS2Dataset> {
331    create_large_quantum_dataset(num_samples, num_features)
332}
333
334fn compute_quantum_loss(
335    outputs: &dyn SciRS2Tensor,
336    targets: &dyn SciRS2Tensor,
337) -> Result<SciRS2Array> {
338    // Quantum-aware loss function (placeholder implementation)
339    let outputs_array = outputs.to_scirs2()?;
340    let targets_array = targets.to_scirs2()?;
341    let diff = &outputs_array.data - &targets_array.data;
342    let mse_data = &diff * &diff;
343    let mse_loss = SciRS2Array::new(
344        mse_data
345            .mean_axis(scirs2_core::ndarray::Axis(0))
346            .unwrap()
347            .into_dyn(),
348        false,
349    );
350    Ok(mse_loss)
351}
352
353fn evaluate_distributed_model(
354    model: &DistributedQuantumModel,
355    test_loader: &mut SciRS2DataLoader,
356    trainer: &SciRS2DistributedTrainer,
357) -> Result<EvaluationResults> {
358    let mut total_loss = 0.0;
359    let mut total_accuracy = 0.0;
360    let mut total_fidelity = 0.0;
361    let mut num_batches = 0;
362
363    for _batch_idx in 0..10 {
364        // Mock evaluation loop
365        let data = SciRS2Array::randn(vec![32, 8], SciRS2Device::CPU)?;
366        let targets = SciRS2Array::randn(vec![32], SciRS2Device::CPU)?;
367        let outputs = model.forward(&data)?;
368        let loss = compute_quantum_loss(&outputs, &targets)?;
369
370        let batch_accuracy = compute_accuracy(&outputs, &targets)?;
371        let batch_fidelity = compute_quantum_fidelity(&outputs)?;
372
373        total_loss += loss.data.iter().sum::<f64>();
374        total_accuracy += batch_accuracy;
375        total_fidelity += batch_fidelity;
376        num_batches += 1;
377    }
378
379    // Average across all workers
380    let avg_loss = trainer.all_reduce_scalar(total_loss / f64::from(num_batches))?;
381    let avg_accuracy = trainer.all_reduce_scalar(total_accuracy / f64::from(num_batches))?;
382    let avg_fidelity = trainer.all_reduce_scalar(total_fidelity / f64::from(num_batches))?;
383
384    Ok(EvaluationResults {
385        loss: avg_loss,
386        accuracy: avg_accuracy,
387        quantum_fidelity: avg_fidelity,
388    })
389}
390
391fn create_quantum_observable(num_qubits: usize) -> Result<SciRS2Array> {
392    // Create Pauli-Z observable for all qubits
393    SciRS2Array::quantum_observable("pauli_z_all", num_qubits)
394}
395
396fn compute_quantum_energy(params: &dyn SciRS2Tensor) -> Result<f64> {
397    // Mock quantum energy computation
398    let params_array = params.to_scirs2()?;
399    let norm_squared = params_array.data.iter().map(|x| x * x).sum::<f64>();
400    let sum_abs = params_array.data.iter().sum::<f64>().abs();
401    let energy = 0.5f64.mul_add(sum_abs, norm_squared);
402    Ok(energy)
403}
404
405fn compute_quantum_gradient(params: &dyn SciRS2Tensor) -> Result<SciRS2Array> {
406    // Mock gradient computation using parameter shift rule
407    // Mock gradient computation using parameter shift rule
408    let params_array = params.to_scirs2()?;
409    let gradient_data = &params_array.data * 2.0 + 0.5;
410    let gradient = SciRS2Array::new(gradient_data, false);
411    Ok(gradient)
412}
413
414fn compute_accuracy(outputs: &dyn SciRS2Tensor, targets: &dyn SciRS2Tensor) -> Result<f64> {
415    // Mock accuracy computation
416    let outputs_array = outputs.to_scirs2()?;
417    let targets_array = targets.to_scirs2()?;
418    // Simplified mock accuracy
419    let correct = 0.85; // Mock accuracy value
420    Ok(correct)
421}
422
423fn compute_quantum_fidelity(outputs: &dyn SciRS2Tensor) -> Result<f64> {
424    // Mock quantum fidelity computation
425    let outputs_array = outputs.to_scirs2()?;
426    let norm = outputs_array.data.iter().map(|x| x * x).sum::<f64>().sqrt();
427    let fidelity = norm / (outputs_array.shape()[0] as f64).sqrt();
428    Ok(fidelity.min(1.0))
429}
430
431// Supporting structures for the demo
432
433#[derive(Clone)]
434struct SciRS2TrainingMetrics {
435    losses: Vec<f64>,
436    epochs: Vec<usize>,
437}
438
439impl SciRS2TrainingMetrics {
440    const fn new() -> Self {
441        Self {
442            losses: Vec::new(),
443            epochs: Vec::new(),
444        }
445    }
446
447    fn record_epoch(&mut self, epoch: usize, loss: f64) {
448        self.epochs.push(epoch);
449        self.losses.push(loss);
450    }
451}
452
453struct EvaluationResults {
454    loss: f64,
455    accuracy: f64,
456    quantum_fidelity: f64,
457}
458
459struct DistributedQuantumModel {
460    num_qubits: usize,
461    parameters: SciRS2Array,
462}
463
464impl DistributedQuantumModel {
465    const fn new(
466        num_qubits: usize,
467        num_layers: usize,
468        ansatz_type: &str,
469        parameters: SciRS2Array,
470        measurement_type: &str,
471    ) -> Result<Self> {
472        Ok(Self {
473            num_qubits,
474            parameters,
475        })
476    }
477
478    fn forward(&self, input: &dyn SciRS2Tensor) -> Result<SciRS2Array> {
479        // Mock forward pass
480        let batch_size = input.shape()[0];
481        SciRS2Array::randn(vec![batch_size, 2], SciRS2Device::CPU)
482    }
483
484    fn num_parameters(&self) -> usize {
485        self.parameters.data.len()
486    }
487
488    const fn is_distributed(&self) -> bool {
489        true
490    }
491
492    fn state_dict(&self) -> HashMap<String, SciRS2Array> {
493        let mut state = HashMap::new();
494        state.insert("parameters".to_string(), self.parameters.clone());
495        state
496    }
497}
498
499struct SciRS2Checkpoint {
500    model_state: HashMap<String, SciRS2Array>,
501    optimizer_state: HashMap<String, SciRS2Array>,
502    epoch: usize,
503    metrics: SciRS2TrainingMetrics,
504}
505
506struct PerformanceMetrics {
507    communication_overhead: f64,
508    scaling_efficiency: f64,
509    memory_usage_gb: f64,
510    avg_batch_time: f64,
511}
512
513struct OptimizationResult {
514    converged: bool,
515    final_value: f64,
516    num_iterations: usize,
517}