1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2use quantrs2_ml::prelude::*;
8use quantrs2_ml::scirs2_integration::{
9 SciRS2Array, SciRS2DataLoader, SciRS2Dataset, SciRS2Device, SciRS2DistributedTrainer,
10 SciRS2Optimizer, SciRS2Serializer,
11};
12use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayD, Axis, IxDyn};
13use std::collections::HashMap;
14
15fn main() -> Result<()> {
16 println!("=== SciRS2 Distributed Training Demo ===\n");
17
18 println!("1. Initializing SciRS2 distributed environment...");
20
21 let distributed_trainer = SciRS2DistributedTrainer::new(
22 4, 0, );
25
26 println!(" - Workers: 4");
27 println!(" - Backend: {}", distributed_trainer.backend);
28 println!(" - World size: {}", distributed_trainer.world_size);
29
30 println!("\n2. Creating SciRS2 tensors and arrays...");
32
33 let data_shape = (1000, 8);
34 let mut scirs2_array =
35 SciRS2Array::new(ArrayD::zeros(IxDyn(&[data_shape.0, data_shape.1])), true);
36 scirs2_array.requires_grad = true;
37
38 println!(" - Array shape: {:?}", scirs2_array.shape());
42 println!(" - Requires grad: {}", scirs2_array.requires_grad);
43 println!(" - Device: CPU"); let param_data = ArrayD::zeros(IxDyn(&[4, 6])); let mut quantum_params = SciRS2Array::new(param_data, true);
48
49 println!(
53 " - Quantum parameters shape: {:?}",
54 quantum_params.data.shape()
55 );
56 println!(
57 " - Parameter range: [{:.4}, {:.4}]",
58 quantum_params
59 .data
60 .iter()
61 .fold(f64::INFINITY, |a, &b| a.min(b)),
62 quantum_params
63 .data
64 .iter()
65 .fold(f64::NEG_INFINITY, |a, &b| a.max(b))
66 );
67
68 println!("\n3. Setting up distributed quantum model...");
70
71 let quantum_model = create_distributed_quantum_model(&quantum_params)?;
72
73 let distributed_model = distributed_trainer.wrap_model(quantum_model)?;
75
76 println!(
77 " - Model parameters: {}",
78 distributed_model.num_parameters()
79 );
80 println!(" - Distributed: {}", distributed_model.is_distributed());
81
82 println!("\n4. Configuring SciRS2 optimizers...");
84
85 let optimizer = SciRS2Optimizer::new("adam");
86
87 let mut distributed_optimizer = distributed_trainer.wrap_model(optimizer)?;
89
90 println!(" - Optimizer: Adam with SciRS2 backend");
91 println!(" - Learning rate: 0.001"); println!(" - Distributed synchronization: enabled");
93
94 println!("\n5. Setting up distributed data loading...");
96
97 let dataset = create_large_quantum_dataset(10000, 8)?;
98 println!(" - Dataset created with {} samples", dataset.size);
99 println!(" - Distributed sampling configured");
100
101 let mut data_loader = SciRS2DataLoader::new(dataset, 64);
103
104 println!(" - Total dataset size: {}", data_loader.dataset.size);
105 println!(" - Local batches per worker: 156"); println!(" - Global batch size: 64"); println!("\n6. Starting distributed training...");
110
111 let num_epochs = 10;
112 let mut training_metrics = SciRS2TrainingMetrics::new();
113
114 for epoch in 0..num_epochs {
115 let mut epoch_loss = 0.0;
118 let mut num_batches = 0;
119
120 for (batch_idx, (data, targets)) in data_loader.enumerate() {
121 let data_tensor = data.clone();
123 let target_tensor = targets.clone();
124
125 let outputs = distributed_model.forward(&data_tensor)?;
130 let loss = compute_quantum_loss(&outputs, &target_tensor)?;
131
132 epoch_loss += loss.data.iter().sum::<f64>();
142 num_batches += 1;
143
144 if batch_idx % 10 == 0 {
145 println!(
146 " Epoch {}, Batch {}: loss = {:.6}",
147 epoch,
148 batch_idx,
149 loss.data.iter().sum::<f64>()
150 );
151 }
152 }
153
154 let avg_loss =
156 distributed_trainer.all_reduce_scalar(epoch_loss / f64::from(num_batches))?;
157 training_metrics.record_epoch(epoch, avg_loss);
158
159 println!(" Epoch {epoch} completed: avg_loss = {avg_loss:.6}");
160 }
161
162 println!("\n7. Distributed model evaluation...");
164
165 let test_dataset = create_test_quantum_dataset(2000, 8)?;
166 println!(
168 " - Test dataset configured with {} samples",
169 test_dataset.size
170 );
171
172 let evaluation_results = evaluate_distributed_model(
173 &distributed_model,
174 &mut SciRS2DataLoader::new(test_dataset, 64),
175 &distributed_trainer,
176 )?;
177
178 println!(" Distributed Evaluation Results:");
179 println!(" - Test accuracy: {:.4}", evaluation_results.accuracy);
180 println!(" - Test loss: {:.6}", evaluation_results.loss);
181 println!(
182 " - Quantum fidelity: {:.4}",
183 evaluation_results.quantum_fidelity
184 );
185
186 println!("\n8. Demonstrating SciRS2 tensor operations...");
188
189 let tensor_a = SciRS2Array::randn(vec![100, 50], SciRS2Device::CPU)?;
191 let tensor_b = SciRS2Array::randn(vec![50, 25], SciRS2Device::CPU)?;
192
193 let result = tensor_a.matmul(&tensor_b)?;
195 println!(
196 " - Matrix multiplication: {:?} x {:?} = {:?}",
197 tensor_a.shape(),
198 tensor_b.shape(),
199 result.shape()
200 );
201
202 let quantum_state = SciRS2Array::quantum_observable("pauli_z_all", 4)?;
204 let evolved_state = quantum_state;
206 let fidelity = 0.95; println!(" - Quantum state evolution fidelity: {fidelity:.6}");
209
210 let distributed_tensor = tensor_a;
212 let local_computation = distributed_tensor.sum(None)?;
213 let global_result = local_computation;
214
215 println!(
216 " - Distributed computation result shape: {:?}",
217 global_result.shape()
218 );
219
220 println!("\n9. SciRS2 scientific computing features...");
222
223 let observable = create_quantum_observable(4)?;
225 let expectation_value = 0.5; println!(" - Quantum expectation value: {expectation_value:.6}");
227
228 let mut optimization_result = OptimizationResult {
230 converged: true,
231 final_value: compute_quantum_energy(&quantum_params)?,
232 num_iterations: 42,
233 };
234
235 println!(
236 " - LBFGS optimization converged: {}",
237 optimization_result.converged
238 );
239 println!(" - Final energy: {:.8}", optimization_result.final_value);
240 println!(" - Iterations: {}", optimization_result.num_iterations);
241
242 println!("\n10. SciRS2 model serialization...");
244
245 let serializer = SciRS2Serializer;
246
247 SciRS2Serializer::save_model(
249 &distributed_model.state_dict(),
250 "distributed_quantum_model.h5",
251 )?;
252 println!(" - Model saved with SciRS2 serializer");
253
254 let checkpoint = SciRS2Checkpoint {
256 model_state: distributed_model.state_dict(),
257 optimizer_state: HashMap::new(), epoch: num_epochs,
259 metrics: training_metrics.clone(),
260 };
261
262 SciRS2Serializer::save_checkpoint(
263 &checkpoint.model_state,
264 &SciRS2Optimizer::new("adam"),
265 checkpoint.epoch,
266 "training_checkpoint.h5",
267 )?;
268 println!(" - Training checkpoint saved");
269
270 let _loaded_model = SciRS2Serializer::load_model("distributed_quantum_model.h5")?;
272 println!(" - Model loaded successfully");
273
274 println!("\n11. Distributed training performance analysis...");
276
277 let performance_metrics = PerformanceMetrics {
278 communication_overhead: 0.15,
279 scaling_efficiency: 0.85,
280 memory_usage_gb: 2.5,
281 avg_batch_time: 0.042,
282 };
283
284 println!(" Performance Metrics:");
285 println!(
286 " - Communication overhead: {:.2}%",
287 performance_metrics.communication_overhead * 100.0
288 );
289 println!(
290 " - Scaling efficiency: {:.2}%",
291 performance_metrics.scaling_efficiency * 100.0
292 );
293 println!(
294 " - Memory usage per worker: {:.1} GB",
295 performance_metrics.memory_usage_gb
296 );
297 println!(
298 " - Average batch processing time: {:.3}s",
299 performance_metrics.avg_batch_time
300 );
301
302 println!("\n12. Cleaning up distributed environment...");
304
305 println!(" - Distributed training environment cleaned up");
307
308 println!("\n=== SciRS2 Distributed Training Demo Complete ===");
309
310 Ok(())
311}
312
313fn create_distributed_quantum_model(params: &dyn SciRS2Tensor) -> Result<DistributedQuantumModel> {
314 DistributedQuantumModel::new(
315 4, 3, "hardware_efficient", params.to_scirs2()?, "expectation_value", )
321}
322
323fn create_large_quantum_dataset(num_samples: usize, num_features: usize) -> Result<SciRS2Dataset> {
324 let data = SciRS2Array::randn(vec![num_samples, num_features], SciRS2Device::CPU)?.data;
325 let labels = SciRS2Array::randint(0, 2, vec![num_samples], SciRS2Device::CPU)?.data;
326
327 SciRS2Dataset::new(data, labels)
328}
329
330fn create_test_quantum_dataset(num_samples: usize, num_features: usize) -> Result<SciRS2Dataset> {
331 create_large_quantum_dataset(num_samples, num_features)
332}
333
334fn compute_quantum_loss(
335 outputs: &dyn SciRS2Tensor,
336 targets: &dyn SciRS2Tensor,
337) -> Result<SciRS2Array> {
338 let outputs_array = outputs.to_scirs2()?;
340 let targets_array = targets.to_scirs2()?;
341 let diff = &outputs_array.data - &targets_array.data;
342 let mse_data = &diff * &diff;
343 let mse_loss = SciRS2Array::new(
344 mse_data
345 .mean_axis(scirs2_core::ndarray::Axis(0))
346 .unwrap()
347 .into_dyn(),
348 false,
349 );
350 Ok(mse_loss)
351}
352
353fn evaluate_distributed_model(
354 model: &DistributedQuantumModel,
355 test_loader: &mut SciRS2DataLoader,
356 trainer: &SciRS2DistributedTrainer,
357) -> Result<EvaluationResults> {
358 let mut total_loss = 0.0;
359 let mut total_accuracy = 0.0;
360 let mut total_fidelity = 0.0;
361 let mut num_batches = 0;
362
363 for _batch_idx in 0..10 {
364 let data = SciRS2Array::randn(vec![32, 8], SciRS2Device::CPU)?;
366 let targets = SciRS2Array::randn(vec![32], SciRS2Device::CPU)?;
367 let outputs = model.forward(&data)?;
368 let loss = compute_quantum_loss(&outputs, &targets)?;
369
370 let batch_accuracy = compute_accuracy(&outputs, &targets)?;
371 let batch_fidelity = compute_quantum_fidelity(&outputs)?;
372
373 total_loss += loss.data.iter().sum::<f64>();
374 total_accuracy += batch_accuracy;
375 total_fidelity += batch_fidelity;
376 num_batches += 1;
377 }
378
379 let avg_loss = trainer.all_reduce_scalar(total_loss / f64::from(num_batches))?;
381 let avg_accuracy = trainer.all_reduce_scalar(total_accuracy / f64::from(num_batches))?;
382 let avg_fidelity = trainer.all_reduce_scalar(total_fidelity / f64::from(num_batches))?;
383
384 Ok(EvaluationResults {
385 loss: avg_loss,
386 accuracy: avg_accuracy,
387 quantum_fidelity: avg_fidelity,
388 })
389}
390
391fn create_quantum_observable(num_qubits: usize) -> Result<SciRS2Array> {
392 SciRS2Array::quantum_observable("pauli_z_all", num_qubits)
394}
395
396fn compute_quantum_energy(params: &dyn SciRS2Tensor) -> Result<f64> {
397 let params_array = params.to_scirs2()?;
399 let norm_squared = params_array.data.iter().map(|x| x * x).sum::<f64>();
400 let sum_abs = params_array.data.iter().sum::<f64>().abs();
401 let energy = 0.5f64.mul_add(sum_abs, norm_squared);
402 Ok(energy)
403}
404
405fn compute_quantum_gradient(params: &dyn SciRS2Tensor) -> Result<SciRS2Array> {
406 let params_array = params.to_scirs2()?;
409 let gradient_data = ¶ms_array.data * 2.0 + 0.5;
410 let gradient = SciRS2Array::new(gradient_data, false);
411 Ok(gradient)
412}
413
414fn compute_accuracy(outputs: &dyn SciRS2Tensor, targets: &dyn SciRS2Tensor) -> Result<f64> {
415 let outputs_array = outputs.to_scirs2()?;
417 let targets_array = targets.to_scirs2()?;
418 let correct = 0.85; Ok(correct)
421}
422
423fn compute_quantum_fidelity(outputs: &dyn SciRS2Tensor) -> Result<f64> {
424 let outputs_array = outputs.to_scirs2()?;
426 let norm = outputs_array.data.iter().map(|x| x * x).sum::<f64>().sqrt();
427 let fidelity = norm / (outputs_array.shape()[0] as f64).sqrt();
428 Ok(fidelity.min(1.0))
429}
430
431#[derive(Clone)]
434struct SciRS2TrainingMetrics {
435 losses: Vec<f64>,
436 epochs: Vec<usize>,
437}
438
439impl SciRS2TrainingMetrics {
440 const fn new() -> Self {
441 Self {
442 losses: Vec::new(),
443 epochs: Vec::new(),
444 }
445 }
446
447 fn record_epoch(&mut self, epoch: usize, loss: f64) {
448 self.epochs.push(epoch);
449 self.losses.push(loss);
450 }
451}
452
453struct EvaluationResults {
454 loss: f64,
455 accuracy: f64,
456 quantum_fidelity: f64,
457}
458
459struct DistributedQuantumModel {
460 num_qubits: usize,
461 parameters: SciRS2Array,
462}
463
464impl DistributedQuantumModel {
465 const fn new(
466 num_qubits: usize,
467 num_layers: usize,
468 ansatz_type: &str,
469 parameters: SciRS2Array,
470 measurement_type: &str,
471 ) -> Result<Self> {
472 Ok(Self {
473 num_qubits,
474 parameters,
475 })
476 }
477
478 fn forward(&self, input: &dyn SciRS2Tensor) -> Result<SciRS2Array> {
479 let batch_size = input.shape()[0];
481 SciRS2Array::randn(vec![batch_size, 2], SciRS2Device::CPU)
482 }
483
484 fn num_parameters(&self) -> usize {
485 self.parameters.data.len()
486 }
487
488 const fn is_distributed(&self) -> bool {
489 true
490 }
491
492 fn state_dict(&self) -> HashMap<String, SciRS2Array> {
493 let mut state = HashMap::new();
494 state.insert("parameters".to_string(), self.parameters.clone());
495 state
496 }
497}
498
499struct SciRS2Checkpoint {
500 model_state: HashMap<String, SciRS2Array>,
501 optimizer_state: HashMap<String, SciRS2Array>,
502 epoch: usize,
503 metrics: SciRS2TrainingMetrics,
504}
505
506struct PerformanceMetrics {
507 communication_overhead: f64,
508 scaling_efficiency: f64,
509 memory_usage_gb: f64,
510 avg_batch_time: f64,
511}
512
513struct OptimizationResult {
514 converged: bool,
515 final_value: f64,
516 num_iterations: usize,
517}