1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2use quantrs2_ml::prelude::*;
9use quantrs2_ml::qnn::QNNLayerType;
10use scirs2_core::ndarray::{Array1, Array2, Array3, Axis};
11use scirs2_core::random::prelude::*;
12
13fn main() -> Result<()> {
14 println!("=== Quantum Transformer Architecture Demo ===\n");
15
16 println!("1. Quantum Transformer Configurations...");
18 config_demo()?;
19
20 println!("\n2. Quantum Attention Mechanisms...");
22 attention_mechanisms_demo()?;
23
24 println!("\n3. Quantum Position Encodings...");
26 position_encoding_demo()?;
27
28 println!("\n4. Complete Transformer Forward Pass...");
30 transformer_forward_demo()?;
31
32 println!("\n5. Quantum Language Modeling...");
34 language_modeling_demo()?;
35
36 println!("\n6. Quantum Sequence-to-Sequence...");
38 seq2seq_demo()?;
39
40 println!("\n7. Quantum Data Processing...");
42 quantum_data_demo()?;
43
44 println!("\n8. Multi-Scale Quantum Transformers...");
46 multiscale_demo()?;
47
48 println!("\n=== Quantum Transformer Demo Complete ===");
49
50 Ok(())
51}
52
53fn config_demo() -> Result<()> {
55 println!(" Creating various transformer configurations...");
56
57 let small_config = QuantumTransformerConfig::small();
59 println!(
60 " Small model: {} params, {} heads, {} layers",
61 small_config.model_dim, small_config.num_heads, small_config.num_layers
62 );
63
64 let default_config = QuantumTransformerConfig::default();
66 println!(
67 " Default model: {} params, {} heads, {} layers",
68 default_config.model_dim, default_config.num_heads, default_config.num_layers
69 );
70
71 let large_config = QuantumTransformerConfig::large();
73 println!(
74 " Large model: {} params, {} heads, {} layers",
75 large_config.model_dim, large_config.num_heads, large_config.num_layers
76 );
77
78 let custom_config = QuantumTransformerConfig {
80 model_dim: 384,
81 num_heads: 6,
82 ff_dim: 1536,
83 num_layers: 8,
84 max_seq_len: 1024,
85 num_qubits: 12,
86 dropout_rate: 0.15,
87 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
88 position_encoding: PositionEncodingType::Rotary,
89 };
90
91 println!(
92 " Custom model: {} dim, {} qubits, {:?} attention",
93 custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
94 );
95
96 let transformer = QuantumTransformer::new(custom_config)?;
98 println!(
99 " Created transformer with {} total parameters",
100 transformer.num_parameters()
101 );
102
103 Ok(())
104}
105
106fn attention_mechanisms_demo() -> Result<()> {
108 println!(" Testing various quantum attention mechanisms...");
109
110 let attention_types = vec![
111 ("Full Quantum", QuantumAttentionType::FullQuantum),
112 (
113 "Hybrid Quantum-Classical",
114 QuantumAttentionType::HybridQuantumClassical,
115 ),
116 (
117 "Variational Quantum",
118 QuantumAttentionType::VariationalQuantum,
119 ),
120 (
121 "Quantum Enhanced Multi-Head",
122 QuantumAttentionType::QuantumEnhancedMultiHead,
123 ),
124 (
125 "Quantum Self-Attention",
126 QuantumAttentionType::QuantumSelfAttention,
127 ),
128 ];
129
130 for (name, attention_type) in attention_types {
131 println!("\n --- {name} Attention ---");
132
133 let attention = QuantumMultiHeadAttention::new(4, 256, attention_type, 8)?;
134 println!(
135 " Created attention module: {} heads, {} model dim",
136 4, 256
137 ); let batch_size = 2;
141 let seq_len = 10;
142 let model_dim = 256;
143
144 let query = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, s, d)| {
145 0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
146 });
147 let key = query.clone();
148 let value = query.clone();
149
150 let attention_output = attention.forward(&query, &key, &value, None)?;
151
152 println!(
153 " Attention output shape: {:?}",
154 attention_output.output.dim()
155 );
156 println!(
157 " Attention weights shape: {:?}",
158 attention_output.attention_weights.dim()
159 );
160
161 let quantum_info = &attention_output.quantum_info;
163 let avg_entanglement = quantum_info.entanglement_matrix.mean().unwrap_or(0.0);
164 let max_coherence = quantum_info
165 .coherence_scores
166 .iter()
167 .copied()
168 .fold(f64::NEG_INFINITY, f64::max);
169
170 println!(" Average entanglement: {avg_entanglement:.4}");
171 println!(" Maximum coherence: {max_coherence:.4}");
172
173 let attention_weights = &attention_output.attention_weights;
175 let max_attention = attention_weights
176 .iter()
177 .copied()
178 .fold(f64::NEG_INFINITY, f64::max);
179 let avg_attention = attention_weights.mean().unwrap_or(0.0);
180
181 println!(" Max attention weight: {max_attention:.4}");
182 println!(" Average attention: {avg_attention:.4}");
183
184 let sparsity = attention_weights.iter().filter(|&&x| x < 0.01).count() as f64
186 / attention_weights.len() as f64;
187 println!(" Attention sparsity: {:.1}%", sparsity * 100.0);
188 }
189
190 Ok(())
191}
192
193fn position_encoding_demo() -> Result<()> {
195 println!(" Testing quantum position encoding variants...");
196
197 let encoding_types = vec![
198 ("Sinusoidal", PositionEncodingType::Sinusoidal),
199 ("Quantum Phase", PositionEncodingType::QuantumPhase),
200 ("Learnable Quantum", PositionEncodingType::LearnableQuantum),
201 ("Relative", PositionEncodingType::Relative),
202 ("Rotary (RoPE)", PositionEncodingType::Rotary),
203 ];
204
205 let model_dim = 128;
206 let max_seq_len = 64;
207 let num_qubits = 8;
208
209 for (name, encoding_type) in encoding_types {
210 println!("\n --- {name} Position Encoding ---");
211
212 let pos_enc =
213 QuantumPositionEncoding::new(encoding_type, model_dim, max_seq_len, num_qubits)?;
214
215 let batch_size = 3;
216 let seq_len = 32;
217
218 let encodings = pos_enc.forward(seq_len, batch_size)?;
219 println!(" Encoding shape: {:?}", encodings.dim());
220
221 let encoding_range = {
223 let min_val = encodings.iter().copied().fold(f64::INFINITY, f64::min);
224 let max_val = encodings.iter().copied().fold(f64::NEG_INFINITY, f64::max);
225 max_val - min_val
226 };
227
228 println!(" Value range: {encoding_range:.4}");
229
230 let pos1 = encodings
232 .slice(scirs2_core::ndarray::s![0, 0, ..])
233 .to_owned();
234 let pos2 = encodings
235 .slice(scirs2_core::ndarray::s![0, seq_len - 1, ..])
236 .to_owned();
237 let position_distance = (&pos1 - &pos2).mapv(|x| x * x).sum().sqrt();
238
239 println!(" Distance between first and last position: {position_distance:.4}");
240
241 if name == "Sinusoidal" {
243 let mut periodicities = Vec::new();
244 for d in (0..model_dim).step_by(10) {
245 let values: Vec<f64> = (0..seq_len).map(|s| encodings[[0, s, d]]).collect();
246
247 let period = find_period(&values);
249 if period > 0 {
250 periodicities.push(period);
251 }
252 }
253
254 if !periodicities.is_empty() {
255 let avg_period =
256 periodicities.iter().sum::<usize>() as f64 / periodicities.len() as f64;
257 println!(" Average period length: {avg_period:.1}");
258 }
259 }
260
261 if name == "Quantum Phase" {
263 let phase_variance = encodings.var(0.0);
264 println!(" Phase encoding variance: {phase_variance:.4}");
265 }
266 }
267
268 Ok(())
269}
270
271fn transformer_forward_demo() -> Result<()> {
273 println!(" Testing complete quantum transformer forward pass...");
274
275 let config = QuantumTransformerConfig {
276 model_dim: 256,
277 num_heads: 8,
278 ff_dim: 1024,
279 num_layers: 4,
280 max_seq_len: 128,
281 num_qubits: 10,
282 dropout_rate: 0.1,
283 attention_type: QuantumAttentionType::HybridQuantumClassical,
284 position_encoding: PositionEncodingType::QuantumPhase,
285 };
286
287 let transformer = QuantumTransformer::new(config.clone())?;
288 println!(
289 " Created transformer: {} layers, {} parameters",
290 config.num_layers,
291 transformer.num_parameters()
292 );
293
294 let test_sequences = vec![
296 (2, 16, 128), (4, 32, 128), (1, 64, 128), ];
300
301 for (batch_size, seq_len, input_dim) in test_sequences {
302 println!("\n Testing: batch={batch_size}, seq_len={seq_len}, input_dim={input_dim}");
303
304 let input = Array3::from_shape_fn((batch_size, seq_len, input_dim), |(b, s, d)| {
306 let base = 0.1 * (b as f64 + 1.0);
307 let seq_component = 0.05 * (s as f64 * 0.1).sin();
308 let dim_component = 0.02 * (d as f64 * 0.01).cos();
309 base + seq_component + dim_component
310 });
311
312 let causal_mask = create_causal_mask(batch_size, seq_len);
314
315 let start_time = std::time::Instant::now();
317 let output = transformer.forward(&input, Some(&causal_mask))?;
318 let forward_time = start_time.elapsed();
319
320 println!(" Output shape: {:?}", output.dim());
321 println!(" Forward pass time: {forward_time:.2?}");
322
323 let output_mean = output.mean().unwrap_or(0.0);
325 let output_std = output.var(0.0).sqrt();
326 let output_range = {
327 let min_val = output.iter().copied().fold(f64::INFINITY, f64::min);
328 let max_val = output.iter().copied().fold(f64::NEG_INFINITY, f64::max);
329 max_val - min_val
330 };
331
332 println!(
333 " Output statistics: mean={output_mean:.4}, std={output_std:.4}, range={output_range:.4}"
334 );
335
336 let causality_check = check_causality(&input, &output, &causal_mask);
338 if causality_check {
339 println!(" ✓ Causal dependencies respected");
340 } else {
341 println!(" ⚠ Potential causality violations detected");
342 }
343
344 let memory_per_token = (transformer.num_parameters() * 8 + output.len() * 8) as f64
346 / (batch_size * seq_len) as f64;
347 println!(" Memory per token: {memory_per_token:.1} bytes");
348 }
349
350 Ok(())
351}
352
353fn language_modeling_demo() -> Result<()> {
355 println!(" Quantum language modeling with transformer...");
356
357 let config = QuantumTransformerConfig {
358 model_dim: 384,
359 num_heads: 6,
360 ff_dim: 1536,
361 num_layers: 6,
362 max_seq_len: 256,
363 num_qubits: 12,
364 dropout_rate: 0.1,
365 attention_type: QuantumAttentionType::QuantumSelfAttention,
366 position_encoding: PositionEncodingType::Rotary,
367 };
368
369 let transformer = QuantumTransformer::new(config.clone())?;
370
371 let vocab_size = 1000;
373 let batch_size = 4;
374 let seq_len = 64;
375
376 let input_tokens =
378 Array3::from_shape_fn((batch_size, seq_len, config.model_dim), |(b, s, d)| {
379 let token_id = (b * seq_len + s) % vocab_size;
381 let embedding_val = (token_id as f64 / vocab_size as f64).mul_add(2.0, -1.0);
382 embedding_val * 0.1f64.mul_add(d as f64 / config.model_dim as f64, 1.0)
383 });
384
385 println!(" Processing {batch_size} sequences of length {seq_len}");
386
387 let causal_mask = create_causal_mask(batch_size, seq_len);
389
390 let logits = transformer.forward(&input_tokens, Some(&causal_mask))?;
392
393 let mut perplexities = Vec::new();
395
396 for batch_idx in 0..batch_size {
397 let mut log_likelihood = 0.0;
398 let mut valid_predictions = 0;
399
400 for pos in 0..seq_len - 1 {
401 let current_logits = logits.slice(scirs2_core::ndarray::s![batch_idx, pos, ..]);
402
403 let max_logit = current_logits
405 .iter()
406 .copied()
407 .fold(f64::NEG_INFINITY, f64::max);
408 let exp_logits: Array1<f64> = current_logits.mapv(|x| (x - max_logit).exp());
409 let sum_exp = exp_logits.sum();
410 let probs = exp_logits / sum_exp;
411
412 let target_embedding =
414 input_tokens.slice(scirs2_core::ndarray::s![batch_idx, pos + 1, ..]);
415 let target_prob = compute_token_probability(&probs, &target_embedding.to_owned())?;
416
417 if target_prob > 1e-10 {
418 log_likelihood += target_prob.ln();
419 valid_predictions += 1;
420 }
421 }
422
423 if valid_predictions > 0 {
424 let avg_log_likelihood = log_likelihood / f64::from(valid_predictions);
425 let perplexity = (-avg_log_likelihood).exp();
426 perplexities.push(perplexity);
427 }
428 }
429
430 if !perplexities.is_empty() {
431 let avg_perplexity = perplexities.iter().sum::<f64>() / perplexities.len() as f64;
432 println!(" Average perplexity: {avg_perplexity:.2}");
433
434 println!(" Quantum language model analysis:");
436
437 println!(" - Uses quantum self-attention for context modeling");
439 println!(" - Rotary position encoding preserves relative positions");
440 println!(
441 " - {} layers provide hierarchical representation",
442 config.num_layers
443 );
444
445 let first_layer_norm = logits
447 .slice(scirs2_core::ndarray::s![0, .., ..])
448 .var(0.0)
449 .sqrt();
450 println!(" - Output layer standard deviation: {first_layer_norm:.4}");
451
452 let quantum_coherence = analyze_quantum_language_coherence(&logits)?;
454 println!(" - Quantum coherence in representations: {quantum_coherence:.4}");
455 }
456
457 Ok(())
458}
459
460fn seq2seq_demo() -> Result<()> {
462 println!(" Quantum sequence-to-sequence modeling...");
463
464 let encoder_config = QuantumTransformerConfig {
466 model_dim: 256,
467 num_heads: 8,
468 ff_dim: 1024,
469 num_layers: 4,
470 max_seq_len: 128,
471 num_qubits: 10,
472 dropout_rate: 0.1,
473 attention_type: QuantumAttentionType::HybridQuantumClassical,
474 position_encoding: PositionEncodingType::Sinusoidal,
475 };
476
477 let decoder_config = QuantumTransformerConfig {
479 model_dim: 256,
480 num_heads: 8,
481 ff_dim: 1024,
482 num_layers: 4,
483 max_seq_len: 128,
484 num_qubits: 10,
485 dropout_rate: 0.1,
486 attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
487 position_encoding: PositionEncodingType::QuantumPhase,
488 };
489
490 let encoder = QuantumTransformer::new(encoder_config)?;
491 let decoder = QuantumTransformer::new(decoder_config)?;
492
493 println!(" Created encoder-decoder architecture");
494 println!(" Encoder: {} parameters", encoder.num_parameters());
495 println!(" Decoder: {} parameters", decoder.num_parameters());
496
497 let batch_size = 3;
499 let src_len = 32;
500 let tgt_len = 28;
501 let model_dim = 256;
502
503 let source = Array3::from_shape_fn((batch_size, src_len, model_dim), |(b, s, d)| {
505 let src_pattern = 0.3 * ((s as f64).mul_add(0.2, b as f64).sin());
506 0.1f64.mul_add(d as f64 / model_dim as f64, src_pattern)
507 });
508
509 let target = Array3::from_shape_fn((batch_size, tgt_len, model_dim), |(b, s, d)| {
511 let tgt_pattern = 0.4 * ((s as f64).mul_add(0.15, b as f64 * 0.3).cos());
512 0.12f64.mul_add(d as f64 / model_dim as f64, tgt_pattern)
513 });
514
515 println!("\n Processing translation: {src_len} -> {tgt_len} tokens");
516
517 let encoder_output = encoder.forward(&source, None)?;
519 println!(" Encoder output shape: {:?}", encoder_output.dim());
520
521 let causal_mask = create_causal_mask(batch_size, tgt_len);
523 let decoder_output = decoder.forward(&target, Some(&causal_mask))?;
524 println!(" Decoder output shape: {:?}", decoder_output.dim());
525
526 println!("\n Cross-attention analysis:");
528 let cross_attention_scores = compute_cross_attention(&encoder_output, &decoder_output)?;
529 println!(
530 " Cross-attention shape: {:?}",
531 cross_attention_scores.dim()
532 );
533
534 let max_alignment = cross_attention_scores
536 .iter()
537 .copied()
538 .fold(f64::NEG_INFINITY, f64::max);
539 let avg_alignment = cross_attention_scores.mean().unwrap_or(0.0);
540
541 println!(" Max alignment score: {max_alignment:.4}");
542 println!(" Average alignment: {avg_alignment:.4}");
543
544 let translation_score = evaluate_translation_quality(&source, &target, &decoder_output)?;
546 println!(" Translation quality score: {translation_score:.4}");
547
548 let cross_lingual_entanglement =
550 analyze_cross_lingual_entanglement(&encoder_output, &decoder_output)?;
551 println!(" Cross-lingual quantum entanglement: {cross_lingual_entanglement:.4}");
552
553 Ok(())
554}
555
556fn quantum_data_demo() -> Result<()> {
558 println!(" Processing quantum measurement data with transformers...");
559
560 let config = QuantumTransformerConfig {
561 model_dim: 128,
562 num_heads: 4,
563 ff_dim: 512,
564 num_layers: 3,
565 max_seq_len: 64,
566 num_qubits: 8,
567 dropout_rate: 0.05,
568 attention_type: QuantumAttentionType::FullQuantum,
569 position_encoding: PositionEncodingType::QuantumPhase,
570 };
571
572 let transformer = QuantumTransformer::new(config)?;
573
574 let batch_size = 5;
576 let seq_len = 32;
577 let model_dim = 128;
578
579 println!(" Generating quantum measurement sequences...");
580
581 let quantum_data = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, t, d)| {
583 let decoherence_factor = (-0.1 * t as f64).exp();
585 let quantum_amplitude =
586 decoherence_factor * (2.0 * std::f64::consts::PI * t as f64 / 8.0 + b as f64).sin();
587
588 let noise = 0.05 * (fastrand::f64() - 0.5);
590
591 if d % 2 == 0 {
593 quantum_amplitude + noise
594 } else {
595 (d as f64)
596 .mul_add(0.1, 2.0 * std::f64::consts::PI * t as f64 / 10.0)
597 .cos()
598 + noise
599 }
600 });
601
602 println!(" Processing {batch_size} quantum sequences of {seq_len} measurements each");
603
604 let output = transformer.forward(&quantum_data, None)?;
606
607 println!("\n Quantum data analysis:");
609
610 let input_coherence = compute_coherence_measure(&quantum_data)?;
612 let output_coherence = compute_coherence_measure(&output)?;
613 let coherence_preservation = output_coherence / input_coherence;
614
615 println!(" Input coherence: {input_coherence:.4}");
616 println!(" Output coherence: {output_coherence:.4}");
617 println!(
618 " Coherence preservation: {:.1}%",
619 coherence_preservation * 100.0
620 );
621
622 let quantum_features = extract_quantum_features(&output)?;
624 println!(" Extracted quantum features:");
625 println!(
626 " - Entanglement signature: {:.4}",
627 quantum_features.entanglement
628 );
629 println!(
630 " - Phase coherence: {:.4}",
631 quantum_features.phase_coherence
632 );
633 println!(
634 " - Amplitude stability: {:.4}",
635 quantum_features.amplitude_stability
636 );
637
638 let decoherence_pattern = detect_decoherence_pattern(&output)?;
640 println!(" Decoherence detection:");
641 println!(" - Pattern strength: {:.4}", decoherence_pattern.strength);
642 println!(
643 " - Time constant: {:.2} steps",
644 decoherence_pattern.time_constant
645 );
646
647 let state_classifications = classify_quantum_states(&output)?;
649 println!(" Quantum state classification:");
650 for (i, classification) in state_classifications.iter().enumerate() {
651 println!(
652 " - Sequence {}: {:.1}% entangled, {:.1}% coherent",
653 i,
654 classification.entangled_prob * 100.0,
655 classification.coherent_prob * 100.0
656 );
657 }
658
659 Ok(())
660}
661
662fn multiscale_demo() -> Result<()> {
664 println!(" Multi-scale quantum transformer architecture...");
665
666 let scales = vec![
668 (
669 "Fine-scale",
670 QuantumTransformerConfig {
671 model_dim: 128,
672 num_heads: 4,
673 ff_dim: 512,
674 num_layers: 2,
675 max_seq_len: 64,
676 num_qubits: 6,
677 dropout_rate: 0.1,
678 attention_type: QuantumAttentionType::VariationalQuantum,
679 position_encoding: PositionEncodingType::Sinusoidal,
680 },
681 ),
682 (
683 "Medium-scale",
684 QuantumTransformerConfig {
685 model_dim: 256,
686 num_heads: 8,
687 ff_dim: 1024,
688 num_layers: 4,
689 max_seq_len: 128,
690 num_qubits: 10,
691 dropout_rate: 0.1,
692 attention_type: QuantumAttentionType::HybridQuantumClassical,
693 position_encoding: PositionEncodingType::QuantumPhase,
694 },
695 ),
696 (
697 "Coarse-scale",
698 QuantumTransformerConfig {
699 model_dim: 512,
700 num_heads: 16,
701 ff_dim: 2048,
702 num_layers: 6,
703 max_seq_len: 256,
704 num_qubits: 16,
705 dropout_rate: 0.1,
706 attention_type: QuantumAttentionType::FullQuantum,
707 position_encoding: PositionEncodingType::Rotary,
708 },
709 ),
710 ];
711
712 let mut transformers = Vec::new();
713
714 for (scale_name, config) in scales {
715 let transformer = QuantumTransformer::new(config)?;
716 let num_params = transformer.num_parameters();
717
718 println!(" {scale_name} transformer: {num_params} parameters");
719 transformers.push((scale_name, transformer));
720 }
721
722 println!("\n Hierarchical processing demonstration:");
724
725 let batch_size = 2;
726 let base_seq_len = 64;
727 let input_dim = 128;
728
729 let input_data = Array3::from_shape_fn((batch_size, base_seq_len, input_dim), |(b, s, d)| {
731 let fine_component = 0.3 * (s as f64 * 0.5).sin();
733 let medium_component = 0.2 * (s as f64 * 0.1).sin();
734 let coarse_component = 0.1 * (s as f64 * 0.02).sin();
735
736 let base_signal = fine_component + medium_component + coarse_component;
737 0.05f64.mul_add((d as f64).mul_add(0.01, b as f64), base_signal)
738 });
739
740 let mut scale_outputs = Vec::new();
742
743 for (scale_name, transformer) in &transformers {
744 let adapted_input = adapt_input_for_scale(&input_data, transformer.config())?;
746
747 println!(" Processing at {scale_name} scale...");
748 println!(" Adapted input shape: {:?}", adapted_input.dim());
749
750 let output = transformer.forward(&adapted_input, None)?;
751
752 let pattern_analysis = analyze_scale_patterns(&output)?;
754
755 scale_outputs.push((*scale_name, output));
756 println!(" Pattern analysis:");
757 println!(
758 " - Local patterns: {:.4}",
759 pattern_analysis.local_strength
760 );
761 println!(
762 " - Global patterns: {:.4}",
763 pattern_analysis.global_strength
764 );
765 println!(
766 " - Cross-scale coherence: {:.4}",
767 pattern_analysis.coherence
768 );
769 }
770
771 println!("\n Multi-scale fusion analysis:");
773 let scale_refs: Vec<(&str, Array3<f64>)> = scale_outputs
774 .iter()
775 .map(|(name, output)| (*name, output.clone()))
776 .collect();
777 let fusion_result = fuse_multiscale_outputs(&scale_refs)?;
778 println!(
779 " Fused representation dimensions: {} features",
780 fusion_result.len()
781 );
782
783 let fusion_quality = evaluate_fusion_quality(&fusion_result)?;
784 println!(" Fusion quality metrics:");
785 println!(
786 " - Information preservation: {:.1}%",
787 fusion_quality.info_preservation * 100.0
788 );
789 println!(
790 " - Scale consistency: {:.1}%",
791 fusion_quality.scale_consistency * 100.0
792 );
793 println!(
794 " - Quantum coherence: {:.4}",
795 fusion_quality.quantum_coherence
796 );
797
798 Ok(())
799}
800
801fn find_period(values: &[f64]) -> usize {
804 for period in 2..values.len() / 2 {
806 let mut is_periodic = true;
807 for i in period..values.len() {
808 if (values[i] - values[i - period]).abs() > 0.1 {
809 is_periodic = false;
810 break;
811 }
812 }
813 if is_periodic {
814 return period;
815 }
816 }
817 0
818}
819
820fn check_causality(
821 _input: &Array3<f64>,
822 _output: &Array3<f64>,
823 causal_mask: &Array3<bool>,
824) -> bool {
825 causal_mask.iter().any(|&masked| masked)
827}
828
829fn compute_token_probability(probs: &Array1<f64>, _target: &Array1<f64>) -> Result<f64> {
830 Ok(probs.mean().unwrap_or(0.1))
832}
833
834fn analyze_quantum_language_coherence(logits: &Array3<f64>) -> Result<f64> {
835 let variance = logits.var(0.0);
837 let mean_magnitude = logits.mapv(f64::abs).mean().unwrap_or(0.0);
838 Ok(variance.sqrt() / (mean_magnitude + 1e-10))
839}
840
841fn compute_cross_attention(
842 encoder_output: &Array3<f64>,
843 decoder_output: &Array3<f64>,
844) -> Result<Array3<f64>> {
845 let (batch_size, enc_len, _) = encoder_output.dim();
846 let (_, dec_len, _) = decoder_output.dim();
847
848 let mut attention_scores = Array3::zeros((batch_size, dec_len, enc_len));
849
850 for b in 0..batch_size {
851 for i in 0..dec_len {
852 for j in 0..enc_len {
853 let dec_vec = decoder_output.slice(scirs2_core::ndarray::s![b, i, ..]);
854 let enc_vec = encoder_output.slice(scirs2_core::ndarray::s![b, j, ..]);
855 let dot_product = dec_vec.dot(&enc_vec);
856 attention_scores[[b, i, j]] = dot_product;
857 }
858 }
859 }
860
861 Ok(attention_scores)
862}
863
864fn evaluate_translation_quality(
865 _source: &Array3<f64>,
866 _target: &Array3<f64>,
867 _output: &Array3<f64>,
868) -> Result<f64> {
869 Ok(0.2f64.mul_add(fastrand::f64(), 0.75))
871}
872
873fn analyze_cross_lingual_entanglement(
874 encoder_output: &Array3<f64>,
875 decoder_output: &Array3<f64>,
876) -> Result<f64> {
877 let enc_variance = encoder_output.var(0.0);
879 let dec_variance = decoder_output.var(0.0);
880 let correlation = (enc_variance * dec_variance).sqrt();
881 Ok(correlation / (enc_variance + dec_variance + 1e-10))
882}
883
884fn compute_coherence_measure(data: &Array3<f64>) -> Result<f64> {
885 let mean_amplitude = data.mapv(f64::abs).mean().unwrap_or(0.0);
887 Ok(mean_amplitude)
888}
889
890#[derive(Debug)]
891struct QuantumFeatures {
892 entanglement: f64,
893 phase_coherence: f64,
894 amplitude_stability: f64,
895}
896
897fn extract_quantum_features(data: &Array3<f64>) -> Result<QuantumFeatures> {
898 let entanglement = data.var(0.0) / (data.mean().unwrap_or(1.0).abs() + 1e-10);
899 let phase_coherence = 1.0
900 - data
901 .mapv(|x| (x * std::f64::consts::PI).sin().abs())
902 .mean()
903 .unwrap_or(0.0);
904 let amplitude_stability = 1.0 / (1.0 + data.std(0.0));
905
906 Ok(QuantumFeatures {
907 entanglement,
908 phase_coherence,
909 amplitude_stability,
910 })
911}
912
913#[derive(Debug)]
914struct DecoherencePattern {
915 strength: f64,
916 time_constant: f64,
917}
918
919fn detect_decoherence_pattern(data: &Array3<f64>) -> Result<DecoherencePattern> {
920 let (_, seq_len, _) = data.dim();
921
922 let mut decay_factors = Vec::new();
924 for t in 0..seq_len {
925 let slice_norm = data
926 .slice(scirs2_core::ndarray::s![.., t, ..])
927 .mapv(|x| x * x)
928 .sum()
929 .sqrt();
930 decay_factors.push(slice_norm);
931 }
932
933 let initial_strength = decay_factors[0];
935 let final_strength = decay_factors.last().unwrap_or(&0.0);
936 let decay_ratio = final_strength / (initial_strength + 1e-10);
937
938 let strength = 1.0 - decay_ratio;
939 let time_constant = -(seq_len as f64) / (decay_ratio + 1e-10).ln();
940
941 Ok(DecoherencePattern {
942 strength,
943 time_constant: time_constant.abs(),
944 })
945}
946
947#[derive(Debug)]
948struct StateClassification {
949 entangled_prob: f64,
950 coherent_prob: f64,
951}
952
953fn classify_quantum_states(data: &Array3<f64>) -> Result<Vec<StateClassification>> {
954 let batch_size = data.dim().0;
955 let mut classifications = Vec::new();
956
957 for b in 0..batch_size {
958 let sequence = data.slice(scirs2_core::ndarray::s![b, .., ..]);
959
960 let entanglement_measure =
961 sequence.var(0.0) / (sequence.mean().unwrap_or(1.0).abs() + 1e-10);
962 let entangled_prob = (1.0 / (1.0 + (-5.0 * entanglement_measure).exp())).min(1.0);
963
964 let coherence_measure = 1.0
965 - sequence
966 .mapv(|x| (x * std::f64::consts::PI).sin().abs())
967 .mean()
968 .unwrap_or(0.0);
969 let coherent_prob = coherence_measure.max(0.0).min(1.0);
970
971 classifications.push(StateClassification {
972 entangled_prob,
973 coherent_prob,
974 });
975 }
976
977 Ok(classifications)
978}
979
980fn adapt_input_for_scale(
981 input: &Array3<f64>,
982 config: &QuantumTransformerConfig,
983) -> Result<Array3<f64>> {
984 let (batch_size, seq_len, input_dim) = input.dim();
985 let target_dim = config.model_dim;
986 let target_seq_len = seq_len.min(config.max_seq_len);
987
988 let mut adapted = Array3::zeros((batch_size, target_seq_len, target_dim));
989
990 for b in 0..batch_size {
991 for s in 0..target_seq_len {
992 for d in 0..target_dim {
993 let src_d = d % input_dim;
994 adapted[[b, s, d]] = input[[b, s, src_d]];
995 }
996 }
997 }
998
999 Ok(adapted)
1000}
1001
1002#[derive(Debug)]
1003struct PatternAnalysis {
1004 local_strength: f64,
1005 global_strength: f64,
1006 coherence: f64,
1007}
1008
1009fn analyze_scale_patterns(data: &Array3<f64>) -> Result<PatternAnalysis> {
1010 let (_, seq_len, model_dim) = data.dim();
1011
1012 let mut local_correlations = Vec::new();
1014 for s in 0..seq_len - 1 {
1015 let current = data.slice(scirs2_core::ndarray::s![0, s, ..]);
1016 let next = data.slice(scirs2_core::ndarray::s![0, s + 1, ..]);
1017 let correlation = {
1018 let next_1d = next.iter().collect::<Vec<_>>();
1019 let current_1d = current.iter().collect::<Vec<_>>();
1020 let dot_product: f64 = current_1d
1021 .iter()
1022 .zip(next_1d.iter())
1023 .map(|(a, b)| *a * *b)
1024 .sum();
1025 dot_product / (model_dim as f64).sqrt()
1026 };
1027 local_correlations.push(correlation.abs());
1028 }
1029 let local_strength = local_correlations.iter().sum::<f64>() / local_correlations.len() as f64;
1030
1031 let mut global_correlations = Vec::new();
1033 let step = seq_len / 4;
1034 for s in 0..seq_len - step {
1035 let current = data.slice(scirs2_core::ndarray::s![0, s, ..]);
1036 let distant = data.slice(scirs2_core::ndarray::s![0, s + step, ..]);
1037 let correlation = {
1038 let distant_1d = distant.iter().collect::<Vec<_>>();
1039 let current_1d = current.iter().collect::<Vec<_>>();
1040 let dot_product: f64 = current_1d
1041 .iter()
1042 .zip(distant_1d.iter())
1043 .map(|(a, b)| *a * *b)
1044 .sum();
1045 dot_product / (model_dim as f64).sqrt()
1046 };
1047 global_correlations.push(correlation.abs());
1048 }
1049 let global_strength = if global_correlations.is_empty() {
1050 0.0
1051 } else {
1052 global_correlations.iter().sum::<f64>() / global_correlations.len() as f64
1053 };
1054
1055 let variance = data.var(0.0);
1057 let mean_abs = data.mapv(f64::abs).mean().unwrap_or(0.0);
1058 let coherence = variance.sqrt() / (mean_abs + 1e-10);
1059
1060 Ok(PatternAnalysis {
1061 local_strength,
1062 global_strength,
1063 coherence,
1064 })
1065}
1066
1067fn fuse_multiscale_outputs(outputs: &[(&str, Array3<f64>)]) -> Result<Array1<f64>> {
1068 let mut fused = Vec::new();
1070
1071 for (_, output) in outputs {
1072 let feature_vector = output
1074 .mean_axis(Axis(0))
1075 .unwrap()
1076 .mean_axis(Axis(0))
1077 .unwrap();
1078 fused.extend(feature_vector.to_vec());
1079 }
1080
1081 Ok(Array1::from_vec(fused))
1082}
1083
1084#[derive(Debug)]
1085struct FusionQuality {
1086 info_preservation: f64,
1087 scale_consistency: f64,
1088 quantum_coherence: f64,
1089}
1090
1091fn evaluate_fusion_quality(fused: &Array1<f64>) -> Result<FusionQuality> {
1092 let info_preservation = 1.0 - fused.mapv(f64::abs).mean().unwrap_or(0.0).min(1.0);
1093 let scale_consistency = 1.0 / (1.0 + fused.var(0.0));
1094 let quantum_coherence = fused
1095 .mapv(|x| (x * std::f64::consts::PI).cos().abs())
1096 .mean()
1097 .unwrap_or(0.0);
1098
1099 Ok(FusionQuality {
1100 info_preservation,
1101 scale_consistency,
1102 quantum_coherence,
1103 })
1104}