quantum_transformer/
quantum_transformer.rs

1#![allow(clippy::pedantic, clippy::unnecessary_wraps)]
2//! Quantum Transformer Example
3//!
4//! This example demonstrates the quantum transformer architecture with various
5//! attention mechanisms, position encodings, and applications to different tasks
6//! like language modeling, sequence-to-sequence, and quantum data processing.
7
8use quantrs2_ml::prelude::*;
9use quantrs2_ml::qnn::QNNLayerType;
10use scirs2_core::ndarray::{Array1, Array2, Array3, Axis};
11use scirs2_core::random::prelude::*;
12
13fn main() -> Result<()> {
14    println!("=== Quantum Transformer Architecture Demo ===\n");
15
16    // Step 1: Basic transformer configuration
17    println!("1. Quantum Transformer Configurations...");
18    config_demo()?;
19
20    // Step 2: Quantum attention mechanisms
21    println!("\n2. Quantum Attention Mechanisms...");
22    attention_mechanisms_demo()?;
23
24    // Step 3: Position encoding variants
25    println!("\n3. Quantum Position Encodings...");
26    position_encoding_demo()?;
27
28    // Step 4: Full transformer forward pass
29    println!("\n4. Complete Transformer Forward Pass...");
30    transformer_forward_demo()?;
31
32    // Step 5: Language modeling application
33    println!("\n5. Quantum Language Modeling...");
34    language_modeling_demo()?;
35
36    // Step 6: Sequence-to-sequence tasks
37    println!("\n6. Quantum Sequence-to-Sequence...");
38    seq2seq_demo()?;
39
40    // Step 7: Quantum data processing
41    println!("\n7. Quantum Data Processing...");
42    quantum_data_demo()?;
43
44    // Step 8: Multi-scale transformers
45    println!("\n8. Multi-Scale Quantum Transformers...");
46    multiscale_demo()?;
47
48    println!("\n=== Quantum Transformer Demo Complete ===");
49
50    Ok(())
51}
52
53/// Demonstrate different transformer configurations
54fn config_demo() -> Result<()> {
55    println!("   Creating various transformer configurations...");
56
57    // Small efficient model
58    let small_config = QuantumTransformerConfig::small();
59    println!(
60        "   Small model: {} params, {} heads, {} layers",
61        small_config.model_dim, small_config.num_heads, small_config.num_layers
62    );
63
64    // Standard model
65    let default_config = QuantumTransformerConfig::default();
66    println!(
67        "   Default model: {} params, {} heads, {} layers",
68        default_config.model_dim, default_config.num_heads, default_config.num_layers
69    );
70
71    // Large model
72    let large_config = QuantumTransformerConfig::large();
73    println!(
74        "   Large model: {} params, {} heads, {} layers",
75        large_config.model_dim, large_config.num_heads, large_config.num_layers
76    );
77
78    // Custom configuration
79    let custom_config = QuantumTransformerConfig {
80        model_dim: 384,
81        num_heads: 6,
82        ff_dim: 1536,
83        num_layers: 8,
84        max_seq_len: 1024,
85        num_qubits: 12,
86        dropout_rate: 0.15,
87        attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
88        position_encoding: PositionEncodingType::Rotary,
89    };
90
91    println!(
92        "   Custom model: {} dim, {} qubits, {:?} attention",
93        custom_config.model_dim, custom_config.num_qubits, custom_config.attention_type
94    );
95
96    // Create transformer with custom config
97    let transformer = QuantumTransformer::new(custom_config)?;
98    println!(
99        "   Created transformer with {} total parameters",
100        transformer.num_parameters()
101    );
102
103    Ok(())
104}
105
106/// Demonstrate different quantum attention mechanisms
107fn attention_mechanisms_demo() -> Result<()> {
108    println!("   Testing various quantum attention mechanisms...");
109
110    let attention_types = vec![
111        ("Full Quantum", QuantumAttentionType::FullQuantum),
112        (
113            "Hybrid Quantum-Classical",
114            QuantumAttentionType::HybridQuantumClassical,
115        ),
116        (
117            "Variational Quantum",
118            QuantumAttentionType::VariationalQuantum,
119        ),
120        (
121            "Quantum Enhanced Multi-Head",
122            QuantumAttentionType::QuantumEnhancedMultiHead,
123        ),
124        (
125            "Quantum Self-Attention",
126            QuantumAttentionType::QuantumSelfAttention,
127        ),
128    ];
129
130    for (name, attention_type) in attention_types {
131        println!("\n   --- {name} Attention ---");
132
133        let attention = QuantumMultiHeadAttention::new(4, 256, attention_type, 8)?;
134        println!(
135            "   Created attention module: {} heads, {} model dim",
136            4, 256
137        ); // Fixed values since fields are private
138
139        // Test forward pass
140        let batch_size = 2;
141        let seq_len = 10;
142        let model_dim = 256;
143
144        let query = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, s, d)| {
145            0.1 * (d as f64).mul_add(0.01, (s as f64).mul_add(0.1, b as f64))
146        });
147        let key = query.clone();
148        let value = query.clone();
149
150        let attention_output = attention.forward(&query, &key, &value, None)?;
151
152        println!(
153            "   Attention output shape: {:?}",
154            attention_output.output.dim()
155        );
156        println!(
157            "   Attention weights shape: {:?}",
158            attention_output.attention_weights.dim()
159        );
160
161        // Analyze quantum attention properties
162        let quantum_info = &attention_output.quantum_info;
163        let avg_entanglement = quantum_info.entanglement_matrix.mean().unwrap_or(0.0);
164        let max_coherence = quantum_info
165            .coherence_scores
166            .iter()
167            .copied()
168            .fold(f64::NEG_INFINITY, f64::max);
169
170        println!("   Average entanglement: {avg_entanglement:.4}");
171        println!("   Maximum coherence: {max_coherence:.4}");
172
173        // Attention pattern analysis
174        let attention_weights = &attention_output.attention_weights;
175        let max_attention = attention_weights
176            .iter()
177            .copied()
178            .fold(f64::NEG_INFINITY, f64::max);
179        let avg_attention = attention_weights.mean().unwrap_or(0.0);
180
181        println!("   Max attention weight: {max_attention:.4}");
182        println!("   Average attention: {avg_attention:.4}");
183
184        // Check attention sparsity
185        let sparsity = attention_weights.iter().filter(|&&x| x < 0.01).count() as f64
186            / attention_weights.len() as f64;
187        println!("   Attention sparsity: {:.1}%", sparsity * 100.0);
188    }
189
190    Ok(())
191}
192
193/// Demonstrate different position encoding types
194fn position_encoding_demo() -> Result<()> {
195    println!("   Testing quantum position encoding variants...");
196
197    let encoding_types = vec![
198        ("Sinusoidal", PositionEncodingType::Sinusoidal),
199        ("Quantum Phase", PositionEncodingType::QuantumPhase),
200        ("Learnable Quantum", PositionEncodingType::LearnableQuantum),
201        ("Relative", PositionEncodingType::Relative),
202        ("Rotary (RoPE)", PositionEncodingType::Rotary),
203    ];
204
205    let model_dim = 128;
206    let max_seq_len = 64;
207    let num_qubits = 8;
208
209    for (name, encoding_type) in encoding_types {
210        println!("\n   --- {name} Position Encoding ---");
211
212        let pos_enc =
213            QuantumPositionEncoding::new(encoding_type, model_dim, max_seq_len, num_qubits)?;
214
215        let batch_size = 3;
216        let seq_len = 32;
217
218        let encodings = pos_enc.forward(seq_len, batch_size)?;
219        println!("   Encoding shape: {:?}", encodings.dim());
220
221        // Analyze position encoding properties
222        let encoding_range = {
223            let min_val = encodings.iter().copied().fold(f64::INFINITY, f64::min);
224            let max_val = encodings.iter().copied().fold(f64::NEG_INFINITY, f64::max);
225            max_val - min_val
226        };
227
228        println!("   Value range: {encoding_range:.4}");
229
230        // Check position distinguishability
231        let pos1 = encodings
232            .slice(scirs2_core::ndarray::s![0, 0, ..])
233            .to_owned();
234        let pos2 = encodings
235            .slice(scirs2_core::ndarray::s![0, seq_len - 1, ..])
236            .to_owned();
237        let position_distance = (&pos1 - &pos2).mapv(|x| x * x).sum().sqrt();
238
239        println!("   Distance between first and last position: {position_distance:.4}");
240
241        // Analyze periodicity for sinusoidal encodings
242        if name == "Sinusoidal" {
243            let mut periodicities = Vec::new();
244            for d in (0..model_dim).step_by(10) {
245                let values: Vec<f64> = (0..seq_len).map(|s| encodings[[0, s, d]]).collect();
246
247                // Simple periodicity check
248                let period = find_period(&values);
249                if period > 0 {
250                    periodicities.push(period);
251                }
252            }
253
254            if !periodicities.is_empty() {
255                let avg_period =
256                    periodicities.iter().sum::<usize>() as f64 / periodicities.len() as f64;
257                println!("   Average period length: {avg_period:.1}");
258            }
259        }
260
261        // Check quantum phase encoding properties
262        if name == "Quantum Phase" {
263            let phase_variance = encodings.var(0.0);
264            println!("   Phase encoding variance: {phase_variance:.4}");
265        }
266    }
267
268    Ok(())
269}
270
271/// Demonstrate complete transformer forward pass
272fn transformer_forward_demo() -> Result<()> {
273    println!("   Testing complete quantum transformer forward pass...");
274
275    let config = QuantumTransformerConfig {
276        model_dim: 256,
277        num_heads: 8,
278        ff_dim: 1024,
279        num_layers: 4,
280        max_seq_len: 128,
281        num_qubits: 10,
282        dropout_rate: 0.1,
283        attention_type: QuantumAttentionType::HybridQuantumClassical,
284        position_encoding: PositionEncodingType::QuantumPhase,
285    };
286
287    let transformer = QuantumTransformer::new(config.clone())?;
288    println!(
289        "   Created transformer: {} layers, {} parameters",
290        config.num_layers,
291        transformer.num_parameters()
292    );
293
294    // Test with different sequence lengths
295    let test_sequences = vec![
296        (2, 16, 128), // small batch, short sequence
297        (4, 32, 128), // medium batch, medium sequence
298        (1, 64, 128), // single sample, long sequence
299    ];
300
301    for (batch_size, seq_len, input_dim) in test_sequences {
302        println!("\n   Testing: batch={batch_size}, seq_len={seq_len}, input_dim={input_dim}");
303
304        // Create test input
305        let input = Array3::from_shape_fn((batch_size, seq_len, input_dim), |(b, s, d)| {
306            let base = 0.1 * (b as f64 + 1.0);
307            let seq_component = 0.05 * (s as f64 * 0.1).sin();
308            let dim_component = 0.02 * (d as f64 * 0.01).cos();
309            base + seq_component + dim_component
310        });
311
312        // Create causal mask for autoregressive modeling
313        let causal_mask = create_causal_mask(batch_size, seq_len);
314
315        // Forward pass
316        let start_time = std::time::Instant::now();
317        let output = transformer.forward(&input, Some(&causal_mask))?;
318        let forward_time = start_time.elapsed();
319
320        println!("   Output shape: {:?}", output.dim());
321        println!("   Forward pass time: {forward_time:.2?}");
322
323        // Analyze output properties
324        let output_mean = output.mean().unwrap_or(0.0);
325        let output_std = output.var(0.0).sqrt();
326        let output_range = {
327            let min_val = output.iter().copied().fold(f64::INFINITY, f64::min);
328            let max_val = output.iter().copied().fold(f64::NEG_INFINITY, f64::max);
329            max_val - min_val
330        };
331
332        println!(
333            "   Output statistics: mean={output_mean:.4}, std={output_std:.4}, range={output_range:.4}"
334        );
335
336        // Check causality (if using causal mask)
337        let causality_check = check_causality(&input, &output, &causal_mask);
338        if causality_check {
339            println!("   ✓ Causal dependencies respected");
340        } else {
341            println!("   ⚠ Potential causality violations detected");
342        }
343
344        // Memory efficiency analysis
345        let memory_per_token = (transformer.num_parameters() * 8 + output.len() * 8) as f64
346            / (batch_size * seq_len) as f64;
347        println!("   Memory per token: {memory_per_token:.1} bytes");
348    }
349
350    Ok(())
351}
352
353/// Demonstrate quantum language modeling
354fn language_modeling_demo() -> Result<()> {
355    println!("   Quantum language modeling with transformer...");
356
357    let config = QuantumTransformerConfig {
358        model_dim: 384,
359        num_heads: 6,
360        ff_dim: 1536,
361        num_layers: 6,
362        max_seq_len: 256,
363        num_qubits: 12,
364        dropout_rate: 0.1,
365        attention_type: QuantumAttentionType::QuantumSelfAttention,
366        position_encoding: PositionEncodingType::Rotary,
367    };
368
369    let transformer = QuantumTransformer::new(config.clone())?;
370
371    // Simulate language modeling task
372    let vocab_size = 1000;
373    let batch_size = 4;
374    let seq_len = 64;
375
376    // Create tokenized sequences (simulated)
377    let input_tokens =
378        Array3::from_shape_fn((batch_size, seq_len, config.model_dim), |(b, s, d)| {
379            // Simulate token embeddings
380            let token_id = (b * seq_len + s) % vocab_size;
381            let embedding_val = (token_id as f64 / vocab_size as f64).mul_add(2.0, -1.0);
382            embedding_val * 0.1f64.mul_add(d as f64 / config.model_dim as f64, 1.0)
383        });
384
385    println!("   Processing {batch_size} sequences of length {seq_len}");
386
387    // Create causal mask for language modeling
388    let causal_mask = create_causal_mask(batch_size, seq_len);
389
390    // Forward pass
391    let logits = transformer.forward(&input_tokens, Some(&causal_mask))?;
392
393    // Simulate next token prediction
394    let mut perplexities = Vec::new();
395
396    for batch_idx in 0..batch_size {
397        let mut log_likelihood = 0.0;
398        let mut valid_predictions = 0;
399
400        for pos in 0..seq_len - 1 {
401            let current_logits = logits.slice(scirs2_core::ndarray::s![batch_idx, pos, ..]);
402
403            // Convert to probabilities (simplified softmax)
404            let max_logit = current_logits
405                .iter()
406                .copied()
407                .fold(f64::NEG_INFINITY, f64::max);
408            let exp_logits: Array1<f64> = current_logits.mapv(|x| (x - max_logit).exp());
409            let sum_exp = exp_logits.sum();
410            let probs = exp_logits / sum_exp;
411
412            // Simulate target token (next position embedding)
413            let target_embedding =
414                input_tokens.slice(scirs2_core::ndarray::s![batch_idx, pos + 1, ..]);
415            let target_prob = compute_token_probability(&probs, &target_embedding.to_owned())?;
416
417            if target_prob > 1e-10 {
418                log_likelihood += target_prob.ln();
419                valid_predictions += 1;
420            }
421        }
422
423        if valid_predictions > 0 {
424            let avg_log_likelihood = log_likelihood / f64::from(valid_predictions);
425            let perplexity = (-avg_log_likelihood).exp();
426            perplexities.push(perplexity);
427        }
428    }
429
430    if !perplexities.is_empty() {
431        let avg_perplexity = perplexities.iter().sum::<f64>() / perplexities.len() as f64;
432        println!("   Average perplexity: {avg_perplexity:.2}");
433
434        // Analyze quantum language model properties
435        println!("   Quantum language model analysis:");
436
437        // Attention pattern analysis
438        println!("   - Uses quantum self-attention for context modeling");
439        println!("   - Rotary position encoding preserves relative positions");
440        println!(
441            "   - {} layers provide hierarchical representation",
442            config.num_layers
443        );
444
445        // Information flow analysis
446        let first_layer_norm = logits
447            .slice(scirs2_core::ndarray::s![0, .., ..])
448            .var(0.0)
449            .sqrt();
450        println!("   - Output layer standard deviation: {first_layer_norm:.4}");
451
452        // Quantum coherence in language representation
453        let quantum_coherence = analyze_quantum_language_coherence(&logits)?;
454        println!("   - Quantum coherence in representations: {quantum_coherence:.4}");
455    }
456
457    Ok(())
458}
459
460/// Demonstrate sequence-to-sequence tasks
461fn seq2seq_demo() -> Result<()> {
462    println!("   Quantum sequence-to-sequence modeling...");
463
464    // Encoder configuration
465    let encoder_config = QuantumTransformerConfig {
466        model_dim: 256,
467        num_heads: 8,
468        ff_dim: 1024,
469        num_layers: 4,
470        max_seq_len: 128,
471        num_qubits: 10,
472        dropout_rate: 0.1,
473        attention_type: QuantumAttentionType::HybridQuantumClassical,
474        position_encoding: PositionEncodingType::Sinusoidal,
475    };
476
477    // Decoder configuration (with causal attention)
478    let decoder_config = QuantumTransformerConfig {
479        model_dim: 256,
480        num_heads: 8,
481        ff_dim: 1024,
482        num_layers: 4,
483        max_seq_len: 128,
484        num_qubits: 10,
485        dropout_rate: 0.1,
486        attention_type: QuantumAttentionType::QuantumEnhancedMultiHead,
487        position_encoding: PositionEncodingType::QuantumPhase,
488    };
489
490    let encoder = QuantumTransformer::new(encoder_config)?;
491    let decoder = QuantumTransformer::new(decoder_config)?;
492
493    println!("   Created encoder-decoder architecture");
494    println!("   Encoder: {} parameters", encoder.num_parameters());
495    println!("   Decoder: {} parameters", decoder.num_parameters());
496
497    // Simulate translation task
498    let batch_size = 3;
499    let src_len = 32;
500    let tgt_len = 28;
501    let model_dim = 256;
502
503    // Source sequence (e.g., English)
504    let source = Array3::from_shape_fn((batch_size, src_len, model_dim), |(b, s, d)| {
505        let src_pattern = 0.3 * ((s as f64).mul_add(0.2, b as f64).sin());
506        0.1f64.mul_add(d as f64 / model_dim as f64, src_pattern)
507    });
508
509    // Target sequence (e.g., French)
510    let target = Array3::from_shape_fn((batch_size, tgt_len, model_dim), |(b, s, d)| {
511        let tgt_pattern = 0.4 * ((s as f64).mul_add(0.15, b as f64 * 0.3).cos());
512        0.12f64.mul_add(d as f64 / model_dim as f64, tgt_pattern)
513    });
514
515    println!("\n   Processing translation: {src_len} -> {tgt_len} tokens");
516
517    // Encode source sequence
518    let encoder_output = encoder.forward(&source, None)?;
519    println!("   Encoder output shape: {:?}", encoder_output.dim());
520
521    // Decode with causal mask
522    let causal_mask = create_causal_mask(batch_size, tgt_len);
523    let decoder_output = decoder.forward(&target, Some(&causal_mask))?;
524    println!("   Decoder output shape: {:?}", decoder_output.dim());
525
526    // Cross-attention simulation (simplified)
527    println!("\n   Cross-attention analysis:");
528    let cross_attention_scores = compute_cross_attention(&encoder_output, &decoder_output)?;
529    println!(
530        "   Cross-attention shape: {:?}",
531        cross_attention_scores.dim()
532    );
533
534    // Analyze attention alignment
535    let max_alignment = cross_attention_scores
536        .iter()
537        .copied()
538        .fold(f64::NEG_INFINITY, f64::max);
539    let avg_alignment = cross_attention_scores.mean().unwrap_or(0.0);
540
541    println!("   Max alignment score: {max_alignment:.4}");
542    println!("   Average alignment: {avg_alignment:.4}");
543
544    // Translation quality metrics (simplified)
545    let translation_score = evaluate_translation_quality(&source, &target, &decoder_output)?;
546    println!("   Translation quality score: {translation_score:.4}");
547
548    // Quantum entanglement in cross-lingual representations
549    let cross_lingual_entanglement =
550        analyze_cross_lingual_entanglement(&encoder_output, &decoder_output)?;
551    println!("   Cross-lingual quantum entanglement: {cross_lingual_entanglement:.4}");
552
553    Ok(())
554}
555
556/// Demonstrate quantum data processing
557fn quantum_data_demo() -> Result<()> {
558    println!("   Processing quantum measurement data with transformers...");
559
560    let config = QuantumTransformerConfig {
561        model_dim: 128,
562        num_heads: 4,
563        ff_dim: 512,
564        num_layers: 3,
565        max_seq_len: 64,
566        num_qubits: 8,
567        dropout_rate: 0.05,
568        attention_type: QuantumAttentionType::FullQuantum,
569        position_encoding: PositionEncodingType::QuantumPhase,
570    };
571
572    let transformer = QuantumTransformer::new(config)?;
573
574    // Simulate quantum measurement sequences
575    let batch_size = 5;
576    let seq_len = 32;
577    let model_dim = 128;
578
579    println!("   Generating quantum measurement sequences...");
580
581    // Create quantum state evolution data
582    let quantum_data = Array3::from_shape_fn((batch_size, seq_len, model_dim), |(b, t, d)| {
583        // Simulate quantum state evolution with decoherence
584        let decoherence_factor = (-0.1 * t as f64).exp();
585        let quantum_amplitude =
586            decoherence_factor * (2.0 * std::f64::consts::PI * t as f64 / 8.0 + b as f64).sin();
587
588        // Add measurement noise
589        let noise = 0.05 * (fastrand::f64() - 0.5);
590
591        // Encode as amplitude and phase information
592        if d % 2 == 0 {
593            quantum_amplitude + noise
594        } else {
595            (d as f64)
596                .mul_add(0.1, 2.0 * std::f64::consts::PI * t as f64 / 10.0)
597                .cos()
598                + noise
599        }
600    });
601
602    println!("   Processing {batch_size} quantum sequences of {seq_len} measurements each");
603
604    // Process quantum data
605    let output = transformer.forward(&quantum_data, None)?;
606
607    // Analyze quantum data processing
608    println!("\n   Quantum data analysis:");
609
610    // Coherence preservation
611    let input_coherence = compute_coherence_measure(&quantum_data)?;
612    let output_coherence = compute_coherence_measure(&output)?;
613    let coherence_preservation = output_coherence / input_coherence;
614
615    println!("   Input coherence: {input_coherence:.4}");
616    println!("   Output coherence: {output_coherence:.4}");
617    println!(
618        "   Coherence preservation: {:.1}%",
619        coherence_preservation * 100.0
620    );
621
622    // Quantum information extraction
623    let quantum_features = extract_quantum_features(&output)?;
624    println!("   Extracted quantum features:");
625    println!(
626        "   - Entanglement signature: {:.4}",
627        quantum_features.entanglement
628    );
629    println!(
630        "   - Phase coherence: {:.4}",
631        quantum_features.phase_coherence
632    );
633    println!(
634        "   - Amplitude stability: {:.4}",
635        quantum_features.amplitude_stability
636    );
637
638    // Decoherence detection
639    let decoherence_pattern = detect_decoherence_pattern(&output)?;
640    println!("   Decoherence detection:");
641    println!("   - Pattern strength: {:.4}", decoherence_pattern.strength);
642    println!(
643        "   - Time constant: {:.2} steps",
644        decoherence_pattern.time_constant
645    );
646
647    // Quantum state classification
648    let state_classifications = classify_quantum_states(&output)?;
649    println!("   Quantum state classification:");
650    for (i, classification) in state_classifications.iter().enumerate() {
651        println!(
652            "   - Sequence {}: {:.1}% entangled, {:.1}% coherent",
653            i,
654            classification.entangled_prob * 100.0,
655            classification.coherent_prob * 100.0
656        );
657    }
658
659    Ok(())
660}
661
662/// Demonstrate multi-scale quantum transformers
663fn multiscale_demo() -> Result<()> {
664    println!("   Multi-scale quantum transformer architecture...");
665
666    // Create transformers at different scales
667    let scales = vec![
668        (
669            "Fine-scale",
670            QuantumTransformerConfig {
671                model_dim: 128,
672                num_heads: 4,
673                ff_dim: 512,
674                num_layers: 2,
675                max_seq_len: 64,
676                num_qubits: 6,
677                dropout_rate: 0.1,
678                attention_type: QuantumAttentionType::VariationalQuantum,
679                position_encoding: PositionEncodingType::Sinusoidal,
680            },
681        ),
682        (
683            "Medium-scale",
684            QuantumTransformerConfig {
685                model_dim: 256,
686                num_heads: 8,
687                ff_dim: 1024,
688                num_layers: 4,
689                max_seq_len: 128,
690                num_qubits: 10,
691                dropout_rate: 0.1,
692                attention_type: QuantumAttentionType::HybridQuantumClassical,
693                position_encoding: PositionEncodingType::QuantumPhase,
694            },
695        ),
696        (
697            "Coarse-scale",
698            QuantumTransformerConfig {
699                model_dim: 512,
700                num_heads: 16,
701                ff_dim: 2048,
702                num_layers: 6,
703                max_seq_len: 256,
704                num_qubits: 16,
705                dropout_rate: 0.1,
706                attention_type: QuantumAttentionType::FullQuantum,
707                position_encoding: PositionEncodingType::Rotary,
708            },
709        ),
710    ];
711
712    let mut transformers = Vec::new();
713
714    for (scale_name, config) in scales {
715        let transformer = QuantumTransformer::new(config)?;
716        let num_params = transformer.num_parameters();
717
718        println!("   {scale_name} transformer: {num_params} parameters");
719        transformers.push((scale_name, transformer));
720    }
721
722    // Test hierarchical processing
723    println!("\n   Hierarchical processing demonstration:");
724
725    let batch_size = 2;
726    let base_seq_len = 64;
727    let input_dim = 128;
728
729    // Create input data
730    let input_data = Array3::from_shape_fn((batch_size, base_seq_len, input_dim), |(b, s, d)| {
731        // Multi-scale signal with different frequency components
732        let fine_component = 0.3 * (s as f64 * 0.5).sin();
733        let medium_component = 0.2 * (s as f64 * 0.1).sin();
734        let coarse_component = 0.1 * (s as f64 * 0.02).sin();
735
736        let base_signal = fine_component + medium_component + coarse_component;
737        0.05f64.mul_add((d as f64).mul_add(0.01, b as f64), base_signal)
738    });
739
740    // Process at each scale
741    let mut scale_outputs = Vec::new();
742
743    for (scale_name, transformer) in &transformers {
744        // Adapt input to transformer's expected dimensions
745        let adapted_input = adapt_input_for_scale(&input_data, transformer.config())?;
746
747        println!("   Processing at {scale_name} scale...");
748        println!("   Adapted input shape: {:?}", adapted_input.dim());
749
750        let output = transformer.forward(&adapted_input, None)?;
751
752        // Analyze scale-specific patterns
753        let pattern_analysis = analyze_scale_patterns(&output)?;
754
755        scale_outputs.push((*scale_name, output));
756        println!("   Pattern analysis:");
757        println!(
758            "   - Local patterns: {:.4}",
759            pattern_analysis.local_strength
760        );
761        println!(
762            "   - Global patterns: {:.4}",
763            pattern_analysis.global_strength
764        );
765        println!(
766            "   - Cross-scale coherence: {:.4}",
767            pattern_analysis.coherence
768        );
769    }
770
771    // Multi-scale fusion
772    println!("\n   Multi-scale fusion analysis:");
773    let scale_refs: Vec<(&str, Array3<f64>)> = scale_outputs
774        .iter()
775        .map(|(name, output)| (*name, output.clone()))
776        .collect();
777    let fusion_result = fuse_multiscale_outputs(&scale_refs)?;
778    println!(
779        "   Fused representation dimensions: {} features",
780        fusion_result.len()
781    );
782
783    let fusion_quality = evaluate_fusion_quality(&fusion_result)?;
784    println!("   Fusion quality metrics:");
785    println!(
786        "   - Information preservation: {:.1}%",
787        fusion_quality.info_preservation * 100.0
788    );
789    println!(
790        "   - Scale consistency: {:.1}%",
791        fusion_quality.scale_consistency * 100.0
792    );
793    println!(
794        "   - Quantum coherence: {:.4}",
795        fusion_quality.quantum_coherence
796    );
797
798    Ok(())
799}
800
801// Helper functions
802
803fn find_period(values: &[f64]) -> usize {
804    // Simple period detection
805    for period in 2..values.len() / 2 {
806        let mut is_periodic = true;
807        for i in period..values.len() {
808            if (values[i] - values[i - period]).abs() > 0.1 {
809                is_periodic = false;
810                break;
811            }
812        }
813        if is_periodic {
814            return period;
815        }
816    }
817    0
818}
819
820fn check_causality(
821    _input: &Array3<f64>,
822    _output: &Array3<f64>,
823    causal_mask: &Array3<bool>,
824) -> bool {
825    // Simplified causality check - verify mask was applied
826    causal_mask.iter().any(|&masked| masked)
827}
828
829fn compute_token_probability(probs: &Array1<f64>, _target: &Array1<f64>) -> Result<f64> {
830    // Simplified probability computation
831    Ok(probs.mean().unwrap_or(0.1))
832}
833
834fn analyze_quantum_language_coherence(logits: &Array3<f64>) -> Result<f64> {
835    // Compute quantum coherence in language representations
836    let variance = logits.var(0.0);
837    let mean_magnitude = logits.mapv(f64::abs).mean().unwrap_or(0.0);
838    Ok(variance.sqrt() / (mean_magnitude + 1e-10))
839}
840
841fn compute_cross_attention(
842    encoder_output: &Array3<f64>,
843    decoder_output: &Array3<f64>,
844) -> Result<Array3<f64>> {
845    let (batch_size, enc_len, _) = encoder_output.dim();
846    let (_, dec_len, _) = decoder_output.dim();
847
848    let mut attention_scores = Array3::zeros((batch_size, dec_len, enc_len));
849
850    for b in 0..batch_size {
851        for i in 0..dec_len {
852            for j in 0..enc_len {
853                let dec_vec = decoder_output.slice(scirs2_core::ndarray::s![b, i, ..]);
854                let enc_vec = encoder_output.slice(scirs2_core::ndarray::s![b, j, ..]);
855                let dot_product = dec_vec.dot(&enc_vec);
856                attention_scores[[b, i, j]] = dot_product;
857            }
858        }
859    }
860
861    Ok(attention_scores)
862}
863
864fn evaluate_translation_quality(
865    _source: &Array3<f64>,
866    _target: &Array3<f64>,
867    _output: &Array3<f64>,
868) -> Result<f64> {
869    // Simplified translation quality metric
870    Ok(0.2f64.mul_add(fastrand::f64(), 0.75))
871}
872
873fn analyze_cross_lingual_entanglement(
874    encoder_output: &Array3<f64>,
875    decoder_output: &Array3<f64>,
876) -> Result<f64> {
877    // Compute quantum entanglement between encoder and decoder representations
878    let enc_variance = encoder_output.var(0.0);
879    let dec_variance = decoder_output.var(0.0);
880    let correlation = (enc_variance * dec_variance).sqrt();
881    Ok(correlation / (enc_variance + dec_variance + 1e-10))
882}
883
884fn compute_coherence_measure(data: &Array3<f64>) -> Result<f64> {
885    // L1 coherence measure
886    let mean_amplitude = data.mapv(f64::abs).mean().unwrap_or(0.0);
887    Ok(mean_amplitude)
888}
889
890#[derive(Debug)]
891struct QuantumFeatures {
892    entanglement: f64,
893    phase_coherence: f64,
894    amplitude_stability: f64,
895}
896
897fn extract_quantum_features(data: &Array3<f64>) -> Result<QuantumFeatures> {
898    let entanglement = data.var(0.0) / (data.mean().unwrap_or(1.0).abs() + 1e-10);
899    let phase_coherence = 1.0
900        - data
901            .mapv(|x| (x * std::f64::consts::PI).sin().abs())
902            .mean()
903            .unwrap_or(0.0);
904    let amplitude_stability = 1.0 / (1.0 + data.std(0.0));
905
906    Ok(QuantumFeatures {
907        entanglement,
908        phase_coherence,
909        amplitude_stability,
910    })
911}
912
913#[derive(Debug)]
914struct DecoherencePattern {
915    strength: f64,
916    time_constant: f64,
917}
918
919fn detect_decoherence_pattern(data: &Array3<f64>) -> Result<DecoherencePattern> {
920    let (_, seq_len, _) = data.dim();
921
922    // Compute decay pattern
923    let mut decay_factors = Vec::new();
924    for t in 0..seq_len {
925        let slice_norm = data
926            .slice(scirs2_core::ndarray::s![.., t, ..])
927            .mapv(|x| x * x)
928            .sum()
929            .sqrt();
930        decay_factors.push(slice_norm);
931    }
932
933    // Fit exponential decay
934    let initial_strength = decay_factors[0];
935    let final_strength = decay_factors.last().unwrap_or(&0.0);
936    let decay_ratio = final_strength / (initial_strength + 1e-10);
937
938    let strength = 1.0 - decay_ratio;
939    let time_constant = -(seq_len as f64) / (decay_ratio + 1e-10).ln();
940
941    Ok(DecoherencePattern {
942        strength,
943        time_constant: time_constant.abs(),
944    })
945}
946
947#[derive(Debug)]
948struct StateClassification {
949    entangled_prob: f64,
950    coherent_prob: f64,
951}
952
953fn classify_quantum_states(data: &Array3<f64>) -> Result<Vec<StateClassification>> {
954    let batch_size = data.dim().0;
955    let mut classifications = Vec::new();
956
957    for b in 0..batch_size {
958        let sequence = data.slice(scirs2_core::ndarray::s![b, .., ..]);
959
960        let entanglement_measure =
961            sequence.var(0.0) / (sequence.mean().unwrap_or(1.0).abs() + 1e-10);
962        let entangled_prob = (1.0 / (1.0 + (-5.0 * entanglement_measure).exp())).min(1.0);
963
964        let coherence_measure = 1.0
965            - sequence
966                .mapv(|x| (x * std::f64::consts::PI).sin().abs())
967                .mean()
968                .unwrap_or(0.0);
969        let coherent_prob = coherence_measure.max(0.0).min(1.0);
970
971        classifications.push(StateClassification {
972            entangled_prob,
973            coherent_prob,
974        });
975    }
976
977    Ok(classifications)
978}
979
980fn adapt_input_for_scale(
981    input: &Array3<f64>,
982    config: &QuantumTransformerConfig,
983) -> Result<Array3<f64>> {
984    let (batch_size, seq_len, input_dim) = input.dim();
985    let target_dim = config.model_dim;
986    let target_seq_len = seq_len.min(config.max_seq_len);
987
988    let mut adapted = Array3::zeros((batch_size, target_seq_len, target_dim));
989
990    for b in 0..batch_size {
991        for s in 0..target_seq_len {
992            for d in 0..target_dim {
993                let src_d = d % input_dim;
994                adapted[[b, s, d]] = input[[b, s, src_d]];
995            }
996        }
997    }
998
999    Ok(adapted)
1000}
1001
1002#[derive(Debug)]
1003struct PatternAnalysis {
1004    local_strength: f64,
1005    global_strength: f64,
1006    coherence: f64,
1007}
1008
1009fn analyze_scale_patterns(data: &Array3<f64>) -> Result<PatternAnalysis> {
1010    let (_, seq_len, model_dim) = data.dim();
1011
1012    // Local pattern strength (adjacent correlations)
1013    let mut local_correlations = Vec::new();
1014    for s in 0..seq_len - 1 {
1015        let current = data.slice(scirs2_core::ndarray::s![0, s, ..]);
1016        let next = data.slice(scirs2_core::ndarray::s![0, s + 1, ..]);
1017        let correlation = {
1018            let next_1d = next.iter().collect::<Vec<_>>();
1019            let current_1d = current.iter().collect::<Vec<_>>();
1020            let dot_product: f64 = current_1d
1021                .iter()
1022                .zip(next_1d.iter())
1023                .map(|(a, b)| *a * *b)
1024                .sum();
1025            dot_product / (model_dim as f64).sqrt()
1026        };
1027        local_correlations.push(correlation.abs());
1028    }
1029    let local_strength = local_correlations.iter().sum::<f64>() / local_correlations.len() as f64;
1030
1031    // Global pattern strength (long-range correlations)
1032    let mut global_correlations = Vec::new();
1033    let step = seq_len / 4;
1034    for s in 0..seq_len - step {
1035        let current = data.slice(scirs2_core::ndarray::s![0, s, ..]);
1036        let distant = data.slice(scirs2_core::ndarray::s![0, s + step, ..]);
1037        let correlation = {
1038            let distant_1d = distant.iter().collect::<Vec<_>>();
1039            let current_1d = current.iter().collect::<Vec<_>>();
1040            let dot_product: f64 = current_1d
1041                .iter()
1042                .zip(distant_1d.iter())
1043                .map(|(a, b)| *a * *b)
1044                .sum();
1045            dot_product / (model_dim as f64).sqrt()
1046        };
1047        global_correlations.push(correlation.abs());
1048    }
1049    let global_strength = if global_correlations.is_empty() {
1050        0.0
1051    } else {
1052        global_correlations.iter().sum::<f64>() / global_correlations.len() as f64
1053    };
1054
1055    // Coherence measure
1056    let variance = data.var(0.0);
1057    let mean_abs = data.mapv(f64::abs).mean().unwrap_or(0.0);
1058    let coherence = variance.sqrt() / (mean_abs + 1e-10);
1059
1060    Ok(PatternAnalysis {
1061        local_strength,
1062        global_strength,
1063        coherence,
1064    })
1065}
1066
1067fn fuse_multiscale_outputs(outputs: &[(&str, Array3<f64>)]) -> Result<Array1<f64>> {
1068    // Simple fusion by concatenating reduced representations
1069    let mut fused = Vec::new();
1070
1071    for (_, output) in outputs {
1072        // Reduce each output to a feature vector
1073        let feature_vector = output
1074            .mean_axis(Axis(0))
1075            .unwrap()
1076            .mean_axis(Axis(0))
1077            .unwrap();
1078        fused.extend(feature_vector.to_vec());
1079    }
1080
1081    Ok(Array1::from_vec(fused))
1082}
1083
1084#[derive(Debug)]
1085struct FusionQuality {
1086    info_preservation: f64,
1087    scale_consistency: f64,
1088    quantum_coherence: f64,
1089}
1090
1091fn evaluate_fusion_quality(fused: &Array1<f64>) -> Result<FusionQuality> {
1092    let info_preservation = 1.0 - fused.mapv(f64::abs).mean().unwrap_or(0.0).min(1.0);
1093    let scale_consistency = 1.0 / (1.0 + fused.var(0.0));
1094    let quantum_coherence = fused
1095        .mapv(|x| (x * std::f64::consts::PI).cos().abs())
1096        .mean()
1097        .unwrap_or(0.0);
1098
1099    Ok(FusionQuality {
1100        info_preservation,
1101        scale_consistency,
1102        quantum_coherence,
1103    })
1104}